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Abstract: Biometrics is the automated identification of a person based on distinctive characteristics,
such as fingerprints, face, voice, or the sound of footsteps. This last characteristic has significant
challenges considering the background noise present in any real-life application, where microphones
would record footsteps sounds and different types of noise. For this reason, it is crucial to consider
not only the capacity of classification algorithms for recognizing a person using foostetps sounds,
but also at least one stage of denoising algorithms that can reduce the background sounds before the
classification. In this paper we study the possibilities of a two-stage approach for this problem: a
denoising stage followed by a classification process. The work focuses on discovering the proper
strategy for applying combinations of both stages for specific noise types and levels. Results vary
according to the type and level of noise, e.g., for White noise at signal-to-noise ratio level, accuracy
can increase from 0.96 to 1.00 by applying deep learning based-filters, but the same option does not
benefit the cases of signals with low level natural noises, where Wiener filtering can increase accuracy
from 0.6 to 0.77 at the highest level of noise. The results represent a baseline for developing real-life
implementations of footstep biometrics.

Keywords: biometrics; classification; filtering; footsteps; noise

1. Introduction

The purpose of biometrics is the identification of an individual using biological or
physical measurement that can be related to a unique person. For example, the use of
fingerprints had been employed by criminologists since the 19th century, but it was not
until the second part of the 20th century that technology allowed the automation of the
identification using this characteristic [1].

Other than criminology, the first commercial application of biometrics was the reg-
ulated access to buildings, where only a few persons were allowed to enter for security
reasons; thus the correct identification of such persons is an essential concern. The most com-
mon elements used for this purpose are fingerprints. More recently, other measurements,
such as faces and iris recognition have been applied in smartphones [2] and airports [3].

Any measurements of individuals that can allow a proper and unique identification
can likely be considered for biometrics. The two main categories considered in the literature,
and the most representative measures are [4]: physiological (fingerprints, iris, face) and be-
havioral (voice, signature recognition, keystroke dynamics, footsteps). Each biometrics has
its challenges and possibilities, and recent research that analyzes and provides robustness
to existing systems can be found in the literature [5,6].

The case of using footsteps patterns to recognize an individual has a short history,
from the first proposals [7] to validation using a proper dataset [8] about thirty-five years
ago. The footsteps can be measured and analyzed using several approaches, combining
sensors and classification systems [9].
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Similar to other biometrics, increasing attention from several research groups arose
in recent years [10,11], and similar to other measures, some concerns on practicality and
privacy have been reported [12]. For these reasons, several sensing of the phenomenon
like vision, sound, pressure, and accelerometry has been explored [13]. The benefits of an
application that is based on footsteps recognition can be used in medicine (monitoring and
assessment of Parkinson’s disease), physiotherapy (evaluation of recovery from injuries),
security, and smarthomes [9,14].

Using sound measures of footsteps to determine a person’s identity is a challenging
possibility, given the continuous presence of noise and background sounds present in any
real-life application. But the use of sole sounds can represent an advantage given the
simplicity and low cost of a sound sensor.

Related Work

The reports on the accuracy of footstep biometrics can be above 90% [3], using sensors
from smart floors, video cameras, microphones, or accelerometers. It is important to remark
that the accuracy of a system should be considered carefully for comparison purposes,
given the wide range of possibilities where experiments are performed. For example, not
only the sensing methods can be different, but the classes considered as well: identifying
one person among two possibilities (binary case), one person among several, known versus
unknown person, an individual in a crowd, etc. Additionally, the system’s performance
can be affected by other factors like the types of footwear worn and the different kinds of
floors [11,15].

The case of using distant sound recording as the sole form of identification for in-
dividuals, has been explored in the past years. The first research on multiple persons
using this source of information was published in [16]. For this purpose, characteristic
parametrization of sounds, such as spectral features was applied to analyze the signals.

The incorporation of feature selection methods plays an important role in many
machine learning application, as shown in recent sound-based classification [17,18] and
new robust biometrics [19]. In this work, we focus on analysing sounds of footsteps
registered using a distant microphone in the presence of additive noise, and the mandatory
denoising methods required for the classification process. A fixed number of features were
selected, according to the possibilities of the implementation. Our goal is the exploration of
denoising algorithms in combination with classification methods, to establish the capability
of a biometrics system.

The study’s novelty relies on its focus on the extensive consideration of noise as an
unavoidable part of the real-life implementation of footstep sounds as biometrics and the
quantitative evaluation of a large set of conditions for this purpose. The rest of the paper is
organized as follows: Section 2 presents the Material and Methods used for the Footstep
sound analysis. Section 3 presents the results. Section 4 summarizes the discussion, and
finally, Section 5 presents the Conclusions.

2. Materials and Methods

This section presents the recording conditions and analysis of the sound signals
performed to establish the experiments, which combine denoising and classification algorithms.

2.1. Footsteps Sound Analysis

Footsteps can be analyzed and represented in several domains using a range of
conditions and sensing methods.

In our work, we employ temporal and spectral features to characterize the sound
signals. For this purpose, the pyAudioAnalysis tool [20] was applied to extract the features
suitable for the application of classification algorithms. The extracted features using the
pyAudioAnalysis are:
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• Zero Crossing Rate: Defined as [21]

ZCR =
∞

∑
m=−∞

|sgn(x(m))− sgn(x(m− 1))|w(n−m), (1)

where sng(x) is the sign function, and w(n) is 1
2N for 0 < n < N− 1. This is a measure

of the rate of the sign changes, and has been applied in other sound-based tasks, such
as Voice Activity Detection.

• Energy: The energy of the signal can be computed using the sum of squares of the
signal samples, following the equation:

E(x(n)) =
∞

∑
n=−∞

|x(n)|2. (2)

• Entropy of Energy: The entropy of the energy is also important as a measure of abrupt
changes in the energy of frames.

• Spectral Centroid: This is a measure that represents the center of mass of the
signal’s spectrum.

• Spectral Spread: Is a measure of the variance in the signal’s spectrum.
• Spectral Entropy: The entropy can be measured in the spectrum, quantifying the

spectral complexity of the speech signal. It can be obtained by [22]

SE = ∑
f

p f log
1
p f

, (3)

where p f is each frequency.
• Spectral Flux: This is a measure of how quickly the spectrum is changing, by calculat-

ing the square of successive frames.
• Spectral Rolloff: It is the frequency below which 90% of the energy of the spectrum

is concentrated.
• Mel Frequency Cepstral Coefficients (MFCCs): It is a representation of the power

spectrum, based on the Fourier Transform mapped on the nonlinear mel scale of
frequency. MFCCs vectors are commonly applied in speech recognition tasks. A
detailed description of the MFCC can be found in [23].

• Chroma Vector: Chroma vectors are a representation of the spectrum, mapped into
the twelve pitch classes of the traditional tonal music.

• Chroma Deviation: This is the measure of the standard deviation of the chroma
coefficients.

2.2. Experimental Setup

The identification of persons using footstep sounds has inherently a wide range of
possibilities. For this reason, the experimental conditions have to be chosen carefully,
in order to delimit the study in defined directions. For this purpose, we have chosen
the following conditions to perform the comparative study on denoising algorithms for
footstep sounds as biometric:

• Binary classification: The binary case of classification was defined for this experi-
ments. This means that the data comes from the recording of two persons, and the
identification pretends to distinguish between one of two possibilities.

• Noise: As mentioned in the Introduction, the presence of noise has to be contemplated
in any real-file scenario of sound recording and processing. For our experiments,
we consider both naturally and artificially generated noise. The Babble and Office
Noise, obtained from mynoise.net provides realistic scenarios where a biometrics
system could be implemented. On the other hand, White noise is usually analyzed
in signal denoising tasks. For every type of noise, we add five signal-to-noise ratio

mynoise.net
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(SNR) levels (−10, −5, 0, 5, 10) to cover light to heavy noise affectation of the footsteps
sound signals.

• Denoising Algorithms: The problem of denoising signals has been explored for
decades, and the comparison of algorithms is a usual task in sound-enhancing expe-
riences. For this experimental setup, we chose three of the most commonly applied
algorithms based on classical signal processing, along with a deep learning-based
approach. Details of the algorithms are presented in Section 2.2.2.

• Classifiers: For this first experience of exploring the functionality of a system based
on classification and denoising algorithms, we chose the Support Vector Machines
(SVM) classifier. From the implementation in pyAudioAnalysis, a cross-validation
procedure is performed to select the parameters for the optimal classifiers, like the
margin parameter C for the SVM.

2.2.1. Dataset

In our experiments, we developed a dataset of footstep sounds registered using a
distant microphone. For this purpose two female volunteer participants were recorded
in several sessions, using a single Omni-directional microphone AKG C414 XLII. Both
participants walked naturally around the microphone, describing a circle of about 1.5 m.
A laboratory space at the University of Costa Rica was conditioned for the experiments.
Figure 1 shows the setup of the recording sessions.

Figure 1. Illustration of the recording session.

The volunteers were asked to walk using a natural pace, and fifteen minutes of
footsteps sounds were recorded in each session, using WAV files with a sampling of
44,100 Hz and 16 bits. The best recordings, in terms of continuity and lack of additional
transient sounds were selected for the second step of processing and editing.

The audio files of the recording sessions were post-processed and edited to obtain
segments of five seconds with steps sound. The duration was defined in order to provide
the classifiers with data of several footsteps each time, and with the first footstep not
necessarily located at the beginning of the audio.

The focus of this work is on the numerical analysis of how noise affects the identifica-
tion process modeling it as an additive process. Further studies must take into account the
homogenization of other conditions such as the type of shoes, the floor material, the similar
weight of participants, among other factors.
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2.2.2. Sound Classification in Noisy Environments

The Experimental Setup was defined to simulate the real-life application of distant
sound of footsteps as biometrics. For this purpose, the presence of several kinds of noise at
several levels is an essential part of the study. For each five-second segment of the audio
file with footsteps sounds, the five SNR levels of each noise were added.

Then, the recognition’s performances were tested under the assumption that any
real-life system should provide a noise filter to preserve the quality of the signal for the
classifiers. For this purpose, we selected four open-source implemented filters, described
as follows:

1. MMSE: As usual in several denoising methods, the Minimum Mean Square Error
algorithm (MMSE) models the presence of noise as an additive process, as

y(t) = x(t) + n(t), (4)

where y(t) is the noisy signal, composed as the sum of the clean signal x(t) and the
background noise n(t). In this algorithm, following the implementation from [24],
to enhance the signal from a representation of Mel-Frequency Cepstral (MFCC) and
DCT Coefficients vectors (cy), the clean coefficients cx are estimated as

ĉx(k) = E
{

cx(k)|my
}
= ∑

b
ak,bE

{
log mx(b)|my

}
, (5)

where ak,b are the DCT coefficients, and mx, my are the output of the MFCC filter bank,
and b the filter channel index. Those parameters are estimated from 39-dimension
MFCC coefficients, while making assumptions on the noise models. We chose the
parameters according to the solution proposed by [24]. It is important to remark the
various selection and weighting methods of DCT coefficient that can be employed
and compared, as presented in [19]. An analysis of such relevant procedures can be
explored as future work.

2. Spectral subtraction: Using the same additive noise model of the previous case
(Equation (4)), the power spectrum of the noisy speech can be estimated as [25]:

|Y(k)|2 ≈ |X(k)|2 + |N(k)|2, (6)

where |P(k)| is the magnitude of the discrete spectrum of the corresponding noisy
speech, the clean version and the noise. The noise spectrum N̂(k) is approximated
from silence segments. In the implementation presented in [25], the clean speech
spectrum is estimated as

|X̂(k)|2 = |Y(k)|2 − α|D̂(k)|2, (7)

where alpha is a coefficient established according to the SNR. This means that its value
can be estimated from the corrupted speech signal and the noise measured during
segments of silence.

3. Wiener filter: The Wiener filtering is one of the most successful and commonly
implemented algorithms for denoising speech signals. The filtering is performed
by minimizing the Mean Square Error. In the description presented in [26], the
minimization in the frequency domain can be formulated using the transfer function

H(ω) =
Px(ω)

Px(ω) + Pn(ω)
, (8)

where, Px(ω) is the clean signal power spectrum and Pn(ω) is the noise power spec-
trum. According to the implementation of [27], the enhanced signal can be approxi-
mated by

P̂x(ω) = H(ω)Py(ω). (9)
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where, Py(ω) is the power spectrum of the noisy signal. An estimation of Py(ω) can
be obtained during periods of silence.

4. Deep learning: The application of deep learning-based algorithms for denoising sound
signals has been successfully applied in recent experiences. Among the different
approaches and types of deep learning models, recurrent neural networks such as
Long-short Term Memory (LSTM) stand out for their results and capacity to model
sequential information.
For our experiments, we chose the PyTorch implementation of LSTM-based au-
toencoders presented by Facebook Research (https://github.com/facebookresearch/
denoiser, accessed 12 February 2022). This implementation is based on an encoder/
decoder architecture that combines convolutional and LSTM layers, with skip U-net
connections. It works with raw waveforms. Further details can be found in [28],
where we extracted the parameters of the neural network.

2.2.3. Evaluation

To evaluate each classifier, the set of available data was divided into training and test
sets in a proportion of 80% and 20%, respectively. The common measures for assessing the
results were calculated in the test set: True positives, True Negatives, False Positives, and
False Negatives. With that measure for each case, the typical Accuracy, Precision, Recall
and F1-score were obtained. In this work, we focus on the performance of the classifier
before and after the denoising process with the different types of algorithms.

Given the impulsive nature of the footsteps sounds in comparison to the background
noise, the observation of waveforms and spectrograms is introduced as a means of illustrat-
ing the denoising process and the contamination of the signals with the noise, as well as
the enhancement achieved with the denoising algorithms.

3. Results

The challenges of a classification process of footsteps in the presence of noise are
remarkable in the case of a distant microphone. Figure 2 illustrates the case of White noise
with SNR 0. In Figure 2b it is evident how the noise affects the entire spectrum and makes
almost unrecognizable the impulses of the footsteps shown in Figure 2a. For traditional
algorithms, such degradation may represent a very difficult task, in terms of recovering the
original signal. But with the application of deep learning denoising, the impulses became
visible again after the denoising, as shown in Figure 2c.

(a)

Figure 2. Cont.

https://github.com/facebookresearch/denoiser
https://github.com/facebookresearch/denoiser
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(b)

(c)

Figure 2. Sample waveform and spectrogram of a segment of five seconds from the first volunteer,
during several stages of the experimental process. (a) Clean segment. (b) Noise-degraded with White
Noise SNR 0. (c) After the deep-learning based denoising.

As expected, for the case of a non-stationary, natural noise, such as Babble, the de-
noising process is not as effective as White noise case, even with the application of deep
learning algorithm. Given this observation, it is expected that the classification process
with signals degraded with this kind of noise becomes less effective in terms of Accuracy,
Precision, Recall, and F1-score (Figure 3).
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(a)

(b)

(c)
Figure 3. Sample waveform and spectrogram of a segment of five seconds from the first volunteer,
during several stages of the experimental process. (a) Clean segment. (b) Noise-degraded with Office
Noise SNR 0. (c) After the deep learning-based denoising.



Computation 2022, 10, 133 9 of 17

The availability of data became an important issue for the application of deep learning-
based denoising. To keep a proper comparison, the SVM classifier was trained using only
the test set of the deep neural network training process. This means that most of the
data collected during the recording sessions were used for training and validation of the
deep learning denoising process, and only the test set was available for the training of the
classifier. The large data requirements are a limitation to consider if a two-stage denoising
and classification proposal considers deep learning for both processes.

The detailed results for Babble, White, and Office of our experiments are organized
according to the type of noise and level, in Tables 1–15. In each table, the classification
metrics are reported for the noisy signal and the results of the four denoising algorithms.
The first results correspond to Babble SNR-10, in Table 1.

This natural noise, at such high SNR level, affects the performance of the classifier
considerably, with an accuracy as low as 0.60 in this binary case. Most of the denoising
algorithms did not obtain improvements in any of the classification measures, with the
only exception of Wiener filtering.

Table 1. Babble Noise SNR 10. * is the best result for each particular measure.

Algorithm Accuracy Precision Recall F1-Score

No filter 0.60 0.65 0.59 0.62
MMSE [24] 0.56 0.50 0.57 0.53

Spectral subtraction [25] 0.67 0.58 0.71 0.64
Wiener [27] 0.77 * 0.77 * 0.77 * 0.77 *

Deep learning [28] 0.43 0.40 0.42 0.41

A similar situation of poor denoising performance is observed in Table 2. None of
the algorithms could enhancing the signal to achieve acceptable accuracy. In fact, proper
classification results were obtained from SNR 0 or lower levels, as shown in Tables 3–5.
For such SNR levels, the application of denoising algorithms may represent a favorable
procedure that increases accuracy, precision, and F1-score for SNR 0 and SNR 5. The SNR
10 of Babble seems to impact very slightly the performance of the SVM classifier, and
the unfiltered version of the signal is the best option for the biometric identification of
the volunteers.

Table 2. Babble Noise SNR −5. * is the best result for each particular measure.

Algorithm Accuracy Precision Recall F1-Score

No filter 0.75 0.77 0.74 0.75
MMSE [24] 0.65 0.58 0.68 0.63

Spectral subtraction [25] 0.77 * 0.81 0.75 0.78 *
Wiener [27] 0.75 0.85 * 0.71 0.77

Deep learning [28] 0.73 0.55 0.85 * 0.67

Table 3. Babble Noise SNR 0. * is the best result for each particular measure.

Algorithm Accuracy Precision Recall F1-Score

No filter 0.92 0.88 0.96 0.92
MMSE [24] 0.79 0.77 0.80 0.78

Spectral subtraction [25] 0.92 0.92 * 0.92 0.92
Wiener [27] 0.94 * 0.88 1.00 * 0.94 *

Deep learning [28] 0.78 0.55 1.00 * 0.71
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Table 4. Babble Noise SNR 5. * is the best result for each particular measure.

Algorithm Accuracy Precision Recall F1-Score

No filter 0.96 0.92 1.00 * 0.96
MMSE [24] 0.90 0.85 0.96 0.90

Spectral subtraction [25] 0.98 * 0.96 * 1.00 * 0.98 *
Wiener [27] 0.94 0.92 0.96 0.94

Deep learning [28] 0.88 0.75 1.00 * 0.86

Table 5. Babble Noise SNR 10. * is the best result for each particular measure.

Algorithm Accuracy Precision Recall F1-Score

No filter 0.96 * 0.92 * 1.00 * 0.96 *
MMSE [24] 0.92 0.85 1.00 * 0.92

Spectral subtraction [25] 0.94 0.92 * 0.96 0.94
Wiener [27] 0.96 * 0.92 * 1.00 * 0.96 *

Deep learning [28] 0.95 0.90 1.00 * 0.95

The trend lines of Precision and Recall measures for the case of Babble are presented
in Figure 4. It can be observed that some denoising algorithms, such as deep learning and
MMSE did not represent any advantage for the process, because the no-filter version of
the signal performs better, particularly in terms of Precision. The Recall measure presents
fewer differences among the algorithms, with some advantages at the higher level of noise
but no significant improvements at SNR 5 or SNR 10.

10 5 0 5 10
SNR

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

mmse
spect_sub
wiener
DL
No filter

10 5 0 5 10
SNR

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

mmse
spect_sub
wiener
DL
No filter

Precision and recall for babble noise

Figure 4. Comparison of Precision and Recall results for Babble.

A very different group of results are presented for the case of White noise, as shown
in Tables 6–10. For these results, it seems that the noise does not significantly affect the
biometric identification, even for the higher SNR levels. But in every case, deep learning as
a denoising algorithm improves the performance of the classification task.
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Table 6. White Noise SNR −10. * is the best result for each particular measure.

Algorithm Accuracy Precision Recall F1-Score

No filter 0.96 0.92 1.00 * 0.96
MMSE [24] 0.92 0.85 1.00 * 0.92

Spectral subtraction [25] 0.88 0.77 1.00 0.87
Wiener [27] 0.94 0.88 1.00 * 0.94

Deep learning [28] 0.98 * 0.95 * 1.00 * 0.97 *

Table 7. White Noise SNR −5. * is the best result for each particular measure.

Algorithm Accuracy Precision Recall F1-Score

No filter 0.96 0.92 1.00 * 0.96
MMSE [24] 0.96 0.92 1.00 * 0.96

Spectral subtraction [25] 0.96 0.92 1.00 * 0.96
Wiener [27] 1.00 * 1.00 * 1.00 * 1.00 *

Deep learning [28] 1.00 * 1.00 * 1.00 * 1.00 *

A relevant observation is that White noise at SNR 0, SNR 5 and SNR 10 does not
require filtering, given the perfect performance of the classifier. But, unlike the other
denoising algorithms, deep learning application does not affect the performance.

The drop in recognition accuracy with the application of MMSE, Spectral subtrac-
tion and Wiener filtering can be explained by the indiscriminate filtering of footsteps
information alongside the noise or some introduced distortions, that were not present with
deep learning.

Table 8. White Noise SNR 0. * is the best result for each particular measure.

Algorithm Accuracy Precision Recall F1-Score

No filter 1.00 * 1.00 * 1.00 * 1.00 *
MMSE [24] 0.96 0.92 1.00 * 0.96

Spectral subtraction [25] 0.96 0.92 1.00 * 0.96
Wiener [27] 0.98 0.96 1.00 * 0.98

Deep learning [28] 1.00 * 1.00 * 1.00 * 1.00 *

Table 9. White Noise SNR 5. * is the best result for each particular measure.

Algorithm Accuracy Precision Recall F1-Score

No filter 1.00 * 1.00 * 1.00 * 1.00 *
MMSE [24] 0.98 0.96 1.00 * 0.98

Spectral subtraction [25] 0.98 0.96 1.00 * 0.98
Wiener [27] 0.96 0.92 1.00 * 0.96

Deep learning [28] 1.00 * 1.00 * 1.00 * 1.00 *

Table 10. White Noise SNR 10. * is the best result for each particular measure.

Algorithm Accuracy Precision Recall F1-Score

No filter 1.00 * 1.00 * 1.00 * 1.00 *
MMSE [24] 0.96 0.92 1.00 * 0.96

Spectral subtraction [25] 0.96 0.92 1.00 * 0.96
Wiener [27] 0.98 0.96 1.00 * 0.98

Deep learning [28] 1.00 * 1.00 * 1.00 * 1.00 *
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The trend lines of Precision and Recall shown in Figure 5 illustrate the benefit of the
deep learning denoising, but the non-need for denoising in SNR 0 or lower levels.
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DL
No filter

Precision and recall for white noise

Figure 5. Comparison of Precision and Recall results for White noise.

The previous results differ from the last case analyzed: the natural Office noise. The
measures for the classification task are shown from Tables 11–15. The noise effect on the
person’s identification is evident from accuracy as low as 60% or 75% for the case of SNR
−10 and SNR−5. Denoising algorithms of Spectral subtraction and Wiener seems to benefit
the process, but were incapable of achieving high enough results to consider them for a
real-life application of a biometric system.

Table 11. Office Noise SNR −10. * is the best result for each particular measure.

Algorithm Accuracy Precision Recall F1-Score

No filter 0.60 0.65 0.59 0.62
MMSE [24] 0.56 0.50 0.57 0.53

Spectral subtraction [25] 0.67 0.58 0.71 0.64
Wiener [27] 0.71 * 0.73 * 0.70 * 0.72 *

Deep learning [28] 0.65 0.65 0.65 0.65

Table 12. Office Noise SNR −5. * is the best result for each particular measure.

Algorithm Accuracy Precision Recall F1-Score

No filter 0.75 0.77 0.74 0.75
MMSE [24] 0.65 0.58 0.68 0.63

Spectral subtraction [25] 0.79 * 0.85 * 0.76 * 0.80 *
Wiener [27] 0.75 0.85 * 0.71 0.77

Deep learning [28] 0.60 0.65 0.59 0.62

Benefits of denoising algorithms began to appear at SNR 0 and SNR 5. Here, the
classification task reaches results as high as 0.98 in accuracy, improving the metrics of the
unfiltered, noisy signals.
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Table 13. Office Noise SNR 0. * is the best result for each particular measure.

Algorithm Accuracy Precision Recall F1-Score

No filter 0.92 0.88 0.96 0.92
MMSE [24] 0.79 0.77 0.80 0.78

Spectral subtraction [25] 0.96 * 0.92 * 1.00 * 0.98 *
Wiener [27] 0.94 0.88 1.00 * 0.94

Deep learning [28] 0.75 0.55 0.92 0.69

Table 14. Office Noise SNR 5. * is the best result for each particular measure.

Algorithm Accuracy Precision Recall F1-Score

No filter 0.96 0.92 1.00 * 0.96
MMSE [24] 0.90 0.85 0.96 0.90

Spectral subtraction [25] 0.98 * 0.96 * 1.00 * 0.98 *
Wiener [27] 0.94 0.92 0.96 0.94

Deep learning [28] 0.88 0.75 1.00 * 0.86

Table 15. Office Noise SNR 10. * is the best result for each particular measure.

Algorithm Accuracy Precision Recall F1-Score

No filter 0.98 * 0.96 * 1.00 * 0.98 *
MMSE [24] 0.92 0.85 1.00 * 0.92

Spectral subtraction [25] 0.94 0.92 0.96 0.94
Wiener [27] 0.96 0.92 1.00 * 0.96

Deep learning [28] 0.93 0.85 1.00 * 0.92

The mixed benefits of the different denoising algorithms are summarized in Figure 6.
The deep learning was unable to successfully filter the Office noise in terms of the bio-
metric identification. However, such results should be interpreted in the context of the
amount of data available for the first stage of neural network training and the second stage
of classification.

Figure 6. Comparison of Precision and Recall results for Office noise.
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4. Discussion

The results presented in the Section 3 show how the different denoising algorithms
differ in their capacity to enhance the sound signal for proper biometric identification of
individuals. The main differences arose in the higher levels of noise (SNR−10 and SNR −5)
for the two natural noises: Babble and Office.

The case of White noise seems to affect the biometric identification in a less consid-
erable way across all SNR levels. This can be explained by the stationary nature of white
noise, compared to natural noises like Babble and Office.

Given that each of the audio segments of the dataset has a length of five seconds, the
sound of the footsteps may occur at any point in the audio. This means that the impulsive
nature of Office sound and the non-stationary nature of Babble can affect the audio in very
different ways, thus producing training and testing sets that can be very difficult to identify
for the algorithms.

For a similar reason, the corresponding algorithms may encounter a significant chal-
lenge in denoising signals degraded by natural noises, which explains the lower Accuracy,
Precision, Recall, and F1-score presented for those cases.

The comparison of the denoising algorithms in terms of their advantages and disad-
vantages is presented in Table 16.

Table 16. Denoising algorithm comparison.

Algorithm Advantages Disadvantages

MMSE [24] competitive results in the lower levels
of noise (SNR 10)

The algorithm did not achieve good results in
four of the five SNR levels for all kinds of noise

Spectral subtraction [25] Easy of implementation. Achieved
very good results for natural noises.

In the presence of White noise, the algorithm
degrades the signals and significantly lower the

accuracy and precision.

Wiener [27]
Obtains the best accuracy results of

Babble noise, and competitive results
for White noise.

A tendency to lower the accuracy for low levels
of noise (SNR 10) was observed.

Deep learning [28] Obtained the best performance in all
SNR levels of White Noise.

Large training time. It may require much larger
datasets to enhance natural noises.

The results presented in this paper can be comparable to recent works in the literature.
For example, in [29], an accuracy of 0.95 was achieved in a person’s identification, a similar
value to our experiments at the lower levels of noise. The same metric can be compared to
other works, like [30] (accuracy of 0.975) and more recently in [10] (accuracy of 0.98 using
Convolutional Neural Networks).

Other than accuracy, the results are difficult to compare to other recent works on
biometrics of footstep sounds given the dissimilarities between the datasets, and the
focus on noisy environments of our study. The best algorithms for the classification of
the state-of-the-art works may be tested in a similar way to our proposal, with several
types of noise at several SNR levels, in order to bring the biometric identification closer to
real-life environments.

5. Conclusions

In this investigation, a comparative analysis of the benefits of denoising algorithms
for footstep sounds as biometrics was presented. The novelty of the study for the state-
of-the-art work is its focus on considering noise as an unavoidable part of the real-life
implementations of footstep sounds as biometrics.

Given the number of possibilities that a person’s identification can mean in terms of
experimentation, for this study we focused on the simple case of binary classification using
segments of five seconds of distant recording and decided on the SVM algorithm to identify
the volunteers from the sound of their footsteps.
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For the testing of the denoising algorithms, we chose three noise types and five noise
levels. Such a large number of possibilities allow for the comparison of diverse scenarios
and provide a baseline for the use of distant sound recognition of footsteps as a biometric
under noisy conditions. The accuracy of the different conditions contemplated in the
experiments presented a range of 0.60 to 1.0, where the lower values were obtained with
the Office noise at SNR −10, and the higher with White Noise at SNR 10. After applying
the denoising algorithms, the accuracy range is 0.71 to 1.0, but the filtering method should
be properly chosen for each case.

For the real-life application of a biometric system using distant footstep sounds, the
results allow us to foresee the possibility of adequate recognition performance when non-
stationary noise levels are not too high and provide a basis for establishing when denoising
filters are recommendable or not.

For example, when stationary White Gaussian noise is present, the deep learning
denoising provides the best results, but none of the algorithms tested in the work seems to
benefit the process for low levels of natural noise. Certainly, deep learning denoising has
several other possibilities than those presented in this work. For example, taking advantage
of transfer learning, or training networks to simultaneously denoise several types of noise
can be considered in the future.

Another possibility is the application of two stages of deep learning for denoising and
classification. This is a promising opportunity for the development of future systems, and
is scalable in other cases, such as multiple class identification, or identification of a single
person within a group. For any of those possibilities, the large amount of data required
should be considered: and will probably need very controlled conditions during recording
sessions to homogenize the recordings.

Future work may also include the comparison of feature selection for classification
and the selection and weighting methods of the DCT coefficient that are part of the features
employed in this research. The feature selection methods should also be analyzed in terms
of their robustness for noisy environments using this research as a comparison baseline in
order to evaluate possible performance improvement.
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