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Abstract: The Optimal Reactive Power Dispatch (ORPD) problem consists of finding the optimal
settings of reactive power resources within a network, usually with the aim of minimizing active
power losses. The ORPD is a nonlinear and nonconvex optimization problem that involves both
discrete and continuous variables; the former include transformer tap positions and settings of reactor
banks, while the latter include voltage magnitude settings in generation buses. In this paper, the
ORPD problem is modeled as a mixed integer nonlinear programming problem and solved through
two different metaheuristic techniques, namely the Mean Variance Mapping Optimization and the
genetic algorithm. As a novelty, the solution of the ORPD problem is implemented through a Python-
DIgSILENT interface that combines the strengths of both software. Several tests were performed on
the IEEE 6-, 14-, and 39-bus test systems evidencing the applicability of the proposed approach. The
results were contrasted with those previously reported in the specialized literature, matching, and in
some cases improving, the reported solutions with lower computational times.

Keywords: combinatorial optimization; DIgSILENT software; genetic algorithm; mean variance
mapping optimization; optimal reactive power dispatch; power losses minimization; Python pro-
gramming language

1. Introduction

Electric power systems play a key role in modern societies, since they allow us to
transport energy from generation centers to loads. This is carried out through a complex
infrastructure that involves centrally-dispatched generation, substations and high-voltage
transmission lines. The ORPD is part of the daily operation of power systems; it consists
of finding the right settings of transformer taps, reactor banks and voltage set points in
generation buses, generally with the aim of minimizing active power losses [1]. The ORPD
is usually solved after the unit commitment, which is the process of programming the
active power generation as a function of their biding prices and limits [2,3]. The first attempts
to solve the ORPD problem resorted to classical optimization techniques such as linear
programming [4], quadratic programming [5] and interior point methods [6]. Although
these techniques are effective for solving convex optimization problems, they do not
perform well when solving Mixed Integer Nonlinear Programming (MINLP) problems.
These type of problems are better handled by heuristic and metaheuristic techniques as
shown in [7–10] when it is not possible to transform these into mixed-integer models.

Owing to its nature, several metaheuristic techniques have been applied to solve the
ORPD problem. The main advantage of these approaches is that they are able to deal
with nonconvex optimization problems involving discrete and continuous variables [11,12].
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Furthermore, they do not require differentiability of the objective function or constraints,
overcoming the disadvantages of classic optimization algorithms. Metaheuristic algorithms
are usually inspired by natural or social phenomena. Some of these methodologies, applied
to the solution of the ORPD problem, are described below.

In [13], the authors propose a gravitational search algorithm (GSA) applied to the
ORPD problem. In this technique, the solution candidates are represented by masses that
interact according to the law of gravity and Newton’s laws. The proposed GSA is tested on
the IEEE 30-bus, 57-bus and 118-bus test systems considering minimization of active power
losses, improvement of voltage profile and enhancement of voltage stability. An opposition-
based GSA is developed in [14] to further improve the optimization performance of the
basic GSA.

In [15], the ORPD is approached using a harmony search algorithm with the objective
of minimizing power losses and improving voltage profile. This method is based on a
phenomenon inspired by the improvisation process of musicians. The study is implemented
on the IEEE 30-bus and 57-bus test systems, and the results obtained are compared with
other techniques that include GA and Particle Swarm Optimization (PSO).

In [16,17], the authors use a particle swarm optimization (PSO) method to solve the
ORPD problem considering voltage security assessment and voltage stability, respectively.
The PSO is a metaheuristic inspired by the behavior of bird flocks and fish schools. Several
variants of this approach have also been applied to solve the ORPD problem. In [18], three
PSO variants are explored to solve the reactive power and voltage control problem. The
first two are known as global and local neighborhood variants of PSO, while the third
one is the coordinated aggregation PSO algorithm. In [19], the turbulent and turbulent
crazy variants of PSO are also implemented. The authors perform several tests on the IEEE
57-bus and IEEE 118-bus test systems, comparing their results with other metaheuristic
techniques. It was found that the performance of PSO is considerably improved when the
turbulent and turbulent crazy variants are implemented, outperforming classic metaheuris-
tic approaches. In [20], the authors proposed a hybrid fuzzy-PSO algorithm that features
improved exploration and exploitation processes to approach the ORPD in real-size power
systems. Test systems of up to 354 nodes were used to validate the results. This algorithm
showed a better performance than the classical PSO approach.

In [21], a stochastic fractal search method is used to solve the multi-objective ORPD
problem considering the minimization of power losses along with voltage deviation and
a voltage stability index. In [22], the authors implemented the mean-variance mapping
optimization (MVMO) algorithm to solve the ORPD problem. The effectiveness of the
proposed algorithm was tested in the IEEE 30-bus test system and compared with other
metaheuristic approaches.

A survey of different metaheuristic techniques applied to the ORPD problem is pre-
sented in [23]. In this paper, the authors also propose the sine–cosine algorithm to approach
the ORPD problem. A validation of the proposed algorithm is carried out with differential
evolution (DE) and PSO among other techniques. In [24], the authors propose an optimiza-
tion algorithm based on the gradient to solve the ORPD, taking into account dispersed
distributed generation in distribution networks. In [25], the authors use a hybrid fractional
PSO with GSA (FPSOGSA) to solve the ORPD problem. The proposed model is validated
with the IEEE 30 and IEEE 57-bus test systems with the minimization of active power
transmission line losses and voltage deviation. The authors in [26] propose an entropy
evolution technique implemented into FPSOGSA to further improve its performance.

In [27–30], evolutionary algorithms for addressing ORPD are presented. These al-
gorithms are based on the postulates of biological evolution in which an initial set of
individuals (solution candidates) give rise to other individuals with which they must
compete in such a way that the fittest (best quality solutions) prevail over time, giving
rise to new and better solutions. In [27], an evolutionary algorithm based on quantum
computing is presented that seeks to jointly solve the optimal dispatch of both active
and reactive power. The authors validate their approach with the IEEE 30 and 118-bus
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test systems comparing their results with those obtained with simulated annealing (SA)
and ant colony optimization. In [28], a DE algorithm is proposed bearing in mind sev-
eral objectives, including voltage stability enhancement, voltage profile improvement and
losses minimization. In [31], the authors implemented a specialized GA in the DIgSILENT
programming language (DPL) to solve the ORPD problem. As a main contribution, the
proposed approach takes advantage of the modeling capabilities of DIgSILENT [32]. This
software includes a detailed modeling of all sorts of power system elements, including
generators, reactors, transmission lines and transformers. Furthermore, it counts with its
own programming language that can be used to run power flow calculations with low
computational time.

Other optimization techniques applied to solve the ORPD include moth–flame opti-
mization [33], the bat optimization algorithm [34], tabu search [35,36] and the slime mold
algorithm [37] among others. A detailed description of such techniques is not within the
scope of this document; nonetheless, a review of metaheuristic techniques used to solve the
ORPD problem can be consulted in [38].

Following the research line adopted by [31], this paper presents a Python-DIgSILENT
interface to solve the ORPD problem. The proposed approach integrates the advantages
of using a specialized software that allows detailed modeling of network assets and has
effective power flow algorithms (DIgSILENT) with a versatile programming language
that surpasses the capabilities of DPL (Python). The main contribution of this paper is
the integration of this software to solve the ORPD problem in electric power systems.
The ORPD problem is well known in electrical engineering for being nonlinear, nonconvex
and presenting several sub-optimal solutions. The complexity of the ORPD problem largely
surpasses the built-in capabilities and functionalities of the DigSILENT Power Factory
software alone. Therefore, an interface with an object-oriented, high-level programming
language is implemented. The main advantage of the proposed interface is the fact of
counting with several optimization libraries that can be used not only to solve the ORPD
problem but other optimization problems in electric power systems. To show the applica-
bility of the proposed approach and for comparative purposes with [31], several tests were
carried out with the IEEE 6, IEEE 14 and IEEE 39-bus test system with two metaheuristic
techniques developed in Python programming language, namely MVMO and GA.

The rest of the document is organized as follows: Section 2 presents the general
mathematical formulation of the ORPD problem in power systems. Section 3 describes the
Python-DIgSILENT interface developed in this research work. Section 4 presents the main
characteristics of the test systems that feature 6, 14 and 39 buses, respectively. Section 5
presents the tests and results where the Python-DIgSILENT interface is used to solve the
ORPD using MVMO and GA in three benchmark IEEE test systems. Finally, the conclusions
are discussed in Section 6.

2. Mathematical Modeling of the ORPD Problem

Within the ORPD problem the continuous variables are related to generation of active
and reactive power as well as voltage magnitudes. On the other hand, the integer variables
are related to transformer tap positions as well as reactive power compensators. The
mathematical modeling of the ORPD problem adopted in this research is described in the
next subsections [39].

2.1. Objective Function

Several objective functions may be envisaged when approaching the ORPD, such
as enhancement of voltage profile, amelioration of voltage stability or minimization of
power losses, the last one being the most common. Equation (1) presents the objective
function considered in this paper which consists on minimizing the total active power
losses for a given operative scenario. In this case, ploss represents the value of the objective
function; vm and vk are the magnitudes of voltages at buses m and k with angles θm and
θk, respectively; Ykm(ta) is the admittance magnitude associated with buses k and m. This
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admittance depends on the values of the transformer taps ta, and its angle is given by
φkm(ta). Finally, N indicates the set of network buses.

min ploss = ∑
k∈N

∑
m∈N

Ykm(ta)vkvm cos(θk − θm − φkm(ta)), (1)

Note that the admittance matrix is a function of the transformers tap positions. This is
due to the fact that such devices change the operational state of the transformer based on
the fact that its capacities and inductive effects modify the reactance components of the
admittance matrix [40].

2.2. Equality Constraints

The ORPD is subject to active and reactive power balance restrictions at each bus given
by Equations (2) and (3), respectively.

pg
k − pd

k = ∑
m∈N

Ykm(ta)vkvm cos(θk − θm − φkm(ta)), ∀k ∈ N (2)

qg
k − qd

k + qc
k
(
cj
)
− ql

k(rl) = ∑
m∈N

Ykm(ta)vkvm sin(θk − θm − φkm(ta)), ∀k ∈ N (3)

In this case, pg
k and qg

k indicate the active and reactive power injections given by the
generator located at node k; pd

k and qd
k indicate the active and reactive power demands at

bus k; qc
k
(
cj
)

indicates the reactive power injection provided by a capacitor bank located at
bus k with the tap position cj; ql

k(rl) is the reactive power absorption of a reactor located at
bus k with a tap position given by rl .

2.3. Inequality Constraints

Equations (4) and (5) represent voltage and reactive power generation limits for all the
generators. Constraints given by Equations (6)–(8) enforce limits on the taps of capacitor
banks, reactors and power transformers. Finally, Equation (9) limits the voltage magnitudes
in all buses.

vg,min
i ≤ vg

i ≤ vg,max
i , ∀i ∈ G (4)

qg,min ≤ qg
k ≤ qg,max

k , ∀k ∈ N (5)

cmin
j ≤ cj ≤ cmax

j , ∀j ∈ C (6)

rmin
l ≤ rl ≤ rmax

l , ∀l ∈ L (7)

tmin
a ≤ ta ≤ tmax

a , ∀a ∈ T (8)

vmin
k ≤ vk ≤ vmax

k , ∀k ∈ N (9)

In this case, vg
i is the voltage magnitude of the ith generator; cj is the tap position

of capacitor bank j; rl is the tap position of the lth reactor compensator; vg,max
i and vg,min

i
represent the bounds (upper and lower, respectively) related to voltage variables at gen-
eration buses; qg,max

k and qg,min
k represent upper and lower limits of power generation at

bus k; cmax
j and cmin

j indicate the maximum and minimum bounds of the tap positions at

the jth capacitor bank; rmax
l and rmin

l indicate the maximum and minimum limits of the tap
positions at the lth reactor; tmax

a and tmin
a indicate the maximum and minimum limits of the

tap position related to the ath transformer; finally, vmax
k and vmin

k are the upper and lower
voltage limits associated to the kth node.

Note that the injections of reactive power provided by the capacitor banks as well as
the absorption of reactive power of the reactors are a function of the tap positions of these
devices [22,41]. Furthermore, the tap modeling can be performed as a continuous variable
or by means of discrete stages, using the former results in a nonlinear optimization model,
while using the later results in a general MINLP problem [42].
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The optimization problem indicated by Equations (1)–(9) is nonlinear and nonconvex.
This is evident in Equations (2) and (3) which involve trigonometric functions as well as a
nonlinear relation of the admittance matrix with the transformer taps [21,43]. Moreover,
the presence of integer variables makes the problem even more complex. As evidenced
in the literature review, these types of problems are usually solved through metaheuristic
techniques instead of classical optimization methods. In this paper we implemented two
metaheuristic techniques to approach the ORPD problem through a Python-DIgSILENT
interface, namely MVMO and GA.

3. Python-DIgSILENT Interface

This section presents the main characteristics of the Python-DIgSILENT interface
to face the ORPD problem through the combination of the Newton–Raphson load flow
solution in DIgSILENT [31], and the metaheuristic optimization techniques, i.e., the MVMO
and the GA, implemented in the Python programming environment [44].

3.1. DIgSILENT Power Factory Software

DIgSILENT PowerFactory is one of the most popular power system software available
in the market. It is widely used by electricity companies for analyzing generation, distribu-
tion and transmission and is also used by industrial systems. DIgSILENT covers a full range
of functions, from standard features to advanced and highly sophisticated applications, that
includes real-time simulation, renewable energy, distributed generation, and performance
monitoring for the supervision and testing of electrical systems. DIgSILENT is easy to use,
is Windows compatible and integrates flexible and reliable system modeling capabilities
along with sophisticated algorithms and a unique database concept [45]. In addition, with
its flexibility for scripting and interfaces, it is suited for highly automated and integrated
solutions in business applications.

To sum up, DIgSILENT PowerFactory was selected in this research work bearing in
mind the following criteria: (1) it counts with its own programming language (DPL) that
can be used to compute several load flows with low computational effort, (2) it allows
detailed modeling of power system devices that includes transmission lines, transformers,
reactors, as well as generators and induction motors, and (3) the integration of power
system elements is straightforward for load flow analyses [46].

3.2. Python Programming Language

Python is an open-source, cross-platform programming language whose philosophy
emphasizes code readability. It is an object-oriented, high-level programming language
that features fewer steps compared to Java and C [47]. Python was initially founded in 1991
by developer Guido Van Rossum. Due to its readability along with dynamic typing and
binding, it has rapidly become popular among programmers, and currently it is among the
fastest growing languages in the world. One of the advantages of Python programming
language is counting with a very active community. Many organizations such as Google,
Yahoo and YouTube have adopted Python.

Python has been integrated with other languages used for solving optimization prob-
lems, among which are those related to power systems. Python’s versatility, ease of
adaptation, integration and robustness have given it a place in the formulation of optimiza-
tion problems, either as a main language or as a complement. The specialized literature
presents diverse examples of the use of tools developed in Python that allow modeling,
use of specialized analysis methods and easy integration with external methodologies for
solving power system problems [48,49]. In addition, examples of power system problem
solving, such as electrical planning [50], weak node detection using statistical methods [51]
and optimal reactive power dispatch [52] have been implemented using this program-
ming language.
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3.3. Design of the Python-DIgSILENT Interface

The Python-DIgSILENT interface integrates all the features of Python (libraries, read-
able code, documentation and support community) and allows access from Python to
all the functionality that DIgSILENT PowerFactory provides as power system modeling
software. The interface integrates Python libraries that focus on optimization, data analytics
and machine learning in conjunction with the detailed power system modeling that allows
DIgSILENT PowerFactory. An example of the interface is depicted in Figure 1 where power
losses of a transmission system are computed.

Figure 1. Example of an AC load flow loss calculation (evaluated using Newton–Raphson) in
Python-DIgSILENT script software.

Figure 2 shows how to perform the same calculation using the standard DPL (DIgSI-
LENT Programming Language) form of programming, which involves an understanding
of the features of writing code, necessitates more time in application development and does
not have the aforementioned benefits of using a programming language such as Python.

Figure 2. Example of an AC load flow loss calculation (evaluated using Newton–Raphson) in
DIgSILENT Programming Language.
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The workflow between DigSILENT and the Python programming language is shown
in Figure 3. In this case, the software DigSILENT allows integration with the Python
executable via ComPython objects. Using Python, the integration library is loaded, which
allows the connection with the DigSILENT program and with the optimization libraries.

Figure 3. DIgSILENT Power Factory and Python Programming Language workflow.

3.4. Implementation of Optimization Libraries

The solution of the proposed optimization problem involved the use of open-source
Python libraries. In this case, the MVMO [53] and PyMoo [54] libraries were used. These
libraries allow the assignment of constraint functions, the objective function, the control
variables and the input parameters (initial population, initial control variables, number of
mutations and number of iterations). The PyMoo library contains different optimization al-
gorithms. In this paper, the GA was implemented. The use of this library and specifications
for different algorithms can be consulted in [55].

The power systems under analysis are modeled in the DIgSILENT Power Factory tool,
and by means of this tool, the update of the control variables and the validation by means
of load flow of the system constraints are performed. The implementation of the codes, the
initial configurations of the variables and the DIgSILENT Power Factory files are available
in [56].

As already mentioned, since the ORPD is a combinatorial problem, two metaheuristic
approaches were selected for its solution, namely GA and MVMO. These methodologies
are briefly described in the next subsections.

3.4.1. Genetic Algorithm

Genetic algorithms are search heuristics inspired by Charles Darwin’s theory of natural
evolution. They are designed to mimic the process of natural selection in which the fittest
individuals are more likely to transmit their genes to the next generations [57]. There are
several variants of GAs; nonetheless, the version of GA available in [58] and illustrated in
Figure 4 was implemented.

In the first stage of the algorithm, an initial population of randomly or pseudo-
randomly candidate solutions is generated. Every candidate solution is represented as
a vector (chromosome) that contains the four optimization variables of the system as
indicated in Figure 5.

In this case, the initial population is randomly created taking into account the limits of
the optimization variables. Once the initial population is obtained, the quality or fitness of
every individual is computed. This corresponds to the power losses given by Equation (1).
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For this, a power flow is executed for every candidate solution using DIgSILENT and
taking as inputs the information provided in their codification.

Start

Read power

sistem data

Define initial

population

Read and decode
individuals

Update power

sistem data

Use DigSilent to

compute Power Flow

Evaluate fitness
function

Is the stopping

criterion met? Results

End

Selection

Crossover

Mutation

YESNO

Figure 4. Flowchart of the implemented GA.

...... ......

Voltage Setpoints Capacitors Reactors Transformer Taps

Figure 5. Illustration of a candidate solution to the ORPD problem.

The next step of the GA is the process of selection. In this step, two subsets of the
population are randomly selected, and the fittest individual from each subset is chosen to
generate new candidate solutions (offspring). The two selected individuals or candidate
solutions are then the parents of new solutions that are obtained through a crossover opera-
tion. In this stage, the information of the parents is exchanged at a random position. The last
stage of the GA is the mutation in which a randomly selected element of the chromosome
is changed. This steps allows the algorithm to escape from locally-optimal solutions.

Within the GA, the size of the population is kept constant; therefore, new solutions or
offspring replace the worst solutions of the current population. The process is carried out
until a given number of generations is executed.

3.4.2. MVMO

The MVMO is a population-based stochastic technique which performs a search
procedure within a normalized range of optimization variables. The MVMO uses the
same structure of candidate solutions as illustrated in Figure 6. MVMO uses the solution
variables as an adaptive memory to save the n-best solutions that are found, a generic
version available in [59]. Like other evolutionary solution algorithms, MVMO adopts an
optimal value criterion to select the main solution, i.e., the stored optimal solution, from
which the next generation (offspring) solution is created.
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Figure 6. Flowchart of the implemented MVMO algorithm.

The search space of the MVMO for all variables is limited to [0, 1]. So then, the maximum
and minimum values of the variables must be normalized in this range. In each iteration, it
is not possible that any solution component surpasses the corresponding constraints. To
achieve this goal, a unique mapping function (h−function) was developed. This function
has as inputs the means and variance of the best candidate solutions that the optimization
algorithm has found so far. The shape and mapping curves are fixed in relation to the
advancement in the search space, and the MVMO updates the good solution around the
best solutions in each iteration [60]. The MVMO algorithm searches around the best local
candidate solution with a small possibility of being trapped in a local optimal solution.
The feasibility of the solution is examined, and a fitness value is given for this solution.
To handle constraints, the static penalization approach was implemented. In this case, all
variables are restricted by applying the fitness function due to the fact that control variables
are self-limited.

The mapping function is in charge of transforming a given variable x∗i varied randomly
with unity distribution to another variable xi, which is concentrated around the mean value.

The solutions file is the knowledge base of the methodology that guides the search.
Then, the n best solutions or individuals found so far by the MVMO are stored in this
file. The fitness value of each solution is also saved. The update is only performed if the
new solution candidate turns out to be better than those currently in the file. The viable
solutions are at the top of the file. These individuals are sorted in accordance to their fitness
value. Non-viable solutions are sorted in accordance to their fitness and are placed at the
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bottom of the file. Once the file is complete with n feasible individuals, any non-feasible
candidate solutions will not have a chance to be saved in the file.

The best solution found so far (the first solution positioned in the file), labeled as
xbest, is the parent. In this case, a variable selection is carried out for the generation of
the offspring. The MVMO algorithm seeks the mean value stored in the solution file for
the best individual only in m selected directions. Therefore, only these dimensions of the
offspring are updated, while the remaining D−m are assigned the corresponding xbest
values, D being the number of control variables (problem dimension). Next, the mutation
stage is carried out for each selected m dimension.

The MVMO also has a swarm variant with np particles. In this case, each particle has
its own solution file and mapping function. In the swarm MVMO algorithm, every particle
carries out m steps to identify an optimal set of independent solutions. Subsequently, the
current solutions (particles) exchange information. In some cases, some solution candidates
might be very close to each other, meaning that there is information redundancy, and
therefore, redundant particles must be discarded. The best local and global solution (gbest)
are defined. In addition, the normalized distance between each solution to the best local
and global solutions are calculated.

The ith particle is eliminated from the process if its normalized distance is lower than a
certain predefined threshold; if the solution is still considered, its search is focused towards
the global best solution. This is performed by assigning the global best solution as the
parent. Finally, the MVMO search process stops after a given number of fitness evaluations.
The authors in [61,62] present a detailed description of the swarm MVMO algorithm.

4. Description of the Test Systems

The main features and data of the power systems under study are presented in this
section for future validation of the proposed approach. These systems have 6, 14 and
39 buses, respectively. The last two systems can be found directly in the DIgSILENT
software [31].

4.1. IEEE 6-Bus Test System

Figure 7 depicts the IEEE 6-bus test system used in this study. The system features
two power generators located at buses 2 and 6 (slack bus), 2 capacitive banks, 2 power
transformers and 5 transmission lines. Table 1 presents the data of these devices which
include the nominal parameters of capacitor banks, transformers, generators and loads. In
this case, the capacitor banks were represented as synchronous compensators featuring
nominal capabilities from 0 to 5 MVAr.

SG
~

SG
~

SG
~

B_CAPACITOR_B4 LOAD_B1

LOAD_B5

LOAD_B3

GENERATOR_B2B_CAPACITOR_B3

SLACK

BUS_2BUS_5BUS_3

BUS_1BUS_4BUS_6

Figure 7. IEEE 6-bus test system diagram.
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Table 1. Electrical data of the IEEE 6-bus test system.

Transmission Lines

Line From To Line Impedance’s
# Bus Bus R (Ω) X (Ω)

1 6 3 4.88187 20.55942
2 6 4 3.17520 14.68530
3 4 3 3.84993 16.15383
4 5 2 11.19258 25.40160
5 2 1 28.69587 41.67450

Transformer Characteristics

Transformer From To Transformer Tap
# Bus Bus Settings

1 4 1 9100
2 3 5 9100

Bus-Bar Characteristics

Bus Load Power Injections
# PL (MW) QL (Mvar) PG (MW) QG (Mvar)

1 55 13 0 0
2 0 0 50 0
3 50 5 0 5
4 0 0 0 5
5 30 18 0 0
6 - - Slack node

Table 2 presents the transformer data of this system. In this case, the maximum range
for a safe operation of these transformers is of ±10%. The data presented in Table 2 are
needed for the parametrization of transformers in DIgSILENT.

Table 2. Characterization of transformers in the IEEE 6-bus test system.

Transformer From To Minimum Maximum Addition Voltage Voltage
# Bus Bus Voltage Voltage per Tap (%) Range (%)

1 4 1 9100 11,100 0.001 −0.1 ≤ pT ≤ 0.1
2 3 5 9100 11,100 0.001 −0.1 ≤ pT ≤ 0.1

Note that the last column in Table 2 defines the parameter pT to define the percentage
of variations of the voltage output in the transformers equipped with taps. It is worth
mentioning that the minimum and maximum positions for the transformer’s taps (see
columns 4 and 5 in Table 2 are related with the typical settings in DIgSILENT software
where the nominal input/output voltages for the transformer are defined for a tap value
of 10,000.

Table 3 presents the technical characteristics of the generators present in the IEEE 6-bus
test system. In this case, bus 2 is a voltage-controlled node with minimum and maximum
voltages of 0.95 p.u. and 1.15 p.u., respectively. On the other hand, bus 6 is assigned as the
slack or reference bus. For comparative purposes with [31], its minimum and maximum
voltages are assigned as 0.95 p.u. and 1.15 p.u., respectively.

Table 3. Technical characteristics of the generators in the IEEE 6-bus test system.

Generator Terminal
vg,min

1 =

vg,min
6 (p.u.)

vg,max
1 (p.u.) vg,max

6 (p.u.)

1 2 0.95 1.1 1.15
Slack 6 0.95 1.05 1.1
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4.2. IEEE 14-Bus Test System

The IEEE 14-bus test system is illustrated in Figure 8. This system includes 5 trans-
formers, 16 transmission lines, 2 generators and 3 capacitor banks. This power system is
also made of four areas with voltage levels of 132 kV, 33 kV, 11 kV and 1 kV.
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Figure 8. IEEE 14-bus test system diagram.

Table 4 presents the electrical parameter of the transmission lines for the IEEE 14-bus
test system, while Table 5 shows the transformers information. In this system the slack
node is bus 1, and node 2 is a voltage-controlled bus. Furthermore, three synchronous
compensators are used as capacitor banks operating in the continuous domain. These
elements are located at buses 3, 6 and 8; buses 3 and 6 feature a nominal power of 20 MVAr
and bus 8 a nominal power of 30 MVAr.

Table 4. Parameters for the IEEE 14-bus test system.

Transmission Lines

Line From To Line Impedance’s Line From To Line Impedance’s
# Bus Bus R (Ω) X (Ω) # Bus Bus R (Ω) X (Ω)

1 1 2 6.753542 20.61956 9 6 11 1.034332 2.16602
2 1 2 6.753542 20.61956 10 6 12 1.33849 2.78577
3 1 5 9.414187 38.86250 11 6 13 0.72037 1.41864
4 2 3 8.187537 34.49428 12 9 10 0.34641 0.92020
5 2 4 10.12509 30.72200 13 9 14 1.38422 2.94443
6 2 5 9.922968 30.29685 14 10 11 0.89352 2.09164
7 3 4 11.67582 29.80027 15 12 13 2.40581 2.17669
8 4 5 2.326104 7.33724 16 13 14 1.86142 3.78993

Transformers Characteristic

Trans. From To Tap Trans. From To Tap
# Bus Bus Settings # Bus Bus Settings

1 5 6 11,100 4 8 7 11,100
2 4 9 11,100 5 4 7 11,100
3 9 7 11,100
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Table 4. Cont.

Bus-Bar Characteristics (All Power Units in MW and MVAr)

Bus Load Injection Bus Load Injection
# PL QL PG QG # PL QL PG QG

1 - - Node Slack 8 0.0 0.0 0.0 30.0
2 21.7 12.7 40.0 42.4 9 29.5 16.6 0.0 0.0
3 94.2 19.0 0.0 20.0 10 9.0 5.8 0.0 0.0
4 47.8 −3.9 0.0 0.0 11 3.5 1.8 0.0 0.0
5 7.6 1.6 0.0 0.0 12 6.1 1.6 0.0 0.0
6 11.2 7.5 0.0 20.0 13 13.5 5.8 0.0 0.0
7 0.0 0.0 0.0 20.0 14 14.9 5.0 0.0 0.0

Table 5. Transformers characteristics of the IEEE 14-bus test system.

Transformer From To Minimum Maximum Addition Voltage Voltage
# Bus Bus Voltage Voltage per Tap (%) Range (%)

1 4 7 9100 11,100 0.0022 −2.2 ≤ pT ≤ 2.2
2 4 9 9100 11,100 0.0031 −3.1 ≤ pT ≤ 3.1
3 5 6 9100 11,100 0.0068 −6.8 ≤ pT ≤ 6.8
4 8 7 9100 11,100 0.0068 −6.8 ≤ pT ≤ 6.8
5 9 7 9100 11,100 0.0068 −6.8 ≤ pT ≤ 6.8

4.3. IEEE 39-Bus Test System

The IEEE 39-bus test system, illustrated in Figure 9, features four areas with voltage
levels of 345 kV, 230 kV, 138 kV and 16.5 kV. This system has 10 generators, 34 transmission
lines and 12 transformers.

The electrical parameters of the IEEE 39-bus test system and the characterization of
the transformers are indicated in Tables 6 and 7, respectively.
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Figure 9. IEEE 39-bus test system diagram.
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Table 6. Parameters of the IEEE 39-bus test system.

Lines Characteristic

Line From To Line Impedance’s Line From To Line Impedance’s
# Bus Bus R (Ω) X (Ω) # Bus Bus R (Ω) X (Ω)

1 1 2 0.025547 0.30 18 13 14 0.026732 0.30
2 1 39 0.012000 0.30 19 14 15 0.024884 0.30
3 2 3 0.025827 0.30 20 15 16 0.028723 0.30
4 2 25 0.244186 0.30 21 16 17 0.023595 0.30
5 3 4 0.018309 0.30 22 16 19 0.024615 0.30
6 3 18 0.024812 0.30 23 16 21 0.017777 0.30
7 4 5 0.018750 0.30 24 16 24 0.015254 0.30
8 4 14 0.018604 0.30 25 17 18 0.025609 0.30
9 5 6 0.023076 0.30 26 17 27 0.022543 0.30

10 5 8 0.021428 0.30 27 21 22 0.017142 0.30
11 6 7 0.019565 0.30 28 22 23 0.018750 0.30
12 6 11 0.025609 0.30 29 23 24 0.018857 0.30
13 7 8 0.026086 0.30 30 25 26 0.029721 0.30
14 8 9 0.019008 0.30 31 26 27 0.028571 0.30
15 9 39 0.012000 0.30 32 26 28 0.027215 0.30
16 10 11 0.027906 0.30 33 26 29 0.027360 0.30
17 10 13 0.027906 0.30 34 28 29 0.027814 0.30

Transformers Characteristic

Trans. From To Tap Trans. From To Tap
# Bus Bus Settings # Bus Bus Settings

1 2 30 9100 7 19 33 9100
2 6 31 9100 8 20 34 9100
3 10 32 9100 9 22 35 9100
4 11 12 9100 10 23 36 9100
5 13 12 9100 11 25 37 9100
6 19 20 9100 12 29 38 9100

Bus Characteristics (All Power Units in MW and MVAr)

Bus Load Injection Bus Load Injection
# PL QL PG PG # PL QL PG PG

3 322.0 2.4 - - 27 281.0 75.5 - -
4 500.0 184.0 - - 28 206.0 27.6 - -
7 233.8 84.0 - - 29 283.5 26.9 - -
8 522.0 176.0 - - 30 - - 250 0.0

12 7.5 88.0 - - 31 9.2 4.6 Slack bus
15 320.0 153.0 - - 32 - - 650 0.0
16 329.0 32.3 - - 33 - - 632 0.0
18 158.0 30.0 - - 34 - - 254 0.0
20 628.0 103.0 - - 35 - - 650 0.0
21 274.0 115 - - 36 - - 560 0.0
23 247.5 84.6 - - 37 - - 540 0.0
24 308.0 −92.2 - - 38 - - 830 0.0
25 224.0 47.2 - - 39 1104 250 1000 0.0
26 139.0 17.0 - -
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Table 7. Characterization of the transformers in the IEEE 39-bus test system.

Transformer From To Minimum Maximum Addition Voltage Voltage
# Bus Bus Voltage Voltage per Tap (%) Range (%)

1 02 30 9100 11,100 0.0025 −2.5 ≤ pT ≤ 2.5
2 25 37 9100 11,100 0.0025 −2.5 ≤ pT ≤ 2.5
3 29 38 9100 11,100 0.0025 −2.5 ≤ pT ≤ 2.5
4 22 35 9100 11,100 0.0025 −2.5 ≤ pT ≤ 2.5
5 23 36 9100 11,100 0.0070 −7.0 ≤ pT ≤ 7.0
6 19 33 9100 11,100 0.0070 −7.0 ≤ pT ≤ 7.0
7 20 34 9100 11,100 0.0009 −0.9 ≤ pT ≤ 0.9
8 19 20 9100 11,100 0.0060 −6.0 ≤ pT ≤ 6.0
9 10 32 9100 11,100 0.0070 −7.0 ≤ pT ≤ 7.0

10 13 12 9100 11,100 0.0006 −0.6 ≤ pT ≤ 0.6
11 11 12 9100 11,100 0.0006 −0.6 ≤ pT ≤ 0.6
12 06 31 9100 11,100 0.0070 −7.0 ≤ pT ≤ 7.0

5. Tests and Results

This section presents the results obtained with the power systems described in
Section 4. All tests were run on a personal computer Intel(R) Core(TM) i5-8365U pro-
cessor 1.60 GHz. RAM 16 Gb, with a Windows 10 operating system, 64 bits, single language.
The results of the two implemented methodologies (MVMO and GA) using the Python-
DIgSILENT interface described in this paper are compared with those obtained through
the CBGA proposed in [31] using DPL. For the sake of simplicity, only Case A1 of the
aforementioned paper is considered.

5.1. Results with the IEEE 6-Bus Test System

Table 8 presents the results obtained with the developed Python-DIgSILENT inter-
face considering MVMO and GA. These results are compared with the CBGA imple-
mented in [31].

Table 8. Results for the IEEE 6-bus test system.

Elements Base Case CBGA [31] MVMO GA

Generators Voltage (p.u.) Voltage (p.u.)

G1 Bus06 (slack) 1.0000 1.0500 1.0500 1.0500
G2 Bus02 1.0000 1.0999 1.0999 1.0999

Transformers Tap Position Tap Position

Trafo Bus 04-01 9100 11,089 11,100 11,099
Trafo Bus 03-05 9100 11,099 11,085 11,099

Capacitor Bank Reactive power (Mvar) Reactive power (Mvar)

PQ Bus03 0.0000 4.9992 4.9999 4.9999
PQ Bus04 0.0000 4.9995 4.9999 4.9999

Power Losses (MW) 12.910 10.089 10.089 10.089
Reduction (%) - 21.85 21.85 21.85

The results presented in Table 8 show that the reduction in power losses obtained with
the three algorithms is identical and corresponds to 21.85% with respect to the original
values (base case). Note that the voltage set points of the generators obtained with the three
optimization approaches is also the same. In this case the voltage set point for the slack
bus is 1.05 p.u., and the maximum voltage magnitude for generation buses is 1.1 p.u. The
capacitor banks installed in the test system operate almost at their maximum limits in the
three approaches explored. Regarding tap positions of transformers, there are some small
differences between the results obtained with proposed interface (both MVMO and GA)
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and the DIgSILENT DPL (CBGA); nonetheless, such difference does not alter the amount
of power loss reduction.

Table 9 presents the line loading. It can be observed that the three optimization
methods result in roughly the same loading conditions. In all cases, it is reduced, resulting
in lower power losses. Some transmission lines reduce their loading conditions by an
important percentage: for example, line 6-3 that passes from an initial condition of 48.23%
to 41.26% or line 6-4 that passes from 55.8% to 47.4% .

Table 9. Line loading for the IEEE 6-bus test system considering different approaches.

Line Base Case CBGA [31] MVMO GA

(Start-End) Loading (%) Loading (%) Loading (%) Loading (%)

Line 6-3 48.2314 41.2668 41.2645 41.2661
Line 6-4 55.8039 47.4526 47.4497 47.4517
Line 4-3 10.9207 9.5843 9.5841 9.5842
Line 5-2 33.5334 30.4007 30.4016 30.4008
Line 1-2 17.4563 16.1338 16.1339 16.1337

Figure 10 illustrates the voltage magnitudes for each simulation along with the base
case. Note that for all methodologies, there is an important enhancement of the voltage
profile: nonetheless, without violating the voltage limits of the system. Note that some
buses exhibit important voltage improvements, such as bus 2 that passes from 1.00 p.u. to
1.10 p.u. and bus 3 that originally has 0.84 p.u. and passes to 0.94 p.u.

Figure 10. Voltage profile of the IEEE 6-bus test system considering different methodologies.

5.2. Results with the IEEE 14-Bus Test System

Table 10 presents the optimal reactive power outputs in capacitor banks, voltage set
points of generators, tap positions of transformers and the total power losses for each
methodology compared to the base case. The active power loss reduction is around 21% for
the three methodologies. The highest reduction is obtained with the CBGA; nonetheless,
the differences with the other two methodologies implemented in the proposed Python-
DIgSILENT interface are not high. In this case, the solution obtained with the CBGA is
0.1% and 0.4% better than those achieved with MVMO and GA, respectively. The voltage
set point for the slack bus is kept the same for the three methodologies; nonetheless,
there are small differences in the voltage set points obtained for the PV bus. The CBGA
proposes 1.037 p.u for generator G2 located at bus 02, while MVMO and GA set this voltage
at 1.0353 p.u. and 1.03723 p.u., respectively. Regarding tap position, all methodologies
coincide in the same results. Note that unlike the IEEE 6-bus test system, where transformer
taps were set close to their maximum values, in this test system the results of the taps
were different. Such variation in transformer tap positions are principally conditioned by
voltage output in power generators. On the other hand, capacitor banks with nominal rates
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of 20 MVAr for the compensators located at nodes PQBus06 and PQBus08 and 30 MVAr for
the capacitor at bus PQB03 present small differences with the three methodologies. Note
that this last one is not set near its upper limit as is the case for the other capacitor banks.

The line loading for the base case and for each implemented metaheuristic is presented
in Table 11. In this case, results after optimization are roughly the same for the three
methodologies. Note that there is a reduction in the power flows in all lines. In particular,
Line 1–10 passes from a loading of 12.48% to 6.1%. In addition, lines 9–10 and 9–14
experience high loading, passing from 28.54% and 28.99% to approximately 13.8% and
17.4%, respectively, after optimization.

Table 10. Results for the IEEE 14-bus test system.

Elements Base Case CBGA [31] MVMO GA

Generators Voltage (p.u.) Voltage (p.u.)

G1 Bus01(slack) 1.0000 1.0500 1.0500 1.0500
G2 Bus02 1.0000 1.0370 1.0353 1.03723

Transformers Tap Position Tap Position

Trafo Bus 05-06 11,100 9100 9100 9100
Trafo Bus 04-09 11,100 9100 9100 9100
Trafo Bus 09-07 11,100 11,100 11,100 11,000
Trafo Bus 08-07 11,000 9100 9100 9100
Trafo Bus 04-07 11,000 9100 9100 9100

Capacitor Bank Reactive power (Mvar) Reactive power (Mvar)

PQ Bus06 0.0000 19.9936 19.9996 19.9997
PQ Bus08 0.0000 19.9902 19.9998 19.9998
PQ Bus03 0.0000 26.4670 26.2454 19.9999

Power Losses (MW) 17.200 13.558 13.560 13.573
Reduction (%) - 21.18 21.16 21.08

Table 11. Loading conditions of lines for the IEEE 14-bus test system.

Line Original Values CBGA [31] MVMO GA

(Start-End) Loading (%) Loading (%) Loading (%) Loading (%)

Line 1–2(1) 36.7486 32.9993 33.0110 33.0158
Line 1–2(2) 36.7486 32.9993 33.0110 33.0158

Line 1–5 33.3443 31.6365 31.6361 31.6289
Line 2–3 35.2074 30.8695 30.8654 30.8590
Line 2–4 27.7888 23.7087 23.7032 23.7258
Line 2–5 21.1140 17.5080 17.5030 17.5326
Line 3–4 11.3021 10.4849 10.4861 10.4167
Line 4–5 30.5788 27.1440 27.1426 27.1161

Line 6–11 13.1368 11.6951 11.6912 11.7381
Line 6–12 15.4418 12.7432 12.7398 12.7746
Line 6–13 34.6838 29.6405 29.6321 29.7191
Line 9–10 28.5486 13.8137 13.8158 13.7414
Line 9–14 28.9935 17.4872 17.4853 17.4782
Line 10–11 12.4895 6.1880 6.1879 6.1764
Line 12–13 2.3032 2.5620 2.5609 2.5750
Line 13–14 9.9979 8.8853 8.8826 8.9126

Figure 11 illustrates the voltage profile of the IEEE 14-bus test system for the base case
and every optimization technique. Note that an important improvement on voltage profile
is achieved through the optimization techniques without violating the lower and upper
voltage bounds of the system.
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It can be seen in Figure 11 that some buses show important improvement in their
voltage magnitudes, such as buses 10 to 14 which start with a relatively low voltage around
0.85 p.u. and end up with nearly 1.1 p.u. after the optimization process. This change is
mainly due to the new positions of transformer taps and the reactive power injected by the
capacitor banks.

Figure 11. Voltage profile of the IEEE 14-bus system considering different methodologies.

5.3. Results with the IEEE 39-Bus Test System

The solutions obtained with the IEEE 39-bus test system are reported in Table 12.
These include voltage set points of generators and transformer tap positions (this test
system does not feature capacitor banks). In this case, the solution achieved by the MVMO
matches the one obtained by the CBGA (although with different values of the optimization
variables). On the other hand, the reduction obtained by the GA implemented in the Python-
DIgSILENT interface is slightly better than that of the CBGA and MVMO. Nonetheless, the
three methodologies achieve a reduction of power losses of around 31% with respect to the
base case. An important feature of these three solutions is the variability of the optimization
variables which evidences the multimodal feature of the ORPD.

The loading percentage of each transmission line obtained with the three optimization
methodologies is presented in Table 13. As with the previous test systems, a generalized
reduction in loading conditions is experienced in all lines. It is worth mentioning that the
power flow relief in transmission lines for this system is higher than that of the previous
test systems. In fact, most transmission lines have an important loading reduction with the
exception of lines 1–39 and 14–15 that experience a small increment in their power flows.

The voltage profile of the IEEE 39-bus test system is illustrated in Figure 12 for the
base case and for the solutions obtained with the implemented methodologies. Note that
there is an important improvement in voltage profile; nonetheless, these remain within
their bounds. This implies that the proposed tested methodologies ensure the feasibility of
the proposed solutions.

Figure 12. Voltage profile of the IEEE 39-bus test system considering different methodologies.
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Table 12. Results for the IEEE 39-bus system.

Elements Base Case CBGA [31] MVMO GA

Generators Voltage (p.u) Voltage (p.u)

G1 Bus39 1.0000 1.0776 1.0657 1.0753
G2 Bus31(slack) 1.0000 1.0500 1.0500 1.0500

G3 Bus32 1.0000 1.0810 1.0728 1.0903
G4 Bus33 1.0000 1.0985 1.0733 1.0917
G5 Bus34 1.0000 1.0414 1.0764 1.0995
G6 Bus35 1.0000 1.0970 1.0879 1.0891
G7 Bus36 1.0000 1.0761 1.0574 1.0857
G8 Bus37 1.0000 1.0792 1.0703 1.0960
G9 Bus38 1.0000 1.0982 1.0841 1.0880
G10 Bus30 1.0000 1.0652 1.0565 1.0725

Transformers Tap Position Tap Position

Trafo Bus 02-30 9100 10,440 10,863 10,416
Trafo Bus 25-37 9100 10,830 11,100 11,100
Trafo Bus 29-38 9100 10,021 11,100 10,844
Trafo Bus 22-35 9100 10,214 9455 9480
Trafo Bus 23-36 9100 11,065 9397 10,850
Trafo Bus 19-33 9100 10,562 10,169 10,892
Trafo Bus 20-34 9100 9648 10,966 10,222
Trafo Bus 19-20 9100 10,729 9,335 10,041
Trafo Bus 10-32 9100 11,037 11,100 10,927
Trafo Bus 13-12 9100 10,725 11,100 10,737
Trafo Bus 11-12 9100 10,085 10,971 10,373
Trafo Bus 06-31 9100 11,058 10,635 10,179

Power Losses (MW) 38.790 26.476 26.479 26.422
Reduction(%) - 31.75 31.75 31.88

Table 13. Loading conditions of the lines for the IEEE 39-bus system.

(Lines
(Start-End)

Base Case
Loading CBGA [31] (%) MVMO

Loading GA (%)

L 1–2 31.5919 21.9571 20.7607 21.2570
L 1–2 31.5919 21.9571 20.7607 21.2570

L 1–39 24.6876 24.1132 25.7837 25.0039
L 2–3 71.5882 56.8398 56.8912 56.7258

L 2–25 44.4287 37.9134 38.0674 37.8657
L 3–4 30.8098 16.9084 17.1695 17.4032

L 3–18 13.0756 9.0992 9.6112 8.8264
L 4–5 27.6425 22.7757 22.5411 22.5985

L 4–14 50.5295 43.9437 44.0914 43.7494
L 5–6 86.2751 72.2391 72.5483 72.1871
L 5–8 59.1632 50.8941 51.3915 50.9805
L 6–7 79.2231 67.6418 68.1481 67.7006

L 6–11 67.1245 58.4637 58.3799 58.2336
L 7–8 35.6682 29.4048 29.7223 29.4501
L 8–9 37.8915 12.2439 9.8735 11.5506

L 9–39 32.0210 17.0125 19.1821 17.6749
L 10–11 67.6012 59.4466 59.5977 58.8809
L 10–13 54.5243 46.9344 46.3916 46.8317
L 13–14 52.3392 44.1616 43.9891 43.8117
L 13–14 52.3392 44.1616 43.9891 43.8117
L 14–15 5.2454 8.0803 7.0235 7.5485
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Table 13. Cont.

(Lines
(Start-End)

Base Case
Loading CBGA [31] (%) MVMO

Loading GA (%)

L 15–16 62.7392 51.7655 52.1361 51.9074
L 16–17 46.8878 35.5673 35.4393 35.5494
L 16–19 92.5581 77.7325 77.6822 77.6428
L 16–21 60.7955 51.6157 51.2743 51.3467
L 16–24 17.5808 17.7158 17.3047 17.2731
L 17–18 38.4347 32.6810 32.9077 32.5544
L 17–27 13.8078 6.2314 6.1114 5.7034
L 21–22 112.7630 93.7010 93.8989 93.7535
L 22–23 22.7600 11.7429 7.1108 7.2783
L 23–24 64.0312 54.1063 53.9617 53.9557
L 25–26 16.4244 12.6808 13.3907 11.8264
L 26–27 51.4229 41.5517 41.6268 41.3364
L 26–28 25.3862 23.5066 23.3028 23.9918
L 26–29 33.9377 31.4868 31.2730 31.9884
L 28–29 60.7682 53.7901 53.6518 54.1180

5.4. Processing Times

The average processing times required by the proposed Python-DIgSILENT interface
and the CBGA implemented in the DPL environment from DIgSILENT [31] are presented
in Table 14. As expected, processing times increase with the number of nodes since more
decision variables must be considered in the optimization processes. Note that an important
improvement in computation time is achieved through the proposed approach, especially
when applying the GA.

Table 14. Average processing times for all the IEEE test systems considering different optimization
approaches.

Test System CBGA [31] (s) MVMO (s) GA (s)

IEEE 6-bus test system 88.94 24.47 14.45
IEEE 14-bus test system 124.74 43.96 29.96
IEEE 39-bus test system 193.80 132.59 89.42

6. Conclusions

This paper presented a Python-DIgSILENT interface to approach the optimal reac-
tive power dispatch problem in electric power systems. The proposed interface takes
advantage of all the functionalities provided by DIgSILENT software for system model-
ing and power flow calculations along with an object-oriented high-level programming
language that allows using optimization libraries. The optimal reactive power dispatch
was solved using two metaheuristic approaches, namely MVMO and GA. Several tests
were carried out on three benchmark IEEE power systems. Voltage set points of generators,
transformer tap positions and reactive power injection in capacitor banks were used as
optimization variables.

The numerical results reported power loss reductions with respect to the base case
of up to 21.85%, 21.1% and 31.88% for the IEEE-6, 14 and 39 bus test systems, respectively.
This evidenced the effectiveness of the proposed approach for reducing active power losses
through the optimal management of reactive power resources. All tests were carried out
with a fixed voltage of the slack bus of 1.05 p.u and a maximum voltage in generation
buses of 1.1 p.u. In all cases, it was verified that voltage magnitudes were kept within their
allowable limits. On the other hand, significant reductions on loading conditions were
observed in all test systems.

A comparison was carried out with previously reported results in the specialized
literature. The proposed approach was able to match the results obtained by a CBGA
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implemented in DIgSILENT programming language using the same test systems and
initial conditions. Nonetheless, better computing times were obtained with the proposed
approach.

The proposed Python-DIgSILENT interface opens the possibility to explore other
metaheuristic methodologies available in Python optimization libraries. Future work may
also include other variants of the optimal reactive power dispatch, such as considering
a multi-period and multi-area approach as well as taking into account voltage stability
issues.
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Abbreviations

C Set of all capacitor banks installed.
G Set of all network generators.
L Set of all installed reactors.
N Set that contains all the nodes of the network.
T Set of all network transformers on.
φkm(ta) Admittance angle that relates nodes k and m (rad).
θk Voltage angle at bus k (rad).
θm Voltage angle at bus m (rad).
a Transformers index.
cj Tap position for the jth capacitor bank.
cmax

j Maximum limit of the tap position in the jth capacitor bank.
cmin

j Minimum limit of the tap position in the jth capacitor bank.
j Capacitor banks index.
k, m Sub-indices associated with nodes.
l Reactors index.
pd

k Active power consumption at bus k (W).
pg

k Active power generation at bus k (W).
ploss Objective function value associated with the grid power losses (W).

qc
k

(
cj

)
Reactive power injection through the capacitor bank connected at bus k (var).

qd
k Reactive power consumption at bus k (var).

qg
k Reactive power generation at bus k (var).

ql
k(rl) Reactive power absorption through the reactor connected at bus k (var).

rl Tap position for the lth reactor.
rmax

l Maximum limit of the tap position in the lth reactor.
rmin

l Minimum limit of the tap position in the lth reactor.
ta Tap position in the ath transformer.
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tmax
a Maximum limit of the tap position in the ath transformer.

tmin
a Minimum limit of the tap position in the ath transformer.

vg,max
i Maximum voltage limit for the output voltage in the generator i (V).

vg,min
i Minimum voltage limit of the output voltage in the generator i (V).

vg
i Magnitude of the output voltage in generator i (V).

vk Voltage magnitude at bus k (V).
vmax

k Maximum voltage limit of the voltage at node k (V).
vmin

k Minimum voltage limit of the voltage at node k (V).
vm Voltage magnitude at bus m (V).
Ykm(ta) Admittance magnitude that relates nodes k and m (rad).
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