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Abstract: Usually, cardiac pathologies are detected using one-dimensional electrocardiogram signals
or two-dimensional images. When working with electrocardiogram signals, they can be represented
in the time and frequency domains (one-dimensional signals). However, this technique can present
difficulties, such as the high cost of private health services or the time the public health system
takes to refer the patient to a cardiologist. In addition, the variety of cardiac pathologies (more than
20 types) is a problem in diagnosing the disease. On the other hand, surface electrocardiography
(sECG) is a little-explored technique for this diagnosis. sECGs are three-dimensional images (two
dimensions in space and one in time). In this way, the signals were taken in one-dimensional format
and analyzed using neural networks. Following the transformation of the one-dimensional signals to
three-dimensional signals, they were analyzed in the same sense. For this research, two models based
on LSTM and ResNet34 neural networks were developed, which showed high accuracy, 98.71% and
93.64%, respectively. This study aims to propose the basis for developing Decision Support Software
(DSS) based on machine learning models.

Keywords: sECG images; LSTM; ResNet34; neural networks; MATLAB; Python

1. Introduction

According to the World Health Organization (WHO), by 2030, approximately 23.6 mil-
lion people will die from cardiovascular diseases, as they are the leading cause of death
globally [1]. Cardiac diseases are disorders that affect the heart and blood vessels [1]. In
2011, deaths from ischemic heart disease accounted for 10.3%, and premature mortality
from cardiovascular diseases was reported at 19,1% [2]. In 2014, the National Institute
of Statistics and Census of Ecuador (INEC) reported 4430 deaths from ischemic heart
disease, 1316 from heart failure, 168 from cardiac arrhythmias, and 106 from cardiac ar-
rest [3]. Finally, according to the Ministry of Public Health (MSP), in 2019, 26.49% of deaths
corresponded to heart disease [4].

Risk factors are essential in a person’s likelihood of developing cardiovascular disease.
The more risk factors a person has, the more likely he or she is to suffer from heart disease [5].
The solution to all these problems is constantly monitoring as many risk factors as possible
to make the necessary lifestyle and medication changes to reduce cardiovascular risk [5]. A
correct and timely diagnosis can prevent and help treat this type of disease.

The electrical signal produced by the heart is called an electrocardiogram (ECG); that
is, the complex ECG represents electrical events that occur during the cardiac cycle [6].
These signals are traditionally used and are represented in the time domain or frequency
(x-axis) and voltage (y-axis) [7]. A complex wave consists of five waveforms marked with
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P, Q, R, S, and T [8] (Figure 1a). ECG signals are measured in two dimensions: time and
frequency domain.

One of the little-explored techniques for diagnosis is sECG, that is three-dimensional
images (two dimensions in space and one in time) constructed using frames divided into
pixels corresponding to the electrodes whose signals evolve in time, where each dashed
line represents a square [9]. The colors represent the instantaneous potential amplitude
distribution, which is evolving [9]. It is a two-dimensional distribution of the instantaneous
map of the surface potential (i.e., voltage) of the chest [10]. Its potential distribution is an
analogue (continuous) “electronic image” or “map” that evolves like a movie. The two-
dimensional analogue signal is sampled in space (through electrodes) and time (through
electronic samplers) to provide a sequence of sampling time frames. A frame is divided
into pixels corresponding to the electrodes (Figure 1b). The number of electrodes can vary
from two (unipolar system) to hundreds. For example, high-density sECG (multichannel
system) generates two-dimensional sECG images in space and time [9,11]. This study
used six channels to convert it into a three-dimensional sECG. These concepts have been
taken from surface electromyography (sEMG) studies and adapted to meet the stated
objectives [9,11–14].
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zontal plane leads or precordial leads, with their electrodes on the anterolateral chest wall 
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opposing pole of those leads is the center of the heart, as calculated by the ECG. The pre-
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Figure 2. Precordial leads: V1 is placed in the fourth intercostal space. V2 is placed in the fourth 
intercostal space. V3 is placed in the middle of electrodes V2 and V4. V4 is placed in the fifth inter-
costal space, on the midclavicular line. V5 is placed on the same line as V4 but on the anterior axil-
lary line. V6 is placed on the same horizontal line as V4 and V5 but on the mid-axillary line. 

Figure 1. Examples of signals used: (a) ECG signal in 1D; (b) sECG images in 3D.

Leads are specific electrode arrangements that record the potential difference generated
by cardiac electrical activity at these points [6]. These can be bipolar and monopolar [7].
Additionally, the plane is divided into frontal plane shunts or limb shunts and horizontal
plane leads or precordial leads, with their electrodes on the anterolateral chest wall [7].
This research considered the six precordial leads that provide information about the heart’s
horizontal plane and are monopolar [7]. They require only a single electrode. The opposing
pole of those leads is the center of the heart, as calculated by the ECG. The precordial
location of the electrodes is shown in Figure 2.

Computation 2022, 10, x FOR PEER REVIEW 2 of 16 
 

 

(x-axis) and voltage (y-axis) [7]. A complex wave consists of five waveforms marked with 
P, Q, R, S, and T [8] (Figure 1a). ECG signals are measured in two dimensions: time and 
frequency domain. 

One of the little-explored techniques for diagnosis is sECG, that is three-dimensional 
images (two dimensions in space and one in time) constructed using frames divided into 
pixels corresponding to the electrodes whose signals evolve in time, where each dashed 
line represents a square [9]. The colors represent the instantaneous potential amplitude 
distribution, which is evolving [9]. It is a two-dimensional distribution of the instantane-
ous map of the surface potential (i.e., voltage) of the chest [10]. Its potential distribution is 
an analogue (continuous) “electronic image” or “map” that evolves like a movie. The two-
dimensional analogue signal is sampled in space (through electrodes) and time (through 
electronic samplers) to provide a sequence of sampling time frames. A frame is divided 
into pixels corresponding to the electrodes (Figure 1b). The number of electrodes can vary 
from two (unipolar system) to hundreds. For example, high-density sECG (multichannel 
system) generates two-dimensional sECG images in space and time [9,11]. This study used 
six channels to convert it into a three-dimensional sECG. These concepts have been taken 
from surface electromyography (sEMG) studies and adapted to meet the stated objectives 
[9,11–14]. 

(a) (b) 

Figure 1. Examples of signals used: (a) ECG signal in 1D; (b) sECG images in 3D. 

Leads are specific electrode arrangements that record the potential difference gener-
ated by cardiac electrical activity at these points [6]. These can be bipolar and monopolar 
[7]. Additionally, the plane is divided into frontal plane shunts or limb shunts and hori-
zontal plane leads or precordial leads, with their electrodes on the anterolateral chest wall 
[7]. This research considered the six precordial leads that provide information about the 
heart’s horizontal plane and are monopolar [7]. They require only a single electrode. The 
opposing pole of those leads is the center of the heart, as calculated by the ECG. The pre-
cordial location of the electrodes is shown in Figure 2. 

 
Figure 2. Precordial leads: V1 is placed in the fourth intercostal space. V2 is placed in the fourth 
intercostal space. V3 is placed in the middle of electrodes V2 and V4. V4 is placed in the fifth inter-
costal space, on the midclavicular line. V5 is placed on the same line as V4 but on the anterior axil-
lary line. V6 is placed on the same horizontal line as V4 and V5 but on the mid-axillary line. 

Figure 2. Precordial leads: V1 is placed in the fourth intercostal space. V2 is placed in the fourth
intercostal space. V3 is placed in the middle of electrodes V2 and V4. V4 is placed in the fifth
intercostal space, on the midclavicular line. V5 is placed on the same line as V4 but on the anterior
axillary line. V6 is placed on the same horizontal line as V4 and V5 but on the mid-axillary line.

Some studies have developed in software detect cardiac pathologies, heartbeat de-
tection, monitoring, motion detection, gesture recognition, and others. For this, artificial
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intelligence (AI) methods are used: machine learning (ML) and neural networks (NN).
First, studies using ECG signals (one-dimensional) have used up to 15 channels from one
channel. Second, no studies have used ECG signals (three-dimensional). However, there
are studies on EMG signals (three-dimensional) from 24 to 129 channels. All these aspects
are shown in Table 1. In this way, the scientific aim of this paper is to open up the field of
research based on surface images. Currently, research in this field is scarce.

Table 1. Summary of the literature referring to ECG prediction models.

AI Application Type of Leads Ref.

NN ECG heartbeat classification 1 lead II ECG [15]

NN ECG continuous monitoring single channel ECG signal [16,17]

ML Detection of MI 12 channels ECG bipolar and unipolar [18,19]

NN MI and Norm condition classification 15 channels ECG bipolar and unipolar [20]

ML EMG signal of finger movement detection images sEMG of 24 channels [21]

ML EMG signal of finger movement detection images sEMG of 64 channels [22]

NN EMG gesture recognition images sEMG of 129 channels [13]

This study aims to propose the basis for developing DSS based on ML models, which
is achieved through the design of two NNs to compare ECG signals (one-dimensional)
and sECG images (three-dimensional) to determine the best predictive tool for cardiac
pathologies. The main contribution is to use ML models to support the primary care
physician to better assess cardiac pathologies, that is, to be a diagnostic support software.

2. Materials and Methods

The developed project in the present research has two parts: first, the design of
databases of numerical data and sECG images; next, the creation of NN architectures is
presented and illustrated (Figure 3).
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2.1. Databases

The PTB-XL ECG record set from Pyshionet [23] was used as an open-access database
for this work. It is a set of 21,837 clinical ECGs, each recording 12 leads in 18,885 patients
within 10 s [23]. The ECG recordings comply with the Standard Communication Protocol
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for computer-assisted electrocardiography (SCP-ECG) [24]. This is a standard data format
for ECG recording and defines the patient’s ECG data structure, basic demographic format,
and data exchange rules between digital ECG and computer systems [25]. It is the most
highly recommended alternative to an ECG database.

2.1.1. Database 1: Process of ECG Signals

For the present study, only the data of the precordial leads (V1, V2, V3, V4, V5, and V6)
were considered. This consideration was because leads V1 and V2 explore the septal area,
V3 and V4 explore the anterior area, and V5 and V6 explore the lateral area of the heart. For
the subsequent design of the sECG images, it is necessary to work with several channels.
On the one hand, three channels (I, II, and III or aVR, aVL, and aVF) are very limited, and
on the other hand, 12 channels (I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, and V6) raise
the computational cost too much. In addition, the database contains 21,837 records of cover
diagnostic, form, and rhythm statements, for which only cover diagnostic records were
considered. This is because the records of form and rhythm statements do not have the
necessary characteristics for the objective of this research. With this data selection, the new
database contains 11,718 records, as shown in Table 2. The database used classifies the
data into five classes. This distribution of the dataset data was performed according to
SCP-ECG standards.

The dataset comprises 11,718 clinical ECG recordings of 6 leads of 10 s durations
(Figure 4a). These records were obtained from 10,319 patients, of which 53.4% were male,
and 46.6% were female, with ages ranging from 4 to 95 years (mean: 56; mode: 65). The
dataset is a complete collection of several concurrent pathologies and healthy control
samples. The waveform files are stored in WaveForm DataBase (WFDB) format with 16-bit
precision at a resolution of 1 µV/LSB and a sampling rate of 500 Hz [23].
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Table 2. SCP-ECG ID descriptions for classes and subclasses.

ID Name Records

NORM Normal ECG 2682

CD Conduction Disturbance 2009

HYP Hypertrophy 2083
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Table 2. Cont.

ID Name Records

MI Myocardial Infarction 2538

STTC ST/T Change 2406

TOTAL 11,718

2.1.2. Database 2: Construction of the sECG Images

For the construction of the sECGs, the entire Database 1, i.e., the 11,718 recordings,
was considered. First, the WFDB files were converted to .xlsx format using Python func-
tions. Then, each of the .xlsx files was passed through MATLAB using the function
[num,txt,raw] = xlsread (___). The variable x is a vector corresponding to the number of
measurements, and the variable Y is the number of channels. The function [X, Y] = meshgrid
(x, y) was then used to transform the domain specified by the x and y vectors into X and Y
matrices to evaluate three-dimensional mesh and surface diagrams. The rows of the output
matrix X are copies of the x vector; the columns of the output matrix Y are copies of the y
vector. Then, the matrix Z was defined as num, which is the numerical data of the .xlsx
file. Finally, the mesh function was used to draw a mesh of wires with the color determined
by Z, so the color is proportional to the surface height (voltage); that is, (X(j), Y(i), and Z(i,
j)) are the intersections of the grid lines of wires; X is the columns; and Y is the rows of
Z. This resulting grid image is the surface ECG image, i.e., the sECG. See the file “Create
Images” [26]. This plot created the value in the matrix representing the z-value in the plot
(Figure 4b). The dimensions of the matrix are based on the x and y values. The dataset
comprises 11,718 sECG images of six leads of 10 s durations designed using Database 1.

Next, data underwent the same process to obtain the sECG image corresponding to
each one. In addition, to spatially understand the formation of the sECG images, see these
three types of three-dimensional plots offered by MATLAB [27] (Figure 5).
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Figure 5. Three-dimensional plots in MATLAB corresponding to Patient 5803: (a) Mesh surface
used to give effect to a two-dimensional x×y matrix. (b) The surface plot creates a colored three-
dimensional surface instead of a mesh. Here, from the top shows the sECG. Over time, the compo-
sition of the six channels provides a three-dimensional image that is also an sECG distinguished
by its colors. (c) Contour plot that represents two-dimensional and three-dimensional surfaces.
(d) Combination of the contour plot with a surface.

2.2. Neural Networks

The models were built in Google Colab in Python language. GPU and the High RAM
function were used due to the large amount of data to train. Both had the 11,718 records
divided into training and validation. The construction of two models is described below:
model 1 (LSTM) works with cardiac signals (1D), and Model 2 (ResNet34) works with
sECG images (3D).
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2.2.1. Computational Analysis: LSTM NN

An LSTM network can “remember” relevant data in the sequence and preserve it for
several instances; that is, it can have both short-term memory (such as essential recurrent
networks) and long-term memory (LSTM). This characteristic makes the LSTM network
suitable for the study since it can analyze large data sequences, such as the numerical
recordings of the ECG signal (1D). This model imported several libraries: WFDB, tqdm, os,
math, matplotlib, Keras, sklearn, NumPy, pandas, and time. Then, the WDFB files were
read, and the training and validation datasets were distributed. To construct a sequential
model, a stack of layers must be planned, where each layer has exactly one input tensor and
one output tensor. The model has three layers: LSTM, Dropout, and Dense. The coupling
of the layers was performed with a fixed feature map dimension (F) = [256, 128, 64, 32, 5].
Additionally, other resources were used, such as optimizers, dropouts, and activation
functions, as mentioned later. Subsequently, although the parameters of each of the classes
were balanced in quantity, an adjustment of the weights was made [28–30] to match the
values obtained by the network for each of the classes. The model’s architecture showed
the order of the layers and the number of values that entered and exited each one (Figure 6).
In this model, the proportions of the training and validation datasets were 82% and 18%,
respectively, meaning that the ECG signals (1D) were distributed to 9535 for the first set
and to 2183 for the second set.
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2.2.2. Computational Analysis: ResNet34 NN

Convolutional Neural Networks (CNNs) are used for image classification. They
present the problem that the higher the number of layers used, the higher the error rate.
This is why ResNet networks were created, using the concept of connection hopping. It
allows specific layers to be skipped in training, so that if any layer harms the architecture’s
performance, regularization will skip it. This feature makes the LSTM network the right one
for the study since it allows for training an intense neural network without the problems
caused by the vanishing/exploding gradient characteristic of CNNs. For this model, the
last version of the fastai repository and all the required libraries were imported. Then,
the WDFB files were read, and the training and validation datasets were distributed. The
model’s architecture showed the order of the layers and the number of values that entered
and exited each one (Figure 7). ResNet34 consists of one convolution and pooling step
followed by four layers of similar behavior. Each of the layers follows the same pattern.
They perform 3 × 3 convolution with a fixed feature map dimension (F) = [64, 128, 256, 512],
bypassing the input every two convolutions.

Furthermore, the width (W) and height (H) dimensions remain constant during the
entire layer. The dotted line shows a change in the dimension of the input volume (a
reduction due to the convolution). The reduction between layers is caused by an increase
in stride, from 1 to 2, at the first convolution of each layer. In this model, the proportions
of the training and validation datasets were 80% and 20%, respectively, meaning that the
sECG (3D) images were distributed to 9331 for the first set and to 2387 for the second set.



Computation 2022, 10, 112 7 of 14Computation 2022, 10, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 7. ResNet34 network architecture and parameters at each layer. 

3. Results 
3.1. Database Obtained 

The first database contains 11,718 records, which are classified into five classes. The 
dataset comprises 6-lead clinical ECG recordings of 10 s duration taken every 2 ms; there 
were 5000 samples. The sECG images of Database 2 were constructed using the numerical 
values of Database 1. To see an example of the sECG images, see Table 3, which collects 
two random images for each class. The number of images produced was equal to the num-
ber of records, i.e., both databases contained the same number of parameters. Each image 
contained one axis x = 125, i.e., from the 5000 samples of Database 1 (samples every 0.002 
sec), samples were taken every 0.080 sec. It is attributed to the fact that the high amount 
of data did not allow visible plots to be obtained. Therefore, they were evaluated empiri-
cally until this value was reached. In addition, the y = 6 axis corresponds to each of the 
channels of the leads. Finally, the Z-axis corresponds to the color provided by the ampli-
tude of each signal. 

Table 3. Example of sECG images of Pyshionet in MATLAB for each of the classes. 

Norm-Patient 5803 CD-Patient 2044 HYP-Patient 25 MI-Patient 1124 STTC-Patient 9765 

According to Table 3, the sECG images of the normal class present sections where the 
colors were noticeably light (yellow) due to the increase in voltage. At the same time, there 
were sections where dark colors (blue) were observed, showing that the voltage was de-
creasing. In the CD class, the dominant color was yellow, which may be due to the fact 

Figure 7. ResNet34 network architecture and parameters at each layer.

3. Results
3.1. Database Obtained

The first database contains 11,718 records, which are classified into five classes. The
dataset comprises 6-lead clinical ECG recordings of 10 s duration taken every 2 ms; there
were 5000 samples. The sECG images of Database 2 were constructed using the numerical
values of Database 1. To see an example of the sECG images, see Table 3, which collects two
random images for each class. The number of images produced was equal to the number
of records, i.e., both databases contained the same number of parameters. Each image
contained one axis x = 125, i.e., from the 5000 samples of Database 1 (samples every 0.002 s),
samples were taken every 0.080 s. It is attributed to the fact that the high amount of data
did not allow visible plots to be obtained. Therefore, they were evaluated empirically until
this value was reached. In addition, the y = 6 axis corresponds to each of the channels of the
leads. Finally, the Z-axis corresponds to the color provided by the amplitude of each signal.

Table 3. Example of sECG images of Pyshionet in MATLAB for each of the classes.

Norm-Patient 5803 CD-Patient 2044 HYP-Patient 25 MI-Patient 1124 STTC-Patient 9765
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According to Table 3, the sECG images of the normal class present sections where
the colors were noticeably light (yellow) due to the increase in voltage. At the same time,
there were sections where dark colors (blue) were observed, showing that the voltage was
decreasing. In the CD class, the dominant color was yellow, which may be due to the
fact that the heart rate was elevated in this condition. It also presented specific columns
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with dark colors, which may be due to the variations suffered by the signal in the R-R
interval characteristic of this condition. In the HYP class, the dominant color was bluish
green, possibly due to negative T waves, negative P waves in lead V1, and depressions
of S waves in leads V1 and V2. At the same time, the transparent sections may be due to
high R waves and S-T segment elevation. In the MI class, dark colors dominated since this
condition decreases heart rate and T-wave inversion. At the same time, the few sections
with light colors may have been caused by S-T segment elevation. Finally, the STTC class
was also dominated by dark colors and several columns maintaining light colors, due to
S-T segment elevations.

3.2. Results of Neural Networks
3.2.1. Hyperparameters

To describe the model is essential, whilst mentioning the hyperparameters used. This
term refers to configuration variables and their value external to the model itself [31,32].
The data could not be estimated, and the programmer adjusted the learning algorithms.
First, the hyperparameters of two models related to the learning algorithm level: LSTM
was trained for 12 epochs at approximately 4 h, using a batch size of 500 and a learning rate
of 1 × 10−3. ResNet34 was trained for 48 epochs at approximately 2.5 h, using a batch size
of 14 and a learning rate of 1 × 10−3. Second, the hyperparameters related to structure and
topology were the layers. The LSTM model comprises nine layers, excluding the input and
output layers, and ResNet34 has 34 convolutional layers. All hyperparameters are shown
in Table 4.

Table 4. Hyperparameters are used in the training of LSTM and ResNet34 neural networks.
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LSTM 12 ~ 4 h 500 1 × 10−3 9 SoftMax
Adam

9535 (82%) 2183 (18%)

ResNet34 48 ~2.5 h 14 1 × 10−3 48 ReLU 9331 (80%) 2387 (20%)

3.2.2. Plots of Learning

First, the training results of the two networks show how they evolved in terms of
accuracy during the training after each iteration (Figure 8). From these graphs, it can be seen
that both networks progressed to reach a high training accuracy (blue lines) and increased
linearly with the epochs until they reached almost 100%. There was a high accuracy when
classifying data not seen before. However, the first network achieved a better result, with
fewer iterations than the second. On the other hand, the validation test classification was
based on the previously learned features. In this evaluation (orange lines), the first network
had a maximum of 98%, while the second network exceeded 90%.

Second, the evolution of the loss function values was analyzed during the training.
The LSTM model presented the characteristic behavior of a model with overfitting. Here,
the validation data reached its minimum after a few epochs and then increased. In contrast,
the loss of the training data decreased linearly until it reached almost 0, where it was
maintained (Figure 9a). Then, the ResNet34 model showed that the training loss decayed
after a few iterations, while the validation loss remained almost constant (Figure 9b). Both
decays resulted in low errors, showing the model’s efficiency.

Figures 8 and 9 are related since the higher the accuracy, the lower the value of the
error in the network. Both graphs show constancy, the first network in 6 iterations and
the second in approximately 30 iterations. It can be interpreted as the networks starting
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to overfit the training data. Therefore, for future improvement, the amount of data could
be increased.
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3.2.3. Confusion Matrix

Then, the confusion matrix was used to evaluate the efficiency of the neural network
(Figure 10). The central diagonal data representation (drawn in blue) represents the number
of hits in the model. Figure 10a shows the matrix confusion of LSTM NN, where 2183 data
were used in the validation dataset, of which 1493 were correctly classified, with an accuracy
rate of 68.39%. The bottom of the main diagonal line shows false negatives or type II errors
(the disease was not detected when it did exist); there were 253 such errors. Conversely, the
upper of the main diagonal reflects the classifier error: false positive or error type I (disease
detected but not present); there are 437 such errors. Additionally, there are 162 types II
errors and 147 errors in type I. On the other hand, Figure 10b corresponds to the ResNet34
NN, where 2387 data were used in the validation dataset, of which 2078 were correctly
classified, with an accuracy rate of 73.81%.
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3.2.4. Evaluation Metrics

Standard evaluation metrics, including sensitivity, recall, and accuracy, were imple-
mented to perform a comprehensive performance evaluation. These metrics were calculated
with the confusion matrices in Figure 10. These metrics were calculated for each of the
classes from the following formulas:

Recall =
TP

TP + FN
(1)

Sensitivity =
TN

TN + FP
(2)

Accurancy =
TP + TN

TN + FP + TP + FN
(3)

The recall values focus on type II errors (FN). A type II error occurs when a false
null hypothesis is accepted, that is, when the prediction says that the disease has not been
detected when it does exist. For both models, recall is >62. Specificity values focus on type
I errors (TF). A type I error occurs when a false null hypothesis is accepted, that is, when
the prediction says a disease has been detected but is not present. For both models, the
specificity was >88. Finally, accuracy indicates how close the result of a measurement is to
the actual value. For both models, the sparsity was >84. All three metrics had values >50,
indicating that the classes were balanced, and a good model fit. On the other hand, Model
2 had higher values in each metric and each class (Figure 11).
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4. Discussion

According to the analysis of ECG signals, the traditional way of performing an electro-
cardiogram has advantages such as the high sampling rate and the innumerable existing
studies [33]. However, the most used files for their storage, SCP-ECG, Digital Imaging, and
Communication in Medicine Waveform Supplement 30 (DICOM-WS 30) and Health Level
Seven Annotated Electrocardiogram (HL7 aECG), are complex to manage, which makes
their processing difficult [34].

On the other hand, the sECG imaging proposed in this study is a new technique. It
allows signal patterns to be represented that are difficult to identify in traditional signals,
which is quite tricky considering that there are more than twenty types of pathologies. At
the same time, sECG can be used to develop computer vision, which is the latest artificial
intelligence technology and has excellent technological potential for the future. However,
among its disadvantages are the many channels required for its construction and the lack of
studies of this type of sECG image, making a comparison with previous studies impossible.
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This research described how to use RNNs (LSTM) and CNNs (ResNet34) to detect
cardiac pathologies. First, the role of LSTMs is to classify number sequences [18]. In other
words, it transforms the data entered so that they circulate through the network even in the
following instant. On the other hand, the function of ResNet34 can be defined as extracting
high-level visual features over time [35]. It extracts these visual characteristics from the
mesh on the Z-axis projected in time and the channels, X and Y axes.

Model 1 (LSTM) works with cardiac signals (one-dimensional), and Model 2 (ResNet34)
works with sECG images (three-dimensional). Both models were designed to classify ECG
signals into five classes: Norm, CD, HYP, MI, and STTC. Their databases used 11,718 records
of ECG signals of 6 precordial leads. It can be affirmed that the LSTM is more economical
since it can be trained with a normal CPU and RAM according to the hyperparameters sec-
tioned. ResNet34 needs a GPU and High RAM; therefore, it demands more computational
resources. On the other hand, the training time of the LSTM (4 h) is longer than that of
ResNet34 (2.5 h).

According to the training accuracy in the training set, LSTM reached a higher value
(98.71%) than ResNet34 (93.65%). However, the training accuracy of the validation set,
the LSTM, was surpassed by 68.39% by ResNet34 (87.05%) (Figure 8). Here, it is essential
to highlight that the validation set is where the efficiency of the network is evaluated, so
ResNet has better results than LSTM. In turn, this training accuracy of the validation set
was reflected in the confusion matrices (Figure 10), where the LSTM had 230 type ii errors
and 437 type I errors. While ResNet had 162 types II errors, there were 147 type I errors.
Finally, in the metrics analysis, the values obtained in recall and specificity were higher for
ResNet, while the accuracy was higher for the LSTM. Therefore, LSTM has better learning
while training, while ResNet is better at making accurate predictions. These characteristics,
as shown in Table 5, confirm that ResNet performed better.

Table 5. Summary of evaluation of two models.

Method Environment Used
Metrics (%) Errors

Acc. Rec. Spcf. Type I Type II

LSTM NN CPU 98.71 89.06 92.13 437 230

ResNet34 GPU 93.65 89.64 93.42 147 162

This study used two learning models; the difference between them is the type of input
used. Therefore, this comparison was based on several aspects, such as input, application,
and the number of channels used; see Table 6.

Table 6. Different methods of using numerical and image data present in the literature.

Method Application # Parameters
Metrics (%)

Ref.Rec. Spcf. Acc.

N
um

er
ic

al
da

ta

LSTM NN
Present work

Classification of Norm,
CD, HYP, MI, and STTC

11,718 records of
6 precordial leads 89.06 92.13 98.71 -

Deep residual
CNN

ECG heartbeat
classification 290 records of lead II 95.10 - 95.90 [15]

LSTM and
algorithms

Continuous cardiac
monitoring

~50,000 records of single
channel ECG signal 99.20 93.00 99.20 [16]

LSTM and
algorithms

Classification MI and
Norm condition 12,359 records of 15 leads 98.49 97.97 - [20]

FIS (ANN) and
algorithms

Classification MI and
Norm condition

200 records of single
channel ECG signal 73.00 - - [17]

N-Net Detection of MI 240 records of 12 leads - - 95.76 [18]

MSN-Net Detection of MI 240 records of 12 leads - - 61.82 [18]
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Table 6. Cont.

Method Application # Parameters
Metrics (%)

Ref.Rec. Spcf. Acc.

Im
ag

es
da

ta

ResNet34
Present work

Classification of Norm,
CD, HYP, MI, and STTC

11,718 sECG images of
6 precordial leads 89.64 93.42 93.65 -

KNN Detection EMG signal of
finger movements

240 images sEMG of
24 channels - 95.70 97.70 [21]

HD Detection EMG signal of
finger movements

30 images sEMG of
64 channels - - 96.64 [22]

Deep CNN Gesture recognition 79 images sEMG of
129 channels - 96.70 65.10 [13]

SQI with
dense CNN

Classifier AF from normal
sinus rhythm, other
rhythms, and noise

8528 spectrograms of
single channel ECG signal - - 80.00 [36]

Rec: recall; Spcf: specificity; Acc: accuracy; ML: machine learning; CNN: convolutional neural network; ANN:
artificial neural network; FIS: Fuzzy Inference System; N-Net: multi-lead features–concatenate narrow network;
MSN-Net: multi-scale features–concatenate networks; KNN: K Nearest Neighbor (supervised ML algorithm); HD:
high-dimensional computing (supervised ML algorithm); SQI: Signal Quality Index; AF: atrial fibrillation.

For the first model, the LSTM NN obtained a recall of 89.06%, a specificity of 92.13%,
and an accuracy of 98.71. All three metrics were excellent and comparable with other
similar models. It was compared with other classifiers for cardiac conditions, such as
the CNN, FIS, N-Net, MSN-Net, and LSTM. All of them are usually used as classifiers.
Although the values of the metrics are similar to those of existing studies, it is important to
highlight three features:

• The amount of data in numerical networks is high when standardizing and collecting
from several databases or low when using a single database [8].

• Although most apply the classification or detection of pathologies, there is no variety
in classes since they are limited to only two.

• The number of channels analyzed is1 or 12, performed with devices at the clinical
level; there is no variety in the analysis by channels.

For the second model, ResNet34 NN obtained a recall of 89.64%, a specificity of 93.42%,
and an accuracy of 93.65. The same values are at the same level as other models that use
sECG images as inputs. The methods to which it can be compared include the KNN, HD,
CNN, and SQI. While the values of the metrics are similar to existing studies, it is important
to highlight three features, namely:

• There are studies in sEMG images, not with sECG images.
• There is a study of electrocardiographic signals with spectrogram images, but it comes

back to the issue of channels since there is only one channel.
• There is no database for surface images (sECG, sEMG, sECG, and others), so the

images that exist are electromyography images and are limited [37].

5. Conclusions

It can be concluded that there are many ECG signal databases, but they usually contain
a short number of signals. Putting these databases together represents a challenge since
standardizing them is complicated due to the equipment, channels, and conditions such
as frequency. The database used in this study is the only one that contains a significant
amount of data, which allowed for a better study.

It was also found that no studies focus on precordial leads, even though they are
fundamental for detecting anomalies. Moreover, in the field of surface signals, it is an
entirely new and unexplored field. Particularly for sECG images, no studies have been
found that mention or study them. Biomedical signals are vast, and proposing new ways
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to perform measurements helps the physician provide a more accurate diagnosis and
treatment as soon as possible.

Finally, it was found that this DSS has been used more in recent years. It is recom-
mended to work with machine learning models that allow the construction of a new DSS
to evaluate cardiac pathologies better. Machine learning models are ideal for supporting
the primary care physician, as a software to support the diagnosis, but will not replace
the health professional. The proposed models are at the level of previously conducted
studies, with certain advantages, such as the number of data; the number of channels; and
new inputs, such as the sECG images. Finally, it is recommended that the field of sECG
be further explored since the results of this study show that it can represent a significant
improvement in how cardiac diagnosis is performed on an active basis.
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