
����������
�������

Citation: Moreno Cañadas, A.; Rios,

G.B.; Serna, R.-J. Snake Graphs

Arising from Groves with an

Application in Coding Theory.

Computation 2022, 10, 124.

https://doi.org/10.3390/

computation10070124

Academic Editors: Akbar Ali,

Guojun Li, Mingchu Li, Rao Li,

Colton Magnant and

Madhumangal Pal

Received: 21 June 2022

Accepted: 14 July 2022

Published: 19 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Snake Graphs Arising from Groves with an Application in
Coding Theory

Agustín Moreno Cañadas 1 , Gabriel Bravo Rios 1 and Robinson-Julian Serna 2,*
1 Departamento de Matemáticas, Universidad Nacional de Colombia, Edificio Yu Takeuchi 404,

Kra 30 No 45-03, Bogotá 111321, Colombia; amorenoca@unal.edu.co (A.M.C.); gbravor@unal.edu.co (G.B.R.)
2 Escuela de Matemáticas y Estadística, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central

del Norte 39-115, Tunja 150003, Colombia
* Correspondence: robinson.serna@uptc.edu.co

Abstract: Snake graphs are connected planar graphs consisting of a finite sequence of adjacent tiles
(squares) T1, T2, . . . , Tn. In this case, for 1 ≤ j ≤ n − 1, two consecutive tiles Tj and Tj+1 share
exactly one edge, either the edge at the east (west) of Tj (Tj+1) or the edge at the north (south) of
Tj (Tj+1). Finding the number of perfect matchings associated with a given snake graph is one of
the most remarkable problems regarding these graphs. It is worth noting that such a number of
perfect matchings allows a bijection between the set of snake graphs and the positive continued
fractions. Furthermore, perfect matchings of snake graphs have also been used to find closed formulas
for cluster variables of some cluster algebras and solutions of the Markov equation, which is a
well-known Diophantine equation. Recent results prove that snake graphs give rise to some string
modules over some path algebras, connecting snake graph research with the theory of representation
of algebras. This paper uses this interaction to define Brauer configuration algebras induced by schemes
associated with some multisets called polygons. Such schemes are named Brauer configurations. In
this work, polygons are given by some admissible words, which, after appropriate transformations,
permit us to define sets of binary trees called groves. Admissible words generate codes whose energy
values are given by snake graphs. Such energy values can be estimated by using Catalan numbers. We
include in this paper Python routines to compute admissible words (i.e., codewords), energy values of
the generated codes, Catalan numbers and dimensions of the obtained Brauer configuration algebras.

Keywords: binary tree; coding theory; Brauer configuration algebra; Catalan combinatorics; path
algebra; snake graph; string modules

MSC: 16G30; 16G60; 05A05; 05E10; 94B65

1. Introduction

Propp [1] introduced snake graphs in his investigations regarding the Laurent phe-
nomenon associated with cluster algebras. Since then, snake graphs have become a helpful
tool for research on different topics in several fields of mathematics. For instance, Schiffler
and Çanakçi [2–6] developed a complete calculus for these kinds of graphs, achieving new
developments in the continued fraction theory, bearing in mind that there is a bijection
between the set of abstract snake graphs and the set of positive continued fractions.

According to this approach, perfect matchings of snake graphs give information on
the numerator of a continued fraction. It is worth pointing out that perfect matchings
of snake graphs were used by Schiffler et al. [7] to find a formula for cluster variables in
cluster algebras from surface types, giving a solution to a well-known conjecture (positivity
conjecture) regarding these algebras.

Another interpretation of the snake graph calculus was given by Çanakçi and Schroll [8],
who proved that, associated with any snake graph, there is a suitable string module
whose submodule lattice is in bijection with the perfect matching lattice of the underlying
snake graph.

Computation 2022, 10, 124. https://doi.org/10.3390/computation10070124 https://www.mdpi.com/journal/computation

https://doi.org/10.3390/computation10070124
https://doi.org/10.3390/computation10070124
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0000-0001-6812-5131
https://orcid.org/0000-0003-1386-6658
https://orcid.org/0000-0001-5858-5011
https://doi.org/10.3390/computation10070124
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation10070124?type=check_update&version=2

Computation 2022, 10, 124 2 of 17

On the other hand, Brauer configuration algebras (BCAs) were introduced by Green
and Schroll [9] as a generalization of Brauer graph algebras [10]. They have been used as
a tool in research in different scientific fields. Indecomposable projective modules over
appropriated Brauer configuration algebras have been interpreted as shadows in visual
secret sharing schemes (VSSS) or as subkeys in the key schedule of the advanced encryption
standard (AES) [11].

1.1. Motivations

Currently, snake graphs and Brauer configuration algebras are known to be ubiquitous
tools in mathematics and their applications. On the one hand, the snake graph combina-
torics gives new advances in the theory of continued fractions and rational knots. On the
other hand, the combinatorial properties of Brauer configuration algebras have allowed
applications of the theory of representation algebras in cryptography and the theory of
graph energy, among others.

This paper uses interactions between the theories of snake graphs and Brauer configu-
ration algebras to give a novel application of snake graphs in the coding theory.

The codes that we are interested in have as codewords n-tuples of q-ary vectors whose
coordinates belong to an alphabet Q with q letters—namely, Q = {0, 1, 2, . . . , q− 1}. In this
case, q is not necessarily the power of a prime number. The main problem associated with
these kinds of codes is minimizing the potential energy provided by the cardinality |C| of a
fixed code C.

We address the coding problem from the Brauer configuration algebras point of view.
First, we prove that n-tile snake graphs define Brauer configurations whose polygons are
related to some binary trees. Then, such polygons are interpreted as codes whose minimal
energy is given by an appropriated snake graph.

In the sequel, we briefly describe the main results presented in this work and how
some previous works are used to obtain them.

1.2. Contributions

This work proves that string modules and their corresponding snake graphs define
appropriated Brauer configuration algebras, whose indecomposable projective modules
can be interpreted as groves of binary trees. It is proven that the dimensions of string
modules are given by suitable words (admissible words) whose letters are positive integers.

We define some operations on these words in such a way that sums of Catalan numbers
give the dimensions of these algebras and their centers. In particular, the number of
indecomposable projective modules over the constructed algebras is another manifestation
of Catalan numbers.

Words associated with polygons define codes CΓj of type H(1, j). Snake graphs give
energy values of these codes. We provide, in the Appendix, Python routines to compute
admissible words (associated with indecomposable projective modules over such Brauer
configuration algebras), Catalan numbers, energy values of the codes CΓj , and dimensions
of the generated Brauer configuration algebras.

Figure 1 shows how the results introduced in the Background section regarding snake
graphs and Brauer configuration algebras (see blue arrows) are used in this paper to obtain
the main results (green arrows).

We define admissible words in Section 3.1, which induce Brauer configuration algebras
of type ΛΓj . Proposition 2 shows a means of building admissible words, and Proposition 3
proves that snake graphs define admissible words.

Corollary 1 enumerates admissible words, and Theorem 3 gives formulas for the
dimension of the Brauer configuration algebras induced by admissible words and their
corresponding centers. Theorem 4 estimates the energy values of some codes defined
by the Brauer configurations Γj. In particular, it is proven that snake graphs give such
energy values.

Corollary 2 proves that the distances associated with these codes define the integer
partitions of triangular numbers tCj , where Cj denotes the jth Catalan number.

Computation 2022, 10, 124 3 of 17

Snake graphs (Section 2.2)

��

BCAs (Section 2.4)

��
String snake graphs: (Section 2.3)

��

Theorem 1

��
Admissible words: (Section 3.1)

��

Proposition 1

��
Theorem 2

��

Proposition 2

��
Proposition 3

��
Corollary 1

%%ww

Theorem 3

��
Python routines: (Appendix A) Theorem 4

��

oo

Corollary 2

Figure 1. This graph shows how we use topics described in the Background section to obtain the
main results presented in this paper.

This paper is distributed as follows. In Section 2, we recall definitions and notations
used throughout the paper. In particular, we recall the notions of path algebra, string
snake graph, and Brauer configuration algebra. In Section 3, we give our main results.
We define and enumerate admissible words (Section 3.1). We also give properties of
Brauer configuration algebras defined by admissible words (Section 3.2). In Section 3.3, we
give properties of a code defined by the Brauer configurations introduced in Section 3.2.
Concluding remarks are given in Section 4. Python routines are included in Appendix A.

2. Background and Related Work

This section introduces some definitions, results, and notations to be used throughout
the paper. We also recall some background results, which will allow a better understanding
of the main results presented in the next section. The authors refer the interested reader
to [8–13] for a detailed study of the treated topics. Henceforth, F (N) will denote a field (the
set of natural numbers).

2.1. Path Algebras

This section recalls some basic notions of path algebras [13].
If F is an algebraically closed field, then a path algebra FQ is an algebra generated by

the paths of a quiver (oriented graph) Q = (Q0, Q1, s, t), where Q0 and Q1 are sets and s, t
are maps such that s, t : Q1 → Q0, and elements of the set Q0 (Q1) are said to be the vertices
(arrows) of the quiver Q.

If α ∈ Q1, then the vertex s(α) (t(α)) is the source (target) of the arrow α [13].
An ideal I of a path algebra FQ is generated by relations. These relations are nothing

but paths with the same starting and ending points. The two-sided ideal generated by the
arrows (paths of length greater than or equal to l) of Q is denoted by RQ (Rl

Q). An ideal I is
said to be admissible, if there is an integer m ≥ 2 such that Rm

Q ⊆ I ⊆ R2
Q. RQ is said to be

the arrow ideal of FQ.
If I is an admissible ideal of FQ, the pair (Q, I) is said to be a bound quiver. The quotient

algebra FQ/I is said to be a bound quiver algebra [13]. It is worth noting that any basic
algebra is isomorphic to a bound quiver algebra FQ/I if I is a suitable admissible ideal.

Computation 2022, 10, 124 4 of 17

2.2. Snake Graphs

A tile G is a square in the plane whose sides are parallel or orthogonal to the elements
in the standard orthonormal basis of the plane (as in [5], in this work, a tile G is considered
as a graph with four vertices and four edges in the obvious way).

A snake graph is called straight if all its tiles lie in one column or row, and a snake
graph is called zigzag if no three consecutive tiles are straight. Two snake graphs are
isomorphic if they are isomorphic as graphs (cf. [2–6]).

Each snake graph G has associated a sign function sgn from the set of edges to the set
{+,−}, which defines an ordered sequence of positive integers {a1, a2, . . . , an}. Numbers
ai give rise to the continued fraction

[a1, a2, . . . , an] = a1 +
1

a2 +
1

a3+
1

a4+
1

...+ 1
an

.
(1)

The snake graph G[a1, a2, . . . , an] of the positive continued fraction [a1, a2, . . . , an] is
the snake graph with d = a1 + a2 + · · · + an − 1 tiles determined by the sign function.
In particular, G[1] is a single edge.

Schiffler and Çanakçi [3] proved that if Match(G) denotes the number of perfect
matchings of the snake graph G, then [a1, a2, . . . , an] =

Match(G[a1,a2,...,an])
Match(G[a2,a3,...,an])

. Here, Match(G)
is the set of perfect matchings of G.

As in [12], for positive integers n1, n2, . . . , nk, we let G f (n1, n2, . . . , nk) denote a snake
graph, with n1 ≥ 2 tiles in the first row, n2 ≥ 2 in the first column, n3 ≥ 2 tiles in the second
row, and so on up to nk ≥ 2. In this case, the last tile in a given row is the first tile in the
next column (if it exists) and, vice versa, the last tile in a given column coincides with the
first tile in the next row. As an example, in Figure 2, we show the snake graph G f (2, 2, 2).

Figure 2. Snake graph G f (2, 2, 2) = G[5] and its perfect matchings.

Remark 1. In this paper, we also consider continued fractions associated with rational numbers n
m ,

with m > n. In such a case, the corresponding continued fraction is associated with a special snake
graph G[0, c f (m

n)]. These graphs are given by adding a red point to the first tile of the snake graph
associated with the continued fraction c f (m

n) of m
n .

2.3. String Modules and Snake Graphs

An abstract string is a word of the form w = a1a2 . . . an, where, for 1 ≤ j ≤ n,
aj ∈ {→,←}. ∅ is also considered an abstract string. If aj =→ (←), for any j, then w is
said to be a direct string (inverse string).

According to Çanakçi and Schroll [8], the following procedure allows us to build a
snake graph with n + 1 tiles from an abstract string w = a1a2 . . . an:

1. If w = ∅, then the corresponding abstract snake graph is given by a single tile.
2. If there is at least one letter, then a1, a2, . . . , an is a concatenation of a collection of

alternating maximal direct and inverse strings wi such that w = w1w2 . . . wk. Each wi
might be of length 1.

3. For each wi, we construct a zigzag snake graph Gi with l(wi) + 1 tiles, where l(wi) is
the number of direct or inverse arrows in wi. Let Gi be the zigzag snake graph with
tiles Ti

1, . . . , Ti
l(wi)+1, such that Ti

2 is glued to the right (resp. on top) of Ti
1 if wi is direct

(resp. inverse).

Computation 2022, 10, 124 5 of 17

4. We now glue Gi+1 to Gi, for all i, by identifying the last tile Ti
l(wi)+1 of Gi and the first

tile Ti+1
1 of Gi+1, such that Ti

l(wi)
, Ti

l(wi)+1, Ti+1
2 is a straight piece.

Figure 3 shows an orientation of the Dynkin diagram A4 and its corresponding snake
graph. In such a case, w has the following maximal strings:

• 1 −→ 2 −→ 3 −→ 4, which defines the zigzag snake graph G1 containing the tiles,
1, 2, 3, and 4.

• 4←− 5, which defines the straight snake graph G2 containing the tiles 4 and 5.

Note that snake graphs G1 and G2 are glued in a natural way.

w = -1 -2 -3 �4 5
1 2

3 4 5

Figure 3. Snake graph G f (2, 2, 3) = G[4, 2] associated with a four-arrow string. The string module
M(w) over the corresponding Dynkin algebra of type A is obtained by replacing every vertex with a
copy of a field F. In such a case, arrows correspond to identity morphism.

Çanakçi and Schroll proved that if A = FQ/I is a bound quiver algebra and MG(w) is
a string module over A with string w and with associated snake graph G, then the perfect
matching lattice LG of G is in bijection with the canonical submodule lattice LG(M(w))
of MG(w).

We recall that a string module M is given by the orientation of a type A Dynkin
diagram where every vertex is replaced by a copy of F and the arrows correspond to
the identity maps. This paper interprets arrows as operations between suitable words
consisting of positive integers.

2.4. Brauer Configuration Algebras

Green and Schroll introduced Brauer configuration algebras as a generalization of
Brauer graph algebras [9–12]. Its definition goes as follows:

A Brauer configuration algebra ΛΓ (or simply Λ if no confusion arises) is a bound
quiver algebra induced by a Brauer configuration Γ = (Γ0, Γ1, µ,O), where:

• Γ0 is a finite set of vertices.
• Γ1 is a collection of polygons, which are labeled multisets consisting of vertices (ver-

tices repetition allowed). Each polygon contains more than one vertex.
• µ is a map from the set of vertices Γ0 to the set of positive integers N\{0} = N+,

µ : Γ0 → N+.
• O is a choice for each vertex α ∈ Γ0, of a cyclic ordering of the polygons in which α

occurs as a vertex including repetitions (see [9] for more details). For instance, if a
vertex α ∈ Γ0 occurs in polygons Uii , Ui2 , . . . , Uim , for suitable indices i1, i2, . . . , im ∈
{1, 2, 3, . . . , n}, then the cyclic order is obtained by linearly ordering the list, say

Uα1
i1

< Uα2
i2

< · · · < Uαm
im , αis > 0. (2)

where Uαs
is = U(1)

is < U(2)
is < · · · < U(αs)

is means that vertex α occurs αs times in
polygon Uis , denoted αs = occ(α, Uis). The cyclic order is completed by adding the
relation Uim < Ui1 . Note that if Ui1 < · · · < Uit is the chosen ordering at vertex α, then
the same ordering can be represented by any cyclic permutation.
The sequence (2) is said to be the successor sequence at vertex α denoted Sα, which is
unique up to permutations.
Henceforth, this paper assumes the notation used in [12] for successor sequences and
special cycles. Namely, if a vertex α′ 6= α belongs to some polygons Uj1 , Uj2 , . . . Ujk
ordered according to the already defined cyclic ordering associated with the vertex α,
then we will assume that, up to permutations, the cyclic ordering associated with the

Computation 2022, 10, 124 6 of 17

vertex α′ is built, taking into account that polygons Uj1 , Uj2 , . . . Ujk inherit the order
given by the successor sequence Sα.

If α ∈ Γ0, then the valency val(α) of α is given by the identity

val(α) = ∑
U∈Γ1

occ(α, U). (3)

If α ∈ Γ0 is such that µ(α)val(α) = 1, then α is said to be truncated (it occurs once in
only one polygon). Otherwise, α is a non-truncated vertex. It is worth pointing out that
each polygon in a Brauer configuration has at least one non-truncated vertex. A Brauer
configuration without truncated vertices is said to be reduced.

Later on, we will assume that successor sequences associated with non-truncated
vertices are of the form (2). As Green and Schroll mentioned in [9], if α is a non-truncated
vertex and val(α) = 1, then there is only one choice for the associated cyclic ordering.

From now on, if no confusion arises, we will assume notations Q, I, and Λ instead
of QΓ, IΓ, and ΛΓ, for a quiver, an admissible ideal, and the Brauer configuration algebra
induced by a fixed Brauer configuration Γ.

Since polygons in Brauer configurations are multisets, we will often assume that such
polygons are given by words w of the form

w = y f1
1 y f2

2 . . . y ft−1
t−1 y ft

t , (4)

where, for each i, 1 ≤ i ≤ t, yi is an element of the polygon called vertex and fi is the
frequency of the vertex yi. In other words, fi is the number of times that a vertex occurs in
a polygon [14].

In [11], Cañadas et al. introduced an algorithm to build a Brauer configuration algebra
ΛΓ = FQΓ/IΓ. QΓ = (Q0, Q1, s, t) is a quiver, whose set of vertices Q0 is in bijective
correspondence with the set of polygons in Γ1. Arrows are induced by the orientation O by
identifying each cover V < W in a cyclic ordering with an arrow α : V →W.

The bound quiver algebra FQΓ is a path algebra bounded by an admissible ideal IΓ
generated by relations ρΓ of the following types:

1. Identify special cycles associated with non-truncated vertices in the same polygon

(i.e., if δ1, δ2 ∈ U with U ∈ Γ1, then Cµ(δ1)
δ1

− Cµ(δ2)
δ2

∈ ρΓ).
2. If Cδ is a special cycle associated with a non-truncated vertex δ, then a product of the

form Cµ(δ)a ∈ ρΓ, if a is the first arrow of δ.
3. Quadratic monomial relations of the form ab in FQΓ, where ab is not a subpath of any

special cycle unless a = b and a is a loop associated with a vertex α of valency 1 and
µ(α) > 1.

The following Theorem 1 gives some properties of Brauer configuration algebras [9,15].

Theorem 1 ([9], Theorem B). The following results hold for a Brauer configuration algebra
Λ = FQ/I induced by a Brauer configuration Γ = (Γ0, Γ1, µ,O).
1. There is a bijection between Γ1 and the set of indecomposable projective Λ-modules.
2. If P is a projective indecomposable Λ-module corresponding to a polygon V in Γ, then rad(P)

is a sum of r indecomposable uniserial modules, where r is the number of (non-truncated)
vertices of V and where the intersection of any two of the uniserial modules is a simple
Λ-module.

Proposition 1 and Theorem 2 give formulas for the dimensions dimF Λ, and dimF Z(Λ)
of a Brauer configuration algebra Λ and its center Z(Λ) [9,15].

Proposition 1 (Proposition 3.13, [9]). Let Λ be a Brauer configuration algebra associated with the
Brauer configuration Γ and let C = {C1, . . . , Ct} be a full set of equivalence class representatives

Computation 2022, 10, 124 7 of 17

of special cycles. Assume that for i = 1, . . . , t, Ci is a special αi-cycle where αi is a non-truncated
vertex in Γ. Then,

dimF Λ = 2|Q0|+ ∑
Ci∈C
|Ci|(ni|Ci| − 1),

where |Q0| denotes the number of vertices of Q; |Ci| denotes the number of arrows in the αi-cycle
Ci, and ni = µ(αi).

Theorem 2 (Theorem 4.9, [15]). Let Λ = FQ/I be the Brauer configuration algebra associated
with the connected and reduced Brauer configuration Γ. Then,

dimF Z(Λ) = 1 + ∑
α∈Γ0

µ(α) + |Γ1| − |Γ0|+ #(Loops Q)− |CΓ|,

where CΓ = {α ∈ Γ0 | val(α) = 1, and µ(α) > 1}.

3. Main Results

In this section, we follow some of Loday’s ideas [16] to prove that string snake graphs
induce binary trees, Brauer configuration algebras, and codes.

3.1. Admissible Words

An admissible word w has positive integers as letters. It can be written in the form:

w = α1α2 . . . αt, (5)

where, for each 1 ≤ i ≤ t, αi is a positive integer, 1 ≤ αi ≤ |w|, |w| denotes the length
of w. If αh = |w|, then αi < αh, for any i 6= h. Moreover, if w = wαh−1 |w|αh+1, with
wh−1 = α1α2 . . . αh−1, wh+1 = αh+1α2 . . . αt, then |wh−1|+ |wh+1|+ 1 = |w|. For n ≥ 1, we
let Wn denote the set of all admissible words of length n, W =

⋃
n≥0

Wn, W0 = ∅ is the

empty word, |W0| = 0. For example, W1 = {1}, W2 = {12, 21}, whereas 131 and 4123 are
admissible words in W3 and W4, respectively.

Any admissible word w ∈W is obtained by applying the operations •, ⊥, >, ∝, ∪,→,
←, and↔, defined as follows:

1. • is the usual concatenation of words. If no confusion arises, later on, we will write
w • w′ = ww′.

2. If, for n ≥ 1 fixed w ∈ Wn, then ⊥(w) = (|w|+ 1)w ∈ Wn+1. Moreover, >(w) =
w(|w|+ 1) ∈Wn+1.

3. If w, w′ ∈W, then w ∝ w′ = w(|ww′|+ 1)w′. In such a case, we write (w ∝ w′)l = w,
(w ∝ w′)r = w′. In particular, ⊥(w) = ∅ ∝ w = (|w| + 1)w, >(w) = w ∝ ∅ =
w(|w|+ 1). Thus, any admissible word w can be written in the form w = (w)l ∝ (w)r.

4. If w, w′ ∈ W, then w ∪ w′ = {w, w′}. If w1, w2, . . . , wk ∈ W, then ⊥(
n⋃

k=1
wk) =

n⋃
k=1
⊥(wk). Moreover, >(

n⋃
k=1

wk) =
n⋃

k=1
>(wk).

5. w ↔ w′ = (w → w′) ∪ (w ← w′), where w → w′ = wl ∝ (wr ↔ w′), and w ← w′ =
(w ↔ (w′)l) ∝ (w′)r. In particular, if w = x(|w|) (w′ = (|w′|y)), then w → w′ =
x(|ww′|)w′ (w← w′ = w(|ww′|)y).

6.
n⋃

k=1
wk → w =

n⋃
k=1

wk → w, w←
n⋃

k=1
wk =

n⋃
k=1

w← wk.

12 (21) is the unique admissible word w for which wr = ∅ (wl = ∅).

(12)l = (21)r = 1 = ∅ ∝ ∅,

(1)r = (1)l = ∅.
(6)

Computation 2022, 10, 124 8 of 17

1 ∝ 1 = 131, 12 ∝ 1 = 1241, ⊥(123) = ∅ ∝ 123 = 4123. Note that→ and← are not
associative. For instance, 1→ 21 = 321, and 21→ 1 = {312, 321}. ↔ is not commutative
1↔ 21 = {321, 131}, 21↔ 1 = {321, 312, 213}.

Proposition 2. For any n ≥ 1 fixed, it holds that Wn =
n−1⋃
i=0

Wi ∝ Wn−1−i.

Proof. We note that W1 = 1, W2 = {12, 21}, W3 = W2 ↔ 1 = W2 ← 1∪W2 → 1.

W2 ← 1 = {123, 213}
W2 → 1 = 12→ 1∪ 21→ 1 = 1 ∝ 1∪⊥(1↔ 1) =

131∪⊥(12∪ 21) = {131, 312, 321}.
(7)

If the theorem holds for 1 ≤ i < j, then Wj = Wj−1 ↔ 1. Thus,

Wj = [
j−2⋃
k=0

Wk ∝ Wj−2−k ← 1]
⋃
[

j−2⋃
k=0

Wk ∝ Wj−2−k → 1] =

[(
j−2⋃

k=0

>(Wk ∝ Wj−2−k))]
⋃
[

j−2⋃
k=0

Wk ∝ (Wj−2−k ↔ 1)] =

j−1⋃
k=0

Wk ∝ Wj−1−k.

(8)

3.2. Brauer Configuration Algebras Associated with Snake Graphs

This section proves that an n-tile snake graph induces a Brauer configuration whose
vertices are positive integers and word polygons consist of admissible words as defined in
the previous section.

Proposition 3. String modules associated with n-tile snake graphs define Wn.

Proof. (Induction) If dn = 1a11a21 . . . 1an1 is the dimension of a string module associ-
ated with an orientation a1a2 . . . an for which ai ∈ {→,←}, then, according to the opera-
tions defined in Section 3.1, dn = 21a21 . . . 1an1 if a1 =→, dn = 12a21 . . . 1an1, if a1 =←,
dn = ⊥(12∪ 21)a31 . . . 1an1 = 312a31 . . . 1an1∪ 321a31 . . . 1an1, if a2 =→ has 21 as a source.
dn = 131a31 . . . 1an1 if a2 =→ has 12 as a source.

dn = 123a31 . . . 1an1 (dn = 213a31 . . . 1an1) if a2 =←, s(a2) = 1, t(a2) = 12 (t(a2) = 21).
We note that, for i ≤ n fixed, dn = (w′ ∝ (w′ → w′′)

⋃
w′ ∝ (w′ ← w′′))ai . . . an,

if ai−1 =→, s(ai−1) = w = w′ ∝ w′′ ∈ Wi, w′ ∈ Wk, w′′ ∈ Wi−1−k, k ≤ i − 1, i ≤ n.
Meanwhile, dn = >(w)ai . . . an, if ai−1 =←, s(ai−1) = 1 and t(ai−1) = w = w′ ∝ w′′ ∈Wi.
Thus, for 2 ≤ i ≤ n, it holds that the (i − 1)th arrow of a string module gives rise to
Wi = ⊥(Wi−1) ∪ (W1 ∝ Wi−2)

⋃ · · ·⋃(Wk ∝ Wi−1−k)
⋃>(Wi−1). We are finished.

Corollary 1. For n ≥ 1, |Wn| = Cn, where Cn is the nth Catalan number.

Proof. (Induction) Note that |W1| = 1, |W2| = 2, |W3| = 5. If it is assumed that the
statement is true for 1 ≤ j < i, then |Wi| = |⊥(Wi−1)|+ |Wi−2 ∝ W1|+ · · ·+ |Wi−h ∝

Wh−1|+ . . . |>(Wi−1)|=2
b i−1

2 c
∑

k=0
CkCi−1−k = Ci.

Henceforth, for each i ≥ 2, we will assume that each admissible word wik ∈ Wi is a
multiset Uik of the form π(1 f12 f23 f3 . . . i fi), fh ≥ 0 denotes the occurrence of h in Uik , and

π(x) denotes a permutation of the
fi
∑

k=1
fk letters.

Computation 2022, 10, 124 9 of 17

For n > 1, the set of n-tile snake graphs defines a Brauer configuration algebra ΛΓn

induced by a Brauer configuration Γn = (Γn
0 , Γn

1 , µn,On), where

Γn
0 = {1, 2, . . . , n− 1, n},

Γn
1 = {U1, U2, . . . , UCn | w(Ui) ∈Wn, w(Ui) 6= w(Uj), if i 6= j, |Wn| = |Γn

1 |},
µn(j) = 1, 1 ≤ j ≤ n,

(9)

If j ∈ Γ0 belongs to the polygons Uj1 , Uj2 , . . . , Ujh , where j1 < j2 < · · · < jh is a
subchain of Γ0, then the corresponding successor sequence Sj has the form Sj = Uj1 ≤
Uj2 ≤ · · · ≤ Ujh−1 ≤ Ujh .

Figure 4 shows the Brauer quiver associated with the Brauer configuration Γ2, for which
Γ2

0 = {1, 2}, Γ2
1 = {U1 = {1, 2}, U2 = {1, 2}}, w1 = 12, w2 = 21.

Successor sequence S1 = U1 < U2 (associated with the vertex 1) defines the arrow α1
1.

The successor sequence S2 = U1 < U2 (associated with the vertex 2) defines the arrow β1
2.

Arrows α2
1 and β2

2 complete the special cycles α1
1α2

1 and β1
2β2

2.

Computation 2022, 1, 0 10 of 18

If j ∈ Γ0 belongs to the polygons Uj1 , Uj2 , . . . , Ujh where j1 < j2 < · · · < jh is a subchain of
Γ0. Then, the corresponding successor sequence Sj has the form Sj = Uj1 ≤ Uj2 ≤ · · · ≤
Ujh−1 ≤ Ujh .

Figure 4 shows the Brauer quiver associated with the Brauer configuration Γ2, for
which Γ2

0 = {1, 2}, Γ2
1 = {U1 = {1, 2}, U2 = {1, 2}}, w1 = 12, w2 = 21.

Successor sequence S1 = U1 < U2 (associated with the vertex 1) defines the arrow α1
1.

The successor sequence S2 = U1 < U2 (associated with the vertex 2) defines the arrow β1
2.

Arrows α2
1, and β2

2 complete the special cycles α1
1α2

1, and β1
2β2

2.

QΓ2 = ◦
U1

α1
1

''

β1
2

��◦
U2

α2
1

dd

β2
2

ZZ

Figure 4. Example of the Brauer quiver defined by the Brauer configuration Γ2. Relations α1
1β2

2, α2
1β1

2,
α1

1α2
1α1

1, α2
1α1

1α2
1, β1

2β2
2β1

2, β2
2β1

2β2
2, Li

1 ∼ Li
2, (where Li

j denotes the special cycle associated with the
vertex j in polygon Ui, i = 1, 2) generate the admissible ideal IΓ2 for which the Brauer configuration
algebra ΛΓ2 = FQΓ2 /IΓ2 .

We note that,

dimF ΛΓ2 = 4 + 2(2− 1) + 2(2− 1) = 8.

dimF Z(ΛΓ2) = 3.
(10)

Figure 5 shows the structure of the indecomposable projective modules P1 (associated
with the vertex 1) and P2 (associated with the vertex 2) over the Brauer configuration
algebra ΛΓ2 . Arrows in QΓ2 define the corresponding composition series.

U1
α1

1

zz

β1
2

$$

U2
α2

1

vv
β2

2

$$
P1 = U2

α2
1
$$

U2

β2
2

zz

P2 = U1

α1
1 ((

U1

β1
2

zz
U1 U2

Figure 5. Indecomposable projective ΛΓ2 -modules. Note that the number of composition series
equals the number of non-truncated vertices in the corresponding polygon.

The following result regards Brauer configuration algebras of type ΛΓn .

Theorem 3. For n > 1 fixed, it holds that

1. If Pi is an indecomposable projective module over ΛΓn associated with the polygon Ui. Then,
the number of summands in rad Pi is i, 1 ≤ i ≤ n.

2. val(i) = CiCn−i(n− i + 1) = ein,

3. dimF Λn = 2(Cn +
n
∑

i=1
tein−1),

4. dimF Z(Λn) = 1 + Cn +
n
∑

j=1
νn

ij.

Figure 4. Example of the Brauer quiver defined by the Brauer configuration Γ2. Relations α1
1β2

2, α2
1β1

2,
α1

1α2
1α1

1, α2
1α1

1α2
1, β1

2β2
2β1

2, β2
2β1

2β2
2, Li

1 ∼ Li
2 (where Li

j denotes the special cycle associated with the
vertex j in polygon Ui, i = 1, 2) generate the admissible ideal IΓ2 for which the Brauer configuration
algebra ΛΓ2 = FQΓ2 /IΓ2 .

We note that,

dimF ΛΓ2 = 4 + 2(2− 1) + 2(2− 1) = 8.

dimF Z(ΛΓ2) = 3.
(10)

Figure 5 shows the structure of the indecomposable projective modules P1 (associated
with the vertex 1) and P2 (associated with the vertex 2) over the Brauer configuration
algebra ΛΓ2 . Arrows in QΓ2 define the corresponding composition series.

Computation 2022, 1, 0 10 of 18

If j ∈ Γ0 belongs to the polygons Uj1 , Uj2 , . . . , Ujh where j1 < j2 < · · · < jh is a subchain of
Γ0. Then, the corresponding successor sequence Sj has the form Sj = Uj1 ≤ Uj2 ≤ · · · ≤
Ujh−1 ≤ Ujh .

Figure 4 shows the Brauer quiver associated with the Brauer configuration Γ2, for
which Γ2

0 = {1, 2}, Γ2
1 = {U1 = {1, 2}, U2 = {1, 2}}, w1 = 12, w2 = 21.

Successor sequence S1 = U1 < U2 (associated with the vertex 1) defines the arrow α1
1.

The successor sequence S2 = U1 < U2 (associated with the vertex 2) defines the arrow β1
2.

Arrows α2
1, and β2

2 complete the special cycles α1
1α2

1, and β1
2β2

2.

QΓ2 = ◦
U1

α1
1

''

β1
2

��◦
U2

α2
1

dd

β2
2

ZZ

Figure 4. Example of the Brauer quiver defined by the Brauer configuration Γ2. Relations α1
1β2

2, α2
1β1

2,
α1

1α2
1α1

1, α2
1α1

1α2
1, β1

2β2
2β1

2, β2
2β1

2β2
2, Li

1 ∼ Li
2, (where Li

j denotes the special cycle associated with the
vertex j in polygon Ui, i = 1, 2) generate the admissible ideal IΓ2 for which the Brauer configuration
algebra ΛΓ2 = FQΓ2 /IΓ2 .

We note that,

dimF ΛΓ2 = 4 + 2(2− 1) + 2(2− 1) = 8.

dimF Z(ΛΓ2) = 3.
(10)

Figure 5 shows the structure of the indecomposable projective modules P1 (associated
with the vertex 1) and P2 (associated with the vertex 2) over the Brauer configuration
algebra ΛΓ2 . Arrows in QΓ2 define the corresponding composition series.

U1
α1

1

zz

β1
2

$$

U2
α2

1

vv
β2

2

$$
P1 = U2

α2
1
$$

U2

β2
2

zz

P2 = U1

α1
1 ((

U1

β1
2

zz
U1 U2

Figure 5. Indecomposable projective ΛΓ2 -modules. Note that the number of composition series
equals the number of non-truncated vertices in the corresponding polygon.

The following result regards Brauer configuration algebras of type ΛΓn .

Theorem 3. For n > 1 fixed, it holds that

1. If Pi is an indecomposable projective module over ΛΓn associated with the polygon Ui. Then,
the number of summands in rad Pi is i, 1 ≤ i ≤ n.

2. val(i) = CiCn−i(n− i + 1) = ein,

3. dimF Λn = 2(Cn +
n
∑

i=1
tein−1),

4. dimF Z(Λn) = 1 + Cn +
n
∑

j=1
νn

ij.

Figure 5. Indecomposable projective ΛΓ2 -modules. Note that the number of composition series
equals the number of non-truncated vertices in the corresponding polygon.

The following result regards Brauer configuration algebras of type ΛΓn .

Theorem 3. For n > 1 fixed, it holds that

1. If Pi is an indecomposable projective module over ΛΓn associated with the polygon Ui. Then,
the number of summands in rad Pi is i, 1 ≤ i ≤ n.

Computation 2022, 10, 124 10 of 17

2. val(i) = CiCn−i(n− i + 1) = ein,

3. dimF Λn = 2(Cn +
n
∑

i=1
tein−1),

4. dimF Z(Λn) = 1 + Cn +
n
∑

j=1
νn

ij.

where Ch (th) denotes the hth Catalan number (hth triangular number). Moreover,

νn
j =

val(j)− 2h, if j ≥ 2, n = j + h, 1 ≤ h ≤ j− 1,
val(j)− (2j + m), if m ≥ 0, j ≥ 2, n = 2j + m,
val(n)− n, if j = n,
t2n−2−1, if j = 1.

Proof. Note that each polygon Ui ∈ Γn
1 has i vertices. Furthermore, for each vertex j ∈ Γ0,

the size |Sj| of the associated successor sequence Sj contains at least two different polygons.
Consider the following Table 1.

Table 1. Valencies val(i; Γj
1) of vertices i = 1, 2, and 3 in Γj

1, 2 ≤ j ≤ 6.

val(1) val(2) val(3) dimF ΛΓj

Γ2
1 2 2 8

Γ3
1 6 4 5 72

Γ4
1 20 12 10 812

Γ5
1 70 40 30 9822

Γ6
1 252 140 100 124,112

Note that

val(1; Γ7
1) = val(1;⊥(Γ6

1)) +
4

∑
i=1

val(1; Γi
1 ∝ Γ5−i

1) + val(1;>(Γ6
1)) =

(
12
6

)
.

val(2; Γ7
1) = val(2;⊥(Γ6

1)) +
4

∑
i=1

val(2; Γi
1 ∝ Γ5−i

1) + val(2;>(Γ6
1)) = 2

(
10
5

)
.

val(3; Γ7
1) = val(3;⊥(Γ6

1)) +
4

∑
i=1

val(3; Γi
1 ∝ Γ5−i

1) + val(3;>(Γ6
1)) = 5

(
8
4

)
.

In general,

val(1; Γj
1) = C1

(
2j− 2
j− 1

)
, j ≥ 1,

val(2; Γj
1) = C2

(
2j− 4
j− 2

)
, j ≥ 2,

val(3; Γj
1) = C3

(
2j− 6
j− 3

)
, j ≥ 3,

val(4; Γj
1) = C4

(
2j− 8
j− 4

)
, j ≥ 4,

... =
...

val(i; Γj
1) = Ci

(
2j− 2i

j− i

)
= CiCj−i(j− i + 1), j ≥ i.

(11)

Since |Γn
1 | = Cn, then the result follows from item 2 and Proposition 1. By definition,

the number #loops(j; Γn
1) of loops provided by the vertex j in Γn

1 is given by νn
j . Furthermore,

|Γn
1 | = Cn. Therefore, the result is a consequence of Theorem 2.

Computation 2022, 10, 124 11 of 17

Following Loday’s construction of binary trees [16], it is possible to associate a binary
tree with each admissible word defined by a snake graph. In such a case, a word w of the
form w = wl ∝ wr defines a binary tree whose left (right) leaf is given by wl (wr).

Figure 6 shows the binary trees defined by the admissible words 0, 1 = ∅ ∝ ∅,
12 = 1 ∝ ∅, which has the binary tree 1 at the left leaf. Moreover, 21 = ∅ ∝ 1, which has
the binary tree 1 at the right leaf.

Computation 2022, 1, 0 12 of 18

Figure 6 shows the binary trees defined by the admissible words 0, 1 = ∅ ∝ ∅,
12 = 1 ∝ ∅, which has the binary tree 1 at the left leaf. And 21 = ∅ ∝ 1, which has the
binary tree 1 at the right leaf.

�
�

�

@
@

@

1=

�
�
�

@
@

@ ��

12=

�
�
�

@
@

@ @@

21=0=

Figure 6. Admissible words and their corresponding binary trees.

The following figure 7 shows the binary trees associated with 3-tile snake graphs.

213

131

123

321

312

Figure 7. The grove consisting of binary trees associated with 3-tile snake graphs.

The Tamari lattice arises from the order (⪯,Wn) defined on the set Wn of admissible
words, such that

(w1 ∝ w2) ∝ w3 ≺ w1 ∝ (w2 ∝ w3),

w1 ≺ w2 =⇒ w1 ∝ w3 ≺ w2 ∝ w3,

w1 ≺ w2 =⇒ w3 ∝ w1 ≺ w3 ∝ w2.

(12)

3.3. The Associated Code

LetQ = {0, 1, 2, . . . , q− 1} be the alphabet of q symbols, and H(n, q) = {(x1, x2, . . . , xn) |
xj is a q-ary vector}.

The Hamming distance d(x, y) between two elements x, y ∈ H(n, q) equals the number
of coordinates in which they differ. The inner product ⟨x, y⟩ is defined in such a way that
⟨x, y⟩ = 1− 2d(x,y)

n .

The h-energy or potential energy E(n, C; h) of a code C is given by the identity

E(n, C; h) =
1
|C| ∑

x,y∈C
h(⟨x, y⟩), (13)

where h is a function h : [−1, 1) −→ (0,+∞) (for convenience, often h is considered
absolutely monotone). According to Boyvalenkov et al. [12] energy minimizing codes

Figure 6. Admissible words and their corresponding binary trees.

The following Figure 7 shows the binary trees associated with three-tile snake graphs.

213

131

123

321

312

Figure 7. The grove consisting of binary trees associated with three-tile snake graphs.

The Tamari lattice arises from the order (�,Wn) defined on the set Wn of admissible
words, such that

(w1 ∝ w2) ∝ w3 ≺ w1 ∝ (w2 ∝ w3),

w1 ≺ w2 =⇒ w1 ∝ w3 ≺ w2 ∝ w3,

w1 ≺ w2 =⇒ w3 ∝ w1 ≺ w3 ∝ w2.

(12)

3.3. The Associated Code

LetQ = {0, 1, 2, . . . , q− 1} be the alphabet of q symbols, and H(n, q) = {(x1, x2, . . . , xn) |
xj is a q-ary vector}.

The Hamming distance d(x, y) between two elements x, y ∈ H(n, q) equals the number
of coordinates in which they differ. The inner product 〈x, y〉 is defined in such a way that
〈x, y〉 = 1− 2d(x,y)

n .
The h-energy or potential energy E(n, C; h) of a code C is given by the identity

E(n, C; h) =
1
|C| ∑

x,y∈C
h(〈x, y〉), (13)

where h is a function h : [−1, 1) −→ (0,+∞) (for convenience, often, h is considered
absolutely monotone). According to Boyvalenkov et al. [17], energy minimizing codes

Computation 2022, 10, 124 12 of 17

C ⊂ H(n, q) for the potential function hα(t) = [2
n(1−t)]

α, α → ∞ are maximizing the
minimum distance d(C) = min{d(x, y) | x, y ∈ C, x 6= y}.

We recall that the main problem associated with these codes is minimizing the po-
tential energy provided by the cardinality |C| of a fixed code C, i.e., finding E(n, M; h) =
min{E(n, C; h) | |C| = M}.

To address the coding problem from the Brauer configurations algebras point of
view, we note that, by definition, for j > 1 fixed, a Brauer configuration Γj defines a code
CΓj ⊂ H(1, j) of admissible words associated with polygons in Γj

1. The alphabet is given

by Γj
0 = {1, 2, 3, . . . , j− 1, j} . The purpose of this section is to give the potential energy

E(1, CΓj ; hα) of a code CΓj for any j > 1 and α ≥ 1. Actually, we have the following result:

Theorem 4. For 1 ≤ a ≤ α and j > 1 fixed, the energy E(1, CΓj ; ha(t) = [2
1−t]

a) is given by a
snake graph. In particular, min E(1, CΓj ; ha) is given by a zigzag special snake graph G[0, 2α+1] of
the form G f ((2, 2, . . . , 2)︸ ︷︷ ︸

(2α+1−2)−times

) (see Figure 2). Moreover,

(
1
2
)α+1 ≤ E(1, CΓj ; ha) <

j− 1
Cj

Fj−1(
1
2
)α, (14)

where Ci denotes the ith Catalan number, and Fi = |{(w, w′) ∈ CΓn × CΓn | d(w, w′) =
d(w′, w) = i}|. Furthermore, for α > 1 fixed, it holds that

min E(1, CΓ2 ; ha) = (
1
2
)α+1. (15)

Proof. We note that, for all w, w′ ∈ Wj, it holds that d(w, w′) ∈ {2, 3, . . . , j}. In addition,
hα(i) = 1

iα , 2 ≤ i ≤ j. Thus,

E(1, CΓj ; hα) =
1
Cj

j

∑
k=2

Fk(
1
k
)α (16)

is a rational number. In particular, if j = 2, then 〈12, 21〉 = −3, hα(−3) = (1
2)

α. More-
over, E(1, CΓ2 ; hα) = (1

2)
α+1. Since Fi ≤ Fj−1 < tCj−1 (where ti is the ith triangular number),

for any 1 ≤ i ≤ j, the result follows. We are finished.

Corollary 2. For j ≥ 2, numbers F2, F3, . . . , Fj−1, and Fj constitute an integer partition of the
tCj−1 triangular number.

Proof. Since Fi = |{(w, w′) ∈ CΓn × CΓn | d(w, w′) = d(w′, w) = i}|, then 2
j

∑
i=1

Fi = C2
j − Cj.

We are finished.

Table 2 shows a table giving the number of times Fi, 2 ≤ i ≤ j, 2 ≤ j ≤ 9, that a
distance d(w, w′) ∈ {2, . . . , 9} occurs in a code CΓj . The entry at the jth row and ith column,
2 ≤ i ≤ 9, gives the number of times that the distance i appears in code CΓj .

Table 3 shows a table with the energy values of codes CΓj , 2 ≤ j ≤ 9 by using
hα(t) ∈ {1/i | 2 ≤ i ≤ 9}, 1 ≤ α ≤ 3. Columns are labeled by hα, whereas rows are labeled
by pairs (α, j). In this case, an entry (α, j, hα) gives the energy value E(1, CΓ j; hα).

Computation 2022, 10, 124 13 of 17

Table 2. Distances associated with a code CΓj , 2 ≤ j ≤ 9.

j\d(w, w′) 2 3 4 5 6 7 8 9

2 1
3 6 4
4 25 34 32
5 100 172 329 260
6 390 754 1990 3126 2386
7 1516 3130 9983 21,638 32,481 23,058
8 5869 12,660 45,872 119,312 251,334 351,506 235,182
9 22,746 50,570 202,205 589,306 1,519,120 3,001,666 3,944,860 2,486,618

Table 3. Energy values of codes CΓj , 2 ≤ j ≤ 9 given by functions of the form hα(t) ∈ {1/i | 2 ≤ i ≤
9}, 1 ≤ α ≤ 3.

α j\hα(t) 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9

1 2 1/2
3 3 4/3
4 25/2 34/3 8
5 50 172/3 329/4 52
6 195 754/3 995/2 3126/5 1193/3
7 758 3130/3 9983/4 21,638/5 10,827/2 3294
8 5869/2 4220 11,468 119,312/5 41,889 351,506/7 117,591/4
9 11,373 50,570/3 202,205/4 589,306/5 759,560/3 3,001,666/7 986,215/2 2,486,618/9

2 2 1/4
3 3/2 4/9
4 25/4 34/9 2
5 25 172/9 329/16 52/5
6 195/2 754/9 995/8 3126/25 1193/18
7 379 3130/9 9983/16 21,638/25 3609/4 3294/7
8 5869/4 4220/3 2867 119,312/25 13,963/2 351,506/49 117,591/32
9 211,373/2 50,570/9 202,205/16 589,306/25 379,780/9 3,001,666/49 986,215/16 2,486,618/81

3 2 1/8
3 3/4 4/27
4 25/8 34/27 1/2
5 25/2 172/27 329/64 52/25
6 195/4 754/27 995/32 3126/125 1193/108
7 379/2 3130/27 9983/64 21,638/125 1203/8 3294/49
8 5869/8 4220/9 2867/4 119,312/125 13,963/12 351,506/343 117,591/256
9 11,373/4 50,570/27 202,205/64 589,306/125 189,890/27 3,001,666/343 986,215/128 2,486,618/729

Figure 8 shows special snake graphs giving min E(1, CΓ j; hα) for j = 2 and α = 1(hα =
1
4), α = 2(hα = 1

8), and α = 3(hα = 1
16).

1
4 = [0, 4] 1

8 = [0, 8] 1
16 = [0, 16]

Figure 8. Examples of special snake graphs giving the minimal energy min E(1, CΓj , hα), for j = 2,
α = 1, 2, 3.

Computation 2022, 10, 124 14 of 17

Figure 9 shows examples of snake graphs given the energy E(1, CΓj , hα), for
α = 1, j = 4, 5, and α = 2, j = 5, 6. hα, defined as in Figure 3.

α = 1 α = 2

191
84 = [2, 3, 1, 1, 1, 7] 54,053

30,240 = [1, 1, 3, 1, 2, 2, 1, 1, 4, 7, 3, 1, 2]

2899
504 = [5, 1, 3, 31, 4] 894,547

237,600 = [3, 1, 3, 3, 1, 14, 1, 3, 1, 1, 2, 2, 1, 1, 1, 1, 2]

Figure 9. Snake graphs associated with the energy values 191
84 , 2899

504 , 54,053
30,240 , and 894,547

237,600 .

4. Concluding Remarks and Future Work

String snake graphs induce admissible words related to binary trees. Such admissible
words give rise to Brauer configuration algebras of type ΛΓj , j ≥ 2, with Cj indecomposable
projective modules. Catalan numbers are helpful to obtain the dimensions of these algebras
and their centers. Brauer configurations ΛΓj define codes CΓj of type H(1, j), in the sense of
Boyvalenkov et al., whose energy values are given by snake graphs. Distances associated with
these codes allow integer partitions of the triangular numbers indexed by Catalan numbers.

Future Work

We note that E(1, CΓj , hα) =
j

∑
i=2

Fj(
1
j)

α, where Fi = |{(w, w′) ∈ CΓn × CΓn | d(w, w′) =

d(w′, w) = i}|. It is an open problem to give a closed formula for numbers Fi, as well as the
number of perfect matchings of the associated snake graphs.

Another interesting task for the future consists of giving a generalization of the presented
results to arbitrary H(n, q) codes.

Author Contributions: Investigation, A.M.C., G.B.R. and R.-J.S.; writing—review and editing,
A.M.C., G.B.R. and R.-J.S. All authors have read and agreed to the published version of the manuscript.

Funding: Seminar Alexander Zavadskij on Representation of Algebras and their Applications,
Universidad Nacional de Colombia. The third author was supported by Minciencias (Conv. 891).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Computation 2022, 10, 124 15 of 17

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

Cj (jth Catalan number)
dimF ΛΓ (Dimension of a Brauer configuration algebra)
dimF Z(ΛΓ) (Dimension of the center of a Brauer configuration algebra)
E(1, CΓj , hα) (Energy of a code CΓj)
F (Field)
Γ0 (Set of vertices of a Brauer configuration Γ)
ti (ith triangular number)
occ(α, V) (Number of occurrences of a vertex α in a polygon V)
w(V) (The word associated with a polygon V)

V(α)
i (Ordered sequence of polygons)

val(α) (Valency of a vertex α)

Appendix A. Python Routines

In this section, we give Python routines to compute the word product ∝ (routine
[2]), Catalan numbers (routine [3]), admissible words (routine [4]), dimensions of the
Brauer configuration algebras ΛΓj (routine 5), and energy values of the defined codes CΓj

(routine [6]).

[1]: from scipy.spatial.distance import hamming
import numpy as np
from collections import Counter
import itertools

[2]: def word_prod(A,B):
if A.size == 0:

dimension=len(B[0])+1
list1 = [np.zeros((len(B),dimension)) for i in range(1)]
for i in range(1):

for j in range(len(B)):
list1[i][j]=np.concatenate((dimension, B[j]),␣

↪→axis=None)
C=np.concatenate(list1, axis=0)

return C

if B.size == 0:
dimension=len(A[0])+1
list1 = [np.zeros((1,dimension)) for i in range(len(A))]
for i in range(len(A)):

for j in range(1):
list1[i][j]=np.concatenate((A[i],dimension),␣

↪→axis=None)
C=np.concatenate(list1, axis=0)

return C
else:

dimension=len(A[0]) +len(B[0])+1
list1 = [np.zeros((len(B),dimension)) for i in range(len(A))]
for i in range(len(A)):

for j in range(len(B)):

Computation 2022, 10, 124 16 of 17

list1[i][j]=np.concatenate((A[i],dimension, B[j]),␣
↪→axis=None)

C=np.concatenate(list1, axis=0)
return C

[3]: def catalan(n):
Base Case
if n <= 1:

return 1
res = 0
for i in range(n):

res += catalan(i) * catalan(n-i-1)
return res

[4]:
def Gamma(n):

G_0=np.empty((0, 0))
G_1=np.array([[1]])
if n==0:

return G_0
if n==1:

return G_1
else:

list2 =[np.zeros((catalan(i),i)) for i in range(0,n+1)]
list2[0]=G_0
list2[1]=G_1
for i in range(2,n+1):

list2[i]=np.
↪→concatenate([word_product(list2[j],list2[i-1-j]) for j in␣
↪→range(i)], axis=0)

return list2[n]

[5]: def dim_algebra(n):
␣

↪→b=[catalan(i)*catalan(n-i)*(n-i+1)*(catalan(i)*catalan(n-i)*(n-i+1)
-1)/

2 for i in range(1,n+1)]
a=sum(b)
res=2*(catalan(n)+a)
return res

[6]: def energy(n,a):
C=np.zeros((len(Gamma(n)),len(Gamma(n))))
for i in range (len(C)):

for j in range(len(C)):
C[i][j]=hamming(Gamma(n)[i],␣

↪→Gamma(n)[j])*len(Gamma(n)[i])
res = dict(Counter(itertools.chain(*C)))
energy=sum([res[m]*1/(2*(m**a)) for m in range(2,n+1)])*1/

↪→catalan(n)
return energy

Computation 2022, 10, 124 17 of 17

References
1. Propp, J. The combinatorics of frieze patterns and Markoff numbers. Integers 2020, 20, 1–38.
2. Çanakçi, I.; Schiffler, R. Cluster algebras and continued fractions. Compos. Math. 2018, 54, 565–593. [CrossRef]
3. Çanakçi, I.; Schiffler, R. Snake graphs and continued fractions. Eur. J. Combin. 2020, 86, 1–19. [CrossRef]
4. Çanakçi, I.; Schiffler, R. Snake graphs calculus and cluster algebras from surfaces. J. Algebra 2013, 382, 240–281. [CrossRef]
5. Çanakçi, I.; Schiffler, R. Snake graphs calculus and cluster algebras from surfaces II: Self-crossings snake graphs. Math. Z. 2015,

281, 55–102. [CrossRef]
6. Çanakçi, I.; Schiffler, R. Snake graphs calculus and cluster algebras from surfaces III: Band graphs and snake rings. Int. Math. Res.

Not. IMRN 2017, rnx157, 1–82. [CrossRef]
7. Musiker, G.; Schiffler, R.; Williams, L. Posiivity for cluster algebras from surfaces. Adv. Math. 2011, 227, 2241–2308. [CrossRef]
8. Çanakçi, I.; Schroll, S. Lattice bijections for string modules snake graphs and the weak Bruhat order. Adv. Appl. Math. 2021,

126, 102094. [CrossRef]
9. Green, E.L.; Schroll, S. Brauer configuration algebras: A generalization of Brauer graph algebras. Bull. Sci. Math. 2017, 121,

539–572. [CrossRef]
10. Schroll, S. Brauer Graph Algebras. In Homological Methods, Representation Theory, and Cluster Algebras, CRM Short Courses; Assem

I., Trepode S., Eds.; Springer: Cham, Switzerland, 2018; pp. 177–223.
11. Cañadas, A.M.; Gaviria, I.D.M.; Vega, J.D.C. Relationships between the Chicken McNugget Problem, Mutations of Brauer

Configuration Algebras and the Advanced Encryption Standard. Mathematics 2021, 9, 1937. [CrossRef]
12. Cañadas, A.M.; Espinosa, P.F.F.; Muñetón, N.A. Brauer configuration algebras defined by snake graphs and Kronecker modules.

Electron. Res. Arch. 2022, 30, 3087–3110. [CrossRef]
13. Assem, I.; Skowronski, A.; Simson, D. Elements of the Representation Theory of Associative Algebras; Cambridge University Press:

Cambridge, UK, 2006.
14. Andrews, G.E. The Theory of Partitions; Cambridge University Press: Cambridge, UK, 2010.
15. Sierra, A. The dimension of the center of a Brauer configuration algebra. J. Algebra 2018, 510, 289–318. [CrossRef]
16. Loday, J.L. Arithmetree. J. Algebra 2002, 258, 275–309. [CrossRef]
17. Boyvalenkov, P.; Dragnev, P.D.; Hardin, P.D.; Saff, E.B.; Stoyanova, M.M. Energy bounds for codes and designs in Hamming

spaces. Des. Codes Cryptogr. 2017, 82, 411–433. [CrossRef]

http://doi.org/10.1112/S0010437X17007631
http://dx.doi.org/10.1016/j.ejc.2020.103081
http://dx.doi.org/10.1016/j.jalgebra.2013.02.018
http://dx.doi.org/10.1007/s00209-015-1475-y
http://dx.doi.org/10.1093/imrn/rnx157
http://dx.doi.org/10.1016/j.aim.2011.04.018
http://dx.doi.org/10.1016/j.aam.2020.102094
http://dx.doi.org/10.1016/j.bulsci.2017.06.001
http://dx.doi.org/10.3390/math9161937
http://dx.doi.org/10.3934/era.2022157
http://dx.doi.org/10.1016/j.jalgebra.2018.06.002
http://dx.doi.org/10.1016/S0021-8693(02)00510-0
http://dx.doi.org/10.1007/s10623-016-0286-4

	Introduction
	Motivations
	Contributions

	Background and Related Work
	Path Algebras
	Snake Graphs
	String Modules and Snake Graphs
	Brauer Configuration Algebras

	Main Results
	Admissible Words
	Brauer Configuration Algebras Associated with Snake Graphs
	The Associated Code

	Concluding Remarks and Future Work
	Appendix A
	References

