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Abstract: This article deals with the use of contactless measurement with a high-resolution imaging
device during tensile testing of materials in a universal tearing machine (UTM). Setting the material
parameters in tensile testing is based on changes in the geometrical properties of the sample being
tested. In this article, authors propose the method and system for automated measuring the height,
width, and crack occurrence during tensile testing. The system is also able to predict the location of
crack occurrence. The proposed method is based on selected algorithms of image analysis, feature
extraction, and template matching. Our video extensometry, working with common inspection
cameras operating in visible range, can be an alternative method to expensive laser extensometry
machines. The motivation of our work was to develop an automated measurement system for use in
a UTM.

Keywords: video extensometer; laser extensometer; image processing; pattern matching; DIC correlation

1. Introduction

Tensile testing is a destructive way to determine the mechanical properties, yield
strength, and flexibility of materials. It calculates the amount of force needed to break
a hybrid or plastic specimen, and also how far the specimen must stretch or elongate to
achieve that breaking point. Composites are typically subjected to basic tension or flat-
sandwich tension testing by standards ISO 527-4, ISO 527-5, ASTM D 638, ASTM D 3039,
and ASTM C 297. The tensile modulus is calculated using stress–strain diagrams obtained
from these experiments [1].

Tensile testing provides many measurements leading to the determination of selected
material parameters, for example (based on ASTM D 3039) ultimate tensile strength (σmax),
ultimate tensile strain (ε), modulus of elasticity (E), and Poisson’s ratio (ν). In-plane tensile
testing is the most common test for basic composite laminates. Resin-impregnated fiber
bundles (“tows”), through-thickness samples (cut from thick lamination portions), and
sandwich core material portions are all tensile tested. Alignment is critical for compos-
ite testing applications because polymers are anisotropic and often brittle. Anisotropy
describes how the material’s properties and strength change based on the direction of
applied load or stress. As a result, a composite material’s tensile strength is very high when
measured in the direction parallel to the fiber orientation, but substantially lower when
tested in any other direction. Surprisingly, the tensile test must have exceptional axial-load–
string alignment to estimate maximum tensile strength in the direction parallel to the fiber
direction, which is especially important in the aerospace industry, where composites are
frequently used in high tensile-stress constructions [1,2].

For ambient, sub-ambient, and high-temperature testing, a variety of proven gripping
mechanisms, including manual, pneumatic, and hydraulic actuation, are currently available,
with temperatures ranging from 269 to 600 ◦C. The results of the tests are used to choose
the best materials, design parts that can bear application stresses, and perform important
quality control checks on the materials [3].
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The tensile test is among the most important tensile testing, and because of its as-
sumption, simplicity, and efficiency, it is the most extensively used and recognized test
technique for assessing the mechanical characteristics of mostly metallic materials. It also
has the benefit of being able to fracture any material while still following the mathematical
similarity law [4].

It entails attaching a clean testing object with a basic form (usually circular and
rectangular pass) to the tearing machine’s jaws (Figure 1).
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Figure 2 shows the result of testing in form of dependency between strain and stress [5].
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Figure 2. Elongation of the test sample depending on the force applied to the sample [2].

The starting segment of the curve in Figure 2 shows elastic deformation from the refer-
ence value to point U. The reversible elastic modulus of material properties is determined
by the amount of irreversible elastic deformation that may be induced in individual metal
connections before they break. This percentage is typically less than 1%. The next section
describes Hooke’s law, which would be phrased as follows:

σ = E·εel (1)

where εel represents strain (ratio between total sample elongation and original length), E is
sample modulus of elasticity, and σ is mechanical tensile strength.
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A tensile sensor directly attached to the testing rod monitors and stores its length.
If the expansion of the test section is obtained from the motion of the tearing machine’s
cross member, the slant of this section of the tension chart comprises not only elastic
behavior of the testing bar but also bending stresses of tearing machine elements—machine
frame, dynamometer, and jaws. As a consequence, component E cannot be executed in this
case [5].

The deformation remains constant along the section between point U to point P, but
still, the linearity is destroyed and there is a deviation from the initial linear trend owing to
the onset of plastic deformation accumulation. The stress grows with increasing distortion
till it reaches the maximum position of the figure when the specified dependency peaks. The
process represented in this area of the figure is strain hardening. Following the consistent
narrowing of the detecting section of the testing bar, i.e., the extensometer of the measured
area on the test sample, a neck develops at point P, as well as further deformation is
associated with a reduction (relaxation) in stress.

After this uneven plastic deformation is finished, i.e., after all viable dislocation sliding
mechanisms have been exhausted, the test bar fails. The tensile test is considered successful
unless the cracks appear in a specific region of the sample but do not fracture, as well as at
the anchoring point [5].

The tensile test is evaluated using UTM using both contact and non-contact methods.
Because contact methods are less accurate and more susceptible to shocks and temperature
fluctuations, they are not recommended. Non-contact methods for tensile test evaluation
are covered next in our research [6].

2. Non-Contact Methods for Tensile Test Evaluation

Contact extensometers are extensively used in material testing to detect axial stresses
in test objects with high flexibility, such as metal or hard polymers. Although these touch
sensors enable maximum stress monitoring in a variety of applications, they have the
disadvantages of careful operator interaction, decreased flexibility, and limited application
for the reasons listed below [7].

Their weight and method of attachment might affect the load–strain response of the
test specimen, restricting their usage on polymeric, biological products, and composite
material. Additionally, sufficient tension should be implemented to avoid the cutting edges
or clip-on wires shapes installed on the sample from sliding, which might contribute to
catastrophic failures [8].

A physical extensometer can only measure one-directional (often vertical) strain
summed over the gauge length. Additionally, physical extensometers intended for room
temperature usage cannot be utilized in other environments (high or low temperature).

For universal testing assessment, there are two main types of non-contact measurement
methods. Laser extensometry, as well as video extensometry, are two often used systems [9].

2.1. Video Extensometry

A video extensometer (Figure 3) is a measurement system composed of one or more
cameras, as well as image processing algorithms.

Camera extensometers based on functionality image-processing machine learning
track the geometric properties (e.g., centroids, edges) of various artificial signs (e.g., circular
pattern dots, print strips (welded tracks) that can be depicted, glued, attached, or concocted
onto the test sample and measuring the surface stains of a sample [10].

Aside from functionality object recognition, intensity-based picture comparison ap-
proaches based on the digital image correlation (DIC) can also be used. DIC is a powerful
optical method that is commonly used in experimental physics for filled displacement
and strain measurements. It is commonly employed as a post-processing technique with
enhanced registrations precision but a significant computational cost. Using recent develop-
ments in subpixel registration methods, efforts have been made to utilize DIC in real-time
movement and tension monitoring [11].
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Basic image processing is used in our study, as well as more advanced image pro-
cessing methods, such as DIC correlation, which will be addressed further in the next
chapter [12].
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2.2. Laser Extensometry

Material testing system manufacturers have worked hard over the years to produce
innovative non-contact material testing strain measuring methods. Laser scanners are one
of the alternatives being examined, as they have proven to be particularly useful for several
materials, such as plastics, film, rubber, and textiles. Users of tensometers have also wanted
more information, flexibility, and variety from their devices. Non-contact technologies,
such as laser-based extensometers for traction machines, were among the first to appear.
These devices were accurate when measuring significant strains, but they lacked flexibility
and were less accurate when measuring very low-level strains [13].

Traditional clip-on or contact extensometers are often used to test materials that could
be damaged or affected by laser extensometers. They work by using a laser to illuminate a
specimen’s surface and then recording the laser reflections as force is applied. Advanced
imaging software with complex algorithms is then used to measure these reflections.
Because they may be used with a wide range of materials and tests can be conducted on
specimens at increased as well as ambient temperatures, laser-based systems are ideal for
samples housed in a thermal cabinet or environmental test chamber [14].

Laser extensometers also offer high accuracy and resolution, as well as a level of safety,
which is especially important for assessing specimens that could release a lot of energy if
they fail [15].

3. Proposed System of Video Extensometry

Our primary goal was to create a non-contact system for measuring geometrical prop-
erties with an accuracy that is sufficient to evaluate the basic parameters of material sample
under tensile testing. The measurement accuracy of our system is discussed in the results
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section and is in accordance with generally applicable standards in commercially used
systems, see [5–15]. The key parameter defining the accuracy of distance measurements is
resolution of the camera and the accuracy of its calibration.

Another goal was to develop new functionality which enables the prediction of crack-
ing sites, which is an important part of research that contributes to a better and more
accurate evaluation of the measured data. The novelty is in the use of a single high-
resolution inspection CMOS camera, which reduces costs and, at the same time, facilitates
the handling and calibration of the system. In the basic mode, the reflection marks (points)
are not placed on the material sample. Our measuring system can measure the required
data in real-time without the use of these additional marks. To improve the accuracy of the
measurement, it is possible to create different reflective patterns for the tested sample.

Based on the declared conditions, the basic algorithm flowchart is shown in Figure 4.
Single image processing and analysis algorithms will be discussed in another section of
this article.

The first step in the measurement algorithm is camera calibration when the distortion
of lens is corrected. It is necessary to know the distance between the camera and the mea-
sured sample at the start of the measurement and use the appropriate calibration pattern.

Pattern matching is a image segmentation technique based on normalized cross-
correlation between the inspected image and a given image template. In the proposed
algorithm, pattern matching serves for localization of the material sample in the image and
later for crack occurrence detection. If the material sample is found by pattern matching,
the next image processing is conducted in a region of interest (ROI) instead of the entire
image (processing is then faster). If the algorithm fails to locate the measurement sample, a
ROI can be manually created [16].

After the material sample is localized in the image, the image algorithm focuses on
determining the sample’s edges using selected edge detectors (e.g., Canny edge detector).
If any additional marks and patterns are present, such as various lines or points added to
the sample by color, engraving, or welding methods, their detection, along with detection
of sample borders, allow to determine the width and height of the sample more precisely
at any given measurement point.

When looking for additional patterns on the measuring sample, the algorithm also
looks for cracks and predicts where cracks are most likely to appear soon, before tearing
the sample. The algorithm creates an ROI in the place of a future crack, or in the place of an
already created crack, after predicting the places where a crack is most likely to occur. The
algorithm then determines the parameters of the crack (if one has already occurred), such
as its height, width, and crack propagation direction [16].

Finally, the results of the entire tensile test are plotted as changes in the length and
width of the sample over time, as well as determining the time of crack formation on the
sample and graphically showing its propagation throughout the measurement.

3.1. Camera Callibration

It is necessary to understand which factors are responsible for the image and how
to use these factors to map coordinates from the real world to the image coordinates to
properly calibrate the camera [16]. Figure 5 represents projective mapping.
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The calibration grid is represented by a real-world coordinate frame (xw, yw, zw). The
image orientation is (xc, yc, zc), with the z-direction connected with the image plane and
the x and y axes oriented with the horizontal and vertical axes of the image plane [16].

An intermediary plane parallel to the picture plane depicts the form of the calibrating
object in an image.

An image coordinate axis is shifted away from a real-world coordinate’s axis using
the following formula:

Pc = R(Pw − T) (2)

where Pw marks the point in the real-world coordinate frame, Pc stands for the homo-
geneous point in the camera coordinate system, T is the real-world position axis’ origin
excluding the camera reference axis’ origin, and R is the rotation vector between the
real-world point axis and the camera point axis [17].

Mechanical projecting, also called homography, is a geometrical transfer of coordinates
through one plane to another. The transfer of 3D information in the current world to pixel
location in a picture in calibration is described by homography.

The main point P (xw, yw, zw) is transformed into the picture point p through a
physiological predictive conversion (xw, yw).

An illustration of homography is as follows:

p = sHP (3)

The picture planes projections in image coordinates [xc yc 1]T, which are 2D ob-
ject coordinates, is denoted by p. P is a [xw yw zw 1]T real-world point represented in
3D real-world dimensions. The symbol s represents scaling factor, while the letter H
indicates homography.

When utilizing validation software, homography (H) is a 3 × 3 matrix which is the
sum of two matrices: a video matrix (M) and a homography matrix (W) [17].
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The accompanying video matrix (M) is presented in the form of camera properties,
such as central focus length, primary point location, pixel sizes, and pixel distortion angle:

M =

 fx α fx cx
0 fy cy
0 0 1

 (4)

where:
fx =

F
sx

, fy =
F
sy

(5)

The focal length is represented by the symbol F in mm. The horizontal length of a
pixel in an image sensor is equivalent to sx in pixels per millimeter. The vertical dimension
of a pixel in the imaging system is measured in pixels per millimeter. The horizontal
distance between the imager and the visual axis is measured in millimeters by cx and the
most frequent number is 0. cy is the imager’s vertically offset from the optical system in
millimeters and is also the pixel distortion angle of signal with respect to x.

A camera’s field of view (F) and pixel sizes (sx, sy) are not immediately calcula-
ble. The vision system (fx, fy) can only estimate derivatives focal distance and pixel size
combinations [17].

A homography matrix is made up of the transformation matrix and translations vector
that relate a location in the real-world plane to a position in the picture plane (W). The
following is the mechanical projection modulation index:

W =
[
R t

]
(6)

R is the spin matrix, while t denotes the translation vector. As seen below, the rotation
matrix ® may be expressed as three independent 3 × 1 matrices:

R =
[
r1 r2 r3

]
(7)

As a result, the previous homography (3) could be written as follows:x
y
1

 = sM
[
r1 r2 t

]X
Y
1

 (8)

We may extend that Z equals 0 since validation is performed using a flat calibration object.
It is also critical to keep optics and sensor distortion to a minimum in calibration.

There are two sorts of distortions that are frequently seen. Lens features can produce
radial distortion, whereas a misalignment of the optics and camera system can create
tangential deformation.

The polynomial deformation model is used to eliminate tangential and radial de-
formation. The polynomial deformation model uses one or much more contribution
parameters to model deformation (K). The accompanying deformation model represents
radial deformation:

xcorrected = x
(

1 + K1r2 + K2r4 + K3r6 + Knr(2n)
)

ycorrected = y
(

1 + K1r2 + K2r4 + K3r6 + Knr(2n)
) (9)

The polynomial deformation concept employs two variables, P1 and P2, to quantify tan-
gential deformation. The accompanying deformation model represents tangential deformation:

xcorrected = x +
[
2P1xy + P2

(
r2 + 2x2)]

ycorrected = y +
[
P1
(
r2 + 2y2)+ 2P2xy

] (10)
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To calibrate the cameras, we used NI’s Vision Assistant software. Calibration of the
camera is done in several steps. The first step was to create a calibration grid, as shown
in Figure 6. Following that, basic image processing methods such as thresholding or edge
detection are used to determine the position of each point of the calibration grid [17].
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3.2. Pattern Matching

Pattern matching is an algorithm which belongs to the group of template matching
algorithms. It is used in two critical phases of our algorithm: to locate a material sample
and to find cracks in the sample.

Pattern matching is a relatively simple method for localization of selected (template)
patterns in an inspected image. If the searching template is selected, the process of normal-
ized cross-correlation between the template and image is provided. The correlation score
ranges between −1 and +1. Even though pattern matching is generalized for color images,
greater efficiency can be provided by using the intensity layer of an image (monochromatic,
grayscale). Then, the cross-correlation algorithm looks for locations with the greatest cross-
correlation score in the inspected image to find matches (Figure 8) where I × J is dimension
of original image and M × N is dimension of template image [18].
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Normalized cross-correlation is now the most frequent approach for identifying a
pattern in an image. Because the exact principle is dependent on a sequence of multiplica-
tion operations, the correlation process can be included. With innovations like MMX, that
minimize total process time, multiple equations are achievable. To allow a faster validation
process, we lower the length of the picture and confine the region of interest (ROI) where
the matching happens. Pyramidal comparisons and object recognition are two ways for
speeding up the validation process.

Standardized cross-correlation is a useful approach for discovering patterns in images
that have not been scaled or rotated. Cross-correlation may identify trends with the same
length with a rotation of 5◦ to 10◦. Extending correlation to find patterns that are not
influenced by scale or spin is tricky. Continuing the scaling or resizing step and then
conducting the correlation operation is required for scale-invariant finding. As a result, the
search algorithm will need a substantial amount of computing. Normalizing for rotation
is significantly more challenging. We just spin the pattern and perform the correlation
process if indeed the image offers a clue about rotation. If the type of rotation is uncertain,
the template must be rotated indefinitely to discover the best fit. By using a particles
strategy, pyramidal fitting, or feature detection, we can reduce the amount of processing
time considerably and reach reasonable search speeds for spinning patterns [18].

In pyramidal fitting, both the picture and the pattern are sampled to decrease spatial
information using Gaussian pyramids. This approach samples almost every pixel for each
successive pyramid step, allowing the picture and pattern to be shrunk to one of their
initial sizes.

The system estimates the greatest pyramid degree that may be utilized for a part of
an opening during the process of learning, and then stores the data needed to represent
the pattern and its rotated variants at all processing levels. The program aims to establish
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an appropriate pyramid standard based on the set that will deliver the fastest and most
efficient match. Grey values (based on image brightness) and gradients (based on chosen
edge information) are two forms of data that may be employed [18].

The comparison stage uses a coarse-to-fine strategy, with our search starting at the
smallest resolution possible (the highest pyramid level). Since the dimensions of the
research image and pattern have been considerably reduced at this resolution, we can
conduct a comprehensive correlation-based search. The subsampling approach, on the
other hand, results in a significant loss of detail, and the match sites are not always exact.
This challenge is overcome by retaining a list of potential candidate match sources with
the highest ratings, rather than deciding the precise number of matches to seek for. We
then repeat through the lowest layers of the pyramid, improving our selection as we go
by recalibrating correlation values at each stage. By confining all future searches to a few
confined zones around the greatest match, this technique achieves a significant performance
boost [19].

When searching for rotated matches, even at the smallest resolutions, doing an ex-
haustive search for all conceivable spins (from zero to the field of view) is prohibitively
costly. As a result, we begin by determining the best places at a coarse angle. The optimum
places are then refined among these coarse sites using a finer angular step size. Then, in the
same way, as previously, we tweak the match position and angle over the lowest pyramid
levels [19].

For more accuracy, we choose to subject the refined match candidates to one final
round of refinement in both pyramidals and low-discrepancy sampling-based pattern
matching to find sub-pixel accurate positions and sub-degree precise angles. This stage
uses interpolation techniques to obtain a very accurate match position and angle by relying
on carefully collected edge and pixel information from the template [20].

Both pattern matching approaches compute a final and correct score using most of the
significant information included in the template once the refined locations are achieved [20].

3.3. Labview Application

The whole algorithm for determining the basic parameters of the samples and for de-
tecting and determining the propagation of cracks was created in the LabVIEW environment.

The front panel of the application is shown in Figure 9.

Computation 2022, 10, x FOR PEER REVIEW 11 of 17 
 

The system estimates the greatest pyramid degree that may be utilized for a part of 
an opening during the process of learning, and then stores the data needed to represent 
the pattern and its rotated variants at all processing levels. The program aims to establish 
an appropriate pyramid standard based on the set that will deliver the fastest and most 
efficient match. Grey values (based on image brightness) and gradients (based on chosen 
edge information) are two forms of data that may be employed [18]. 

The comparison stage uses a coarse-to-fine strategy, with our search starting at the 
smallest resolution possible (the highest pyramid level). Since the dimensions of the re-
search image and pattern have been considerably reduced at this resolution, we can con-
duct a comprehensive correlation-based search. The subsampling approach, on the other 
hand, results in a significant loss of detail, and the match sites are not always exact. This 
challenge is overcome by retaining a list of potential candidate match sources with the 
highest ratings, rather than deciding the precise number of matches to seek for. We then 
repeat through the lowest layers of the pyramid, improving our selection as we go by 
recalibrating correlation values at each stage. By confining all future searches to a few 
confined zones around the greatest match, this technique achieves a significant perfor-
mance boost [19]. 

When searching for rotated matches, even at the smallest resolutions, doing an ex-
haustive search for all conceivable spins (from zero to the field of view) is prohibitively 
costly. As a result, we begin by determining the best places at a coarse angle. The optimum 
places are then refined among these coarse sites using a finer angular step size. Then, in 
the same way, as previously, we tweak the match position and angle over the lowest pyr-
amid levels [19]. 

For more accuracy, we choose to subject the refined match candidates to one final 
round of refinement in both pyramidals and low-discrepancy sampling-based pattern 
matching to find sub-pixel accurate positions and sub-degree precise angles. This stage 
uses interpolation techniques to obtain a very accurate match position and angle by rely-
ing on carefully collected edge and pixel information from the template [20]. 

Both pattern matching approaches compute a final and correct score using most of 
the significant information included in the template once the refined locations are 
achieved [20]. 

3.3. Labview Application 
The whole algorithm for determining the basic parameters of the samples and for detect-

ing and determining the propagation of cracks was created in the LabVIEW environment. 
The front panel of the application is shown in Figure 9. 

 
Figure 9. Front panel of the application in LabVIEW environment. Figure 9. Front panel of the application in LabVIEW environment.

The basic settings for pattern search and pattern parameter determination are located
on the left side of the panel. The output image from the camera, as well as the detection of
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the sample and its contours, are displayed on the right side of the front panel, as shown in
Figure 10.
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3.4. Hardware

One of the most important roles in designing a system for video extensometry is
selecting the appropriate hardware; without it, this work would be difficult to complete.
Because the camera’s properties have such a strong impact on the accuracy of the overall
measurement, choosing the right camera for video extensometry is critical.

The high-resolution camera captures fine details of the sample being tested using the
Basler ace acA4600-10uc camera with 14 MPix resolution. This camera has spatial resolution
of 4608 × 3288 pixels and a pixel size of 1.4 × 1.4 µm, with a frame rate of 10 frames per
second. The camera’s tiny size (41 × 29 × 29 mm) makes it portable, as does the flexibility
to modify the exposure duration. This camera is intended for use in commercial, medical,
and transportation settings [21].

4. Experimental Measurement

The measurement itself consists of two steps. In the first step, calibration and set up
of the camera must be completed (including setting the proper exposure time, frame rate,
etc.), which is described in paragraph III (A. Calibration).

After successful calibration, we proceeded to the measurement itself by first attaching
the test sample to the UTM jaws. As can be seen in previous figures, we used non-
homogenous background of tested material sample. The background is covered by texture
but searching for the material sample were not affected by this fact.

Figure 11 illustrates detecting the crack after its occurrence in the image. The parame-
ters are calculated, such as crack length and width, for each image taken, allowing us to
obtain information about the crack propagation during the measurement. After the sample
ruptures, the measurement ends.
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There are two ways to evaluate the measurement images. The measurement can
be performed in two modes. The first mode is offline, when the entire tensile testing is
captured in video sequence and then frame-per-frame processed with image algorithms.
The second mode is online (“real-time”), when the image frames are processed instantly.
We understand the real time in following manner: the image frame is processed in the time
before another frame comes from the camera. Having the information from Table 1, we
can see that the time for pattern matching procedure (which takes the most of operational
time) takes approximately 50 ms. Since the camera Basler runs a maximum of 10 fps, the
computational time for image algorithms is sufficient. The graphical output of measurement
plotting the actual length and width of the sample in time can be seen in Figure 12.

Table 1. Comparison of results.

Method Accuracy [cm] Calculation Speed [ms]

DIC correlation 0.05 1.3
Optical flow 0.33 1

Thresholding + edge detection
(Canny) 0.33 32.7

DIC + Optical flow 0.05 0.6
Pattern matching 0.006 43.6
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5. Discussion

To discuss the results of proposed video-extensometric system we can analyze the
following key parameters: how successfully were the image regions (sample localization
and crack occurrence) detected by pattern matching technique; accuracy of setting the
geometrical distances of material sample; and computational time of proposed method with
another commercially used techniques. Commercially-used techniques were adapted to
LabVIEW environment based on relevant bibliography research. Only video-extensometric
methods operating in visible light range were compared, since laser methods are based on
different principle.

All techniques were simulated on a single computing device, and these methods used
data from the same camera, even when comparing the estimation speed and efficiency of
individual methods. The calculations were carried out on a computer with an AMD RYZEN
5 4600H processor, 8 GB DDR4 RAM, and an NVIDIA GeForce RTX 2060 graphics card
(Lenovo Legion 5, Beijing, China). As a result, the factor of computing device performance,
as well as the factor of significant resolution of camera images, can be ignored when
implementing individual image processing methods. The average calculation times and
accuracy of the image processing methods are shown in Table 1.

From experimental results, we can see that all mentioned methods are suitable for real
time mode of measurements, because computational time does not exceed 100 ms (for 10
fps maximal rate of used camera). Even though the proposed methods need the biggest
computational time, high-resolution chip of camera enables the localization and geometric
distances measurements up to 0.006 cm accuracy.

Pattern matching detection success rate was measured on dataset of approximately
10,000 video frames. The sample position, as well as the crack position, was evaluated in
Table 2.
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Table 2. Pattern matching detection success rate.

Measurement Video Frames Tensile Sample
Detection

Faulty
Detection

without
Detection

1 1450 1428 7 15
2 1350 1220 53 77
3 1200 1158 27 15
4 1130 1094 16 20
5 1320 1286 5 29
6 1230 1207 7 16
7 480 463 9 8
8 240 239 0 1
9 1650 1602 14 34

Summary [-] 10,050 9697 138 215
Summary [%] 100 96.48756219 1.373134328 2.139303483

6. Conclusions

Based on the experimental results, we can conclude that proposed video-extensometry
system is a non-contact system with high potential to do the tensile testing fully automated.
Non-contact approach does not need any mechanical sensor affecting the sample under test.
Comparing with existing commercial systems based on video capture, our system also does
not need reflections marks and patterns in basic mode (just for improving the accuracy).

Based on the cited references [22–28], we can pronounce those methods based on
DIC correlation as being the gold standard in optical methods of material tensile testing
and have significant advantages. Our proposed method can be the alternative way to
automatize tensile tests using image functions which differ from classical correlation and
achieve comparable results.

DIC correlation requires, at each step, the calculation of the position of the patterns
that are added to the sample (contrast injection on the sample). This process is computa-
tionally intensive and, therefore, burdens the computing device. It is also necessary to use
specialized cameras with high resolution and several lighting devices due to the stability of
the entire measurement system. To reduce the demands on computing equipment, modifi-
cations of DIC correlation have been developed, such as the method of Bin Chen et al. [12],
which calculate only certain areas of the sample, which speeds up the measurement itself,
but on the other hand, loses information about the remaining parts of the sample. Our
method does not require any artificial intervention in the sample and performs sample
searches only in the initial step and is, therefore, less demanding on computing equipment.
Many UTMs consist of a protective glass that is in front of the test sample. If an additional
light source is used in such a case, unwanted light reflections from the protective glass will
occur, which reduces the accuracy of the measurement itself. The method proposed by us
does not need additional light sources and was also tested in experimental measurements
using protective glass with very accurate results.

Another advantage of our system is in the usage of a single high-resolution inspection
camera. On the other hand, the camera must be properly calibrated to obtain accurate
measurement. Our method also does not require the exact location of the camera and
the test object. The only procedure which is needed to do before the measurement is
camera recalibration.

It is also worth noting that DIC correlation algorithms with optical flow are much
more susceptible to lighting changes, which can decrease their accuracy and this method is
extremely accurate locally (in a selected area).

Last, but not least, the advantage of the proposed system is the detection or prediction
of the location of crack occurrence. The time of crack origin and its dimension or orientation
are part of the measurement report for a given tensile test.

Just as the advantages of our measurement system were highlighted, it is also necessary
to point out the disadvantages (limitations) of the proposed system. Since the measuring
system was tested only on metal and rubber samples, it cannot be said with certainty that
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its accuracy will be the same during the testing of other materials. Another disadvantage
of the measurement system is that it is important that the camera is placed far enough
from the UTM due to vibrations that could worsen the accuracy of the evaluation of the
measured data.
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