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Abstract: This paper compares the performance of three electrical models (the single diode model, the
Bishop model, and the Direct–Reverse model) in representing photovoltaic cells. Such comparison is
performed in both the first quadrant (positive cell voltage and current—Q1) and the second quadrant
(negative cell voltage and positive cell current—Q2). The analysis conducted here is based on the
I—V curves of a PV cell obtained experimentally. The parameters of each model are estimated using a
Genetic Algorithm. The root mean square error and the mean absolute percentage error are computed
to validate the estimation stage. Likewise, the behavior of each parameter of the models is analyzed
by calculating their mean and standard deviation. Some places of interest on the I–V curve, such as
the short–circuit point, the open–circuit point, and the maximum power point, are also estimated
and compared.

Keywords: photovoltaic cell; single diode model (SDM); the Bishop model; Direct-Reverse model
(DRM); genetic algorithm (GA)

1. Introduction

Photovoltaic (PV) systems are a cost–effective option to face the world’s recent
environmental and energy challenges. In 2020, installed PV capacity reached 107 GW,
and this figure is expected to keep on increasing by an average of 125 GW between 2021
and 2025 [1]. The rapid expansion of such systems requires paying special attention to the
development of tools that are able to analyze and predict the behavior of PV sources in
order to design suitable sizing and planning strategies.

When analyzing the behavior of PV arrays, aspects such as power generation, shading
impact, Maximum Power Point Tracking (MPPT) controller design [2], and degradation are
examined. However, power generation is one of the most important aspects because it is
associated with performance and reliability. The power output in PV systems is mainly
affected by partial shading, a condition that forces the shaded cells to consume power rather
than produce it [3]. This condition imposes a negative voltage on its terminals, making the
cell operate in the second quadrant Q2 (negative cell voltage and positive cell current, thus
consuming power). Figure 1 shows the experimental I–V curve of a monocristaline cell
with short-circuit current Isc = 0.43 A and open-circuit voltage Voc = 0.5 V. Such a figure
shows both the first and second quadrants Q1 and Q2, respectively, where Q1 exhibits
positive cell voltage and current, hence producing power. Finally, the operation of the cell
in Q2 is also known as reverse mode.

The first step in performing a proper analysis of PV arrays is to represent the operation
of the PV cells and modules using circuit models such as the Single Diode Model (SDM),
which is widely used due to its tradeoff between complexity and accuracy [4], or the
Double Diode Model (DDM), which is more accurate to represent the p–n junction at low
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irradiance levels [5]. The Bishop model [6], for its part, aims to represent the behavior of a
PV cell operating under partial shading conditions, which requires considering the second
quadrant (Q2). Another model designed to study the behavior of PV cells under partial
shading conditions is the Direct Reverse Model (DRM). This model is able to reproduce the
operation of cells in either direct or reverse biasing modes to account for the influence of
variations in temperature and solar irradiance [7].
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Figure 1. The electrical characteristic of a PV cell.

The previous mathematical models require the accurate identification of a set of
parameters to obtain a high–performance in the reproduction of the cell behavior. Several
parameter estimation techniques have been reported in the literature for the different PV
cell models. Those techniques can be divided into three categories: analytical, metaheuristic
and hybrid techniques [8]. Each of these techniques require some initial data, which can be
obtained from the manufacturer’s datasheet or from experimental tests.

Analytical techniques use a series of mathematical equations for parameter extraction,
which, in some cases, can result in a high computational burden and complex mathematical
operations, which increases the computational time [8]. Metaheuristic techniques define
the parameter identification problem as an optimization problem [4]. These are a promising
alternative because they do not require an accurate mathematical model; instead, they need
an objective function and a parameter search range, which can be more effective and less
time consuming. Furthermore, those techniques evolve several individuals for the problem,
which reduces the procedure’s sensitivity to the initial guess and provides a strong ability
to jump out of a local optima [8]. Finally, hybrid techniques extract some of the initial
parameters using analytical approaches, while the rest of the parameters are estimated by
means of optimization algorithms.

Recent publications on the parameter estimation problem suggest that metaheuristics
methods have become a relevant research area for all PV circuit models. For instance, the
Slime Mold Algorithm (SMA) [9], the Grasshopper Optimization Algorithm (GOA) [10],
Principal Component Analysis (PCA) [11], Particle Swarm Optimization (PSO) [12], Triple-Phase
Teaching–Learning–Based Optimization (TPTLBO) [13], and Perturbed Stochastic Fractal
Search (pSFS) [14] have been used to extract the parameters of the SDM. For DDM, some of
the solutions that have been adopted include the moth flame optimization [15], improved
differential evolutionary algorithm [16], the Pattern Search (PS) algorithm [5], the Crow
Search Algorithm [17], and the Wind-Driven Optimization (WDO) algorithm [18]. However,
Genetic Algorithms (GA) are the most widely adopted solution for the parameter estimation
in PV systems. For example, the work reported in [19] proposes a new variant of the
GA, which integrates a new crossover operation to maintain a good balance between
the intensification of the best solutions and the diversification of the search space; such a
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solution was designed to identify the electrical parameters of different PV cell models (SDM
and DDM). Similarly, in [20] the authors extract the solar cell parameters for a Kyocera
panel (KC200GT) using GA. In [21], an inverse modeling method for PV panel is proposed,
which is based on parameter identification through GA. Such a process generates random
groups of 5 parameters which are entered into the SDM; then, the parameters that generate
a power output most similar to the experimental value are selected. On the other hand,
ref. [22] proposes an algorithm for datasheet parameter extraction of photovoltaic modules
using the SDM, where the extracted parameters are obtained by approximation using a GA.
Authors in [23] present the implementation of a continuous population genetic optimization
algorithm (CGA) as a solution method for the parameter estimation of the diode model
(SDM) in a PV panel from experimental data. Such a procedure was validated with four
different panels: Solarex MSX60, SOLAR SJ65, KYOCERA KC200GT, and STP245S.

Although the Bishop model is one of the most cited and used models to represent a PV
cell operating under partial shading conditions [3,24–26], there is not a clear procedure to
estimate its parameters; instead, authors typically use parameters already reported in the
literature. A similar situation occurs for the DRM [27]. Given the importance of having an
accurate model for PV power generation analysis under partial shading conditions, there
is a need for procedures to identify the parameters of the models. Moreover, procedures
with a good relationship between complexity and accuracy, and the ability to be applied
for different PV models, are also needed.

Therefore, this paper presents a behavior comparison between three models (SDM,
Bishop, DRM) when the estimation of the current vs. voltage (I–V) curve in both Q1 and
Q2 is needed. For this analysis, the first stage consists in estimating the parameters of the
SDM, the Bishop model, and the DRM using genetic algorithms and Simulink simulations.
Thus, the parameters to be estimated, the objective function, and the set of restrictions
considered in the mathematical formulation for each model, are proposed. This study was
validated by comparing two error measures (RMSE and MAPE) obtained from the I–V
curve reconstruction of an experimental PV cell for each model, i.e., in both the first (Q1)
and second (Q2) quadrants. Also, the result of the estimation of some points of interest,
such as short–circuit current (Isc), open–circuit voltage (Voc), and voltage and current at the
maximum power point (Vmpp, Impp) were evaluated and analyzed for each model. Finally,
this work provides an estimation guide for modeling the behavior in the first and second
quadrants, which is essential for evaluating power losses in photovoltaic systems under
partial shadowing.

The rest of this paper is structured as follows. Section 2 presents the main characteristics
of the models. Section 3 describes the parameter estimation proposed here, which adopts
the GA and Simulink simulations. Section 4 discusses the results of the proposed parameter
estimation procedure. Finally, Section 5 draws the conclusions of the research.

2. Methods

This section describes the models’ mathematical representation, highlighting the
parameters to be estimated.

2.1. Single Diode Model

The Single Diode Model (SDM), also known as the five–parameter model, is represented
by the equivalent circuit in Figure 2. In this circuit the current source is associated with
the PV current and, the diode represents the energy level threshold for photons to trigger
significant production and circulation of electron-hole pairs through the junction [28]. Losses
are represented by a series resistance (Rs), which is related to the metal–semiconductor
contact resistance, the ohmic resistance of the contacts, and the ohmic resistance of the
semiconductor material. The leakage currents along the edges of the cell are represented by
shunt resistor (Rsh).
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Figure 2. Circuit diagram of the Single Diode Model.

The cell current (Icell) be obtained as the algebraic sum of the currents through
the diode (Id), the current through the shunt resistor (Ish) and the photocurrent (Iph).
Shockley’s equation [29] models the current–voltage relationship in the diode (Id − Vd).
Thus, (1) represents the resulting cell current (Icell).

Icell = Iph − I0

(
e(Vcell+Icell Rs)/AVT − 1

)
− (Vcell + Icell ∗ Rs )

Rsh
(1)

In Equation (1), Vcell is the cell voltage; and I0 and A, the reverse saturation current
and the ideality factor of the diode, respectively. Finally, VT represents the thermal potential
expressed in Equation (2), where k is the Boltzmann constant; T, the temperature of the cell;
and q, the electron charge.

VT = kT/q (2)

According to the previous equations, five parameters (Rs, Rsh, Iph, I0, and A) must be
evaluated in the SDM to obtain the I–V characteristics of a PV cell. Importantly, this model
is only used to represent the behavior of PV cell in Q1 when is delivering energy.

2.2. The Bishop Model

The model proposed by Bishop incorporates an avalanche mechanism into the SDM.
As depicted in Figure 3, this mechanism represents the reverse characteristics of the PV cell,
which is controlled by the current through Rsh. This current term is composed of an ohmic
term and a nonlinear multiplication factor [6] as shown in Equation (3).

Figure 3. Circuit diagram of the Bishop Model.

In the Bishop model, Equation (3) relates the output current and the voltage of a PV
cell, where a is the ohmic fraction of the current related to the avalanche breakdown; m, the
avalanche breakdown exponent; and Vbr, the junction breakdown voltage.

Icell = Iph − I0

(
e
(Vcell+Icell Rs)

AVT − 1

)
− (Vcell+Icell∗Rs)

Rsh

(
1 + a ∗ (1−(Vcell+Icell Rs))

Vbr

)−m
(3)
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To represent the Bishop model, eight parameters (Rs, Rsh, Iph, I0, A, Vbr ,m, a) must be
estimated. This model is commonly used to represent the behavior of a PV cell in both Q1
and Q2, with the cell consuming instead of producing power in Q2.

2.3. Direct–Reverse Model

The Direct–Reverse Model (DRM) makes it possible to model the behavior of PV cells
in both direct and reverse polarization modes. Using the I–V characteristics from the same
sorted series cells, the authors of [27,30,31] studied the variability of the curves, not only
in the value of the breakdown voltage but also in the slopes of the ohmic regions in Q2.
Based on this characterization, they were able to observe parts of the curve in Q2 that could
be linearized. In this model, a Thevenin equivalent in series with a diode in the opposite
mode models each linear part, where the Thevenin resistance represents the slope of the
linear region. As shown in Figure 4, this model evaluates the behavior of a PV cell in Q1
using the double–diode model.

Figure 4. Circuit diagram of the Direct-Reverse Model.

The number of PV parameters that must be estimated depends on the number of
branches used to represent the linear approximation. In the example of Figure 4, the circuit
is represented by 13 parameters (7 for the direct mode and 6 for the reverse mode). The
DRM can be used for both Q1 and Q2 representation.

2.4. PV Panel/Array Modeling

An important application of the models described above lies in the capacity of been
employed for the PV panel/array modeling, in both Q1 and Q2. PV panel modeling is
based on the PV cell model and the number of cells connected in series (Ns) and in parallel
(Np), as shown in Equation (4). Therefore, when modeling a PV array modeling, the number
of panels and their connection must be considered. Another key aspect is the procedure
used to solve the resulting equations regarding the connection between the PV panels and
the number of parameters to estimate. The I–V characteristics of a PV array, as well as the
maximum power reached under a given operating condition, can be obtained by solving
such equations.

IM = Np ∗ Iph − Np ∗ I0 ∗

e
VM+IM∗ Ns

Np
∗Rs

AVT − 1

−
VM + IM ∗ Ns

Np
∗ Rs

Ns
Np

∗ Rsh
(4)

As previously discussed, each PV model has a defined number of parameters to
estimate. Also, due to the nonlinear current–voltage relationship of the models, the cell
or panel current (I) is expressed as an implicit function of its voltage (V), i.e., f (I, V) = 0,
which requires the use of numerical methods for its analysis and solution. Three types of
techniques for parameter estimation have been reported in the literature: (i) metaheuristic
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techniques such as GA; (ii) analytical techniques such as Lambert W and iterative methods
like the Newton–Raphson method; and (iii) hybrid techniques, which use metaheuristic
and analytical methods for a more accurate I–V representation. Regarding the SDM, the
authors of [32] used a Differential Evolution (DE) algorithm to estimate its five parameters,
while the authors of [33] employ a Hybrid Java–NM algorithm for parameter extraction.
The Newton–Raphson method was used in [34], whereas the Lambert W function was
employed in [35] to find a solution. Due to its low complexity, the SDM is the most
commonly used model for PV array modeling, as highlighted by the authors of [36]. Studies
such as that in [37] suggest that parameter estimation for SDM and the DDM, which is
an extension of the SDM [38], can be estimated using the same algorithm. As a result,
similar computational times are obtained depending on the technique used. In the case of
metaheuristic algorithms, the objective function employed, and the tuning parameters of
the algorithm have a considerable impact on computational times. The Bishop model can
be enhanced with the SDM and the DDM. For instance, authors of [39] modeled a PV array
employing the Bishop model with double diode. This solution, nonetheless, may require a
higher computational time and be more complex due to the number of variables to estimate.
In [40], the Bishop model was used for PV panel modeling, and each PV panel, string,
and array were modeled using a piecewise polynomial function approximation, a process
similar to that of the DRM. The DRM, which is similar to the Bishop model, is employed to
model a PV cell behavior in both the direct and reverse operating modes. Nevertheless,
the number of parameters to estimate, which is associated with the number of branches
used to model the PV cell, makes it a complex model for PV parameter estimation and
PV array modeling. Despite this, authors of [24] used the DRM to model a PV string. In
addition, considering the PV panels connected in series/parallel, this model can be used
for PV array representation. The complexity in modeling a PV array is determined by
the PV cell model used. Therefore, depending on the PV cell data available, such as its
technology (e.g., polycrystalline and CIGS), I–V characteristics, and working zone of the
experimental tests (e.g., Q1), the PV models discussed above can be employed for such
purpose considering the number of variables to estimate and the method used to solve the
associated equations. This study provides a first stage procedure for choosing a proper PV
model for a given working condition by comparing the performance of each model with
experimental data obtained from a PV cell.

3. Proposed Parameter Estimation Technique

The parameter estimation problem for each model presented in Section 2 was solved
using the GA. Each step of the estimation process, which are explained in the next
subsections, are related to the fitness function and the search space constrains, both of
which must be accurately defined to avoid falling into a local minimum. A set of constrains,
determined by the search space of the parameters when modeling PV cells, must also be
defined. The literature describes the search space for the SDM and DDM of PV cells [41,42]
to represent only Q1. Those ranges can be applied to the parameters that are shared by the
Bishop model and the DRM; however, search ranges for the parameters that determine
the behavior of PV cells in Q2 are also required. In the DRM, these ranges can be obtained
using information contained in the experimental data of the I–V curve.

3.1. Initial Population

A set of solution vectors is randomly generated within the search space to establish
the current population, whose size is denoted by the population size (p). All solution
vectors in the initial population must be different (diversity criterion). Then, the fitness
function of each solution vector is evaluated, and that with the minimum value is selected
as the incumbent.
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3.2. Selection

Chosen randomly from the initial population, with a length given by a random integer
(r). Therefore, to complete the new population, r–p solution vectors must be created.
Next, a pair of solution vectors, which are named parents, are selected to proceed to the
crossover stage.

3.3. Crossover

In this stage, the two solution vectors selected are combined to produce a new vector
called offspring, for which a parent crossing point is chosen. Thus, offspring will carry
information from both parents.

3.4. Mutation

This operation produces spontaneous changes in offspring. It is a random alteration
of the value at an offspring’s position.

3.5. Population Update

The algorithm repeats the selection, crossover, and mutation processes until p children
are created. The fitness function of the offspring population must also be evaluated.
Offspring and the initial population are concatenated, and then sorted in ascending order
based on the evaluation of their fitness function. The first best p solution vectors will be
selected as the initial population of the next generation.

3.6. Stopping Criterion

In this study, the stop criterion is the maximum number of iterations for the estimation
process (itermax), which are referred to as generations. Algorithm 1 presents the pseudocode
of the GA described above.

Algorithm 1: Pseudocode of GA applied to PV cell parameter estimation.
Data: Experimental I − V data, p, itermax, search ranges
Result: ϕ

1 iter=1;
2 Generate initial population;
3 Evaluate the fitness function and constrains;
4 Select the best solution;
5 while iter = 2 : itermax do
6 for i = 1 : p do
7 Select r vectors of initial population;
8 Create r–p vectors randomly;
9 Generate the new population combining selected and created vectors;

10 Select two parents randomly from the new population;
11 Create offspring by recombining parents;
12 Mutate offspring;
13 Select the best offspring;
14 end
15 Generate offspring population;
16 Evaluate fitness function and constrains;
17 New population= [initial population; offspring population];
18 Initial population= the best p solution vectors;
19 Select the best solution ϕ;
20 end
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3.7. Fitness Function

The fitness function (FF) of the optimization problem addressed in this study, is
to minimize the root mean square error (RMSE) between the cell current measured in
the experimental tests (Icellm) and the value estimated with the optimization technique
(Icelle(φ)), as shown in Equation (5).

min[FF(ϕ)] = min[RMSE(Icelle(φ), Icellm)] = min


√√√√ 1

N

N

∑
i=1

(Icelle(φ)− Icellm)2

 (5)

Icelle(ϕ) results from evaluating the implicit Equations (1) and (3) using the Newton
Raphson method and the estimated parameters. ϕ is the solution vector, which includes
the unknown parameters of the model to be identified and N is the number of samples.
Table 1 presents the coding for the optimization problem considered here, which, as stated
in the previous section, depends on the adopted PV model since each model has a specific
number of parameters that describe its I–V characteristics.

Table 1. Evaluation of the estimated Icell for each model.

Model Icelle(ϕ) Parameters to
Estimate (ϕ) Operation Mode

SDM (1) [Iph, I0, A, Rs, Rsh] Q1
Bishop (3) [Iph, I0, A, Rs, Rsh, Vbr, m, a] Q1 , Q2
DRM (1) Only for Q1 [Iph, I0, A, Rs, Rsh] Q1 , Q2

3.8. Problem Constrains

The constraints of the optimization problem correspond to the search ranges of the
parameters to be estimated, which are defined in Equations (6)–(13). Those parameters
correspond to the models reported in Section 2, where the search ranges should be respected
to ensure a correct estimation of the parameters in each model as presented in Table 2.

Amin ≤ A ≤ Amax (6)

Rsmin ≤ Rs ≤ Rsmax (7)

Rshmin ≤ Rsh ≤ Rshmax (8)

Iomin ≤ Io ≤ Iomax (9)

Iphmin ≤ Iph ≤ Iphmax (10)

amin ≤ a ≤ amax (11)

mmin ≤ m ≤ mmax (12)

Vbrmin ≤ Vbr ≤ Vbrmax (13)

Table 2. Number of constraints for each model.

Model Constrains

SDM Equations (6)–(10)
Bishop Equations (6)–(13)
DRM Equations (6)–(10)

4. Results and Discussion

The I–V curve for the validation process was obtained from a monocrystalline cell with
the following electrical characteristics, which was exposed to an irradiance of 1008 W/m2

and a temperature of 47.8 ◦C:

• Short-circuit current Isc = 0.43 A
• Open-circuit voltage Voc = 0.5 V



Computation 2022, 10, 111 9 of 15

• Maximum power current Imp = 0.36 A
• Maximum power voltage Vmp = 0.5 V

The models were simulated in MATLAB® R2021a on a computer with an Intel Core
i5–5200U 2.2 GHz processor, 8 GB of RAM, and Windows 10 pro. The results obtained with
each model, which are presented in the next subsection, were contrasted with the I–V curve
obtained experimentally. Table 3 reports the values of the constraints (i.e., the range of the
parameters) used for the estimation problem addressed in this study.

Table 3. Parameter constraints.

Parameter Minimum Value Maximum Value

Iph 90% ∗ Iph [A] 110% ∗ Iph [A]
I0 1 × 10−10 [A] 1 × 10−7 [A]
A 0.05 4
Rs 1 × 10−5 [Ω] 2 [Ω]
Rsh 20 [Ω] 100 [Ω]
Vbr −10 [V] −50 [V]
m 2 8
a 1 × 10−3 30 × 10−3

The number of individuals per population and the maximum number of iterations
were defined by evaluating the GA in a range of [5, 70] individuals per population and
[500, 5000] iterations. Figure 5 illustrates the tuning results for the SDM. As observed
in Figure 5a, there is an increment in the number of individuals per population and a
decrement in the average value of the objective function with a decreasing number of
iterations. Figure 5b shows the contour of the surface, which reports that the objective
function reaches its minimum value with 65 individuals and after 1500 iterations. A
parameter tuning was performed to determine the best number of individuals and iterations
for estimating the parameters of each model. Table 4 shows the results of that tuning process.

Table 4. Selection of GA variables for each model.

Variable Individual per Population Number of Iterations

SDM 60 1500
Bishop 5 500
DRM 60 500

Then, 100 repetitions of the parameter estimation algorithm (Algorithm 1) were
evaluated using the GA variables provided in Table 4 for each model, where the mean and
standard deviation of each estimated parameter of the SDM, Bishop model, and DRM were
calculated. Those metrics were also computed for the root mean square error (RMSE), the
mean absolute percentage error (MAPE), and the computational time of each model, as
reported in Table 5.

According to Table 5, parameters I0 and Rsh have the highest standard deviation,
although the RMSE and the MAPE values are considerably low for the three models. This
put into evidence the impact of the Rsh parameter in the zone near to Isc, which is the
beginning of the Q2 zone. The low computation time of Bishop’s model supposes that the
tunning parameters of GA are suitable for the number of parameters to estimate. In the
case of SDM, computation time is higher since it has three times more iterations; a proper
estimation of its parameters is a crucial task to ensure an accurate parameter estimation in
Q2. The parameters of the DRM in reverse mode, and reported in Figure 4, were estimated
following the instructions provided in [30]. First, it was necessary to identify the zones that
could be linearized; in this case, the blue, red, and gray regions highlighted in Figure 6
are the zones to be linearized. Breakdown voltages Vbr1, Vbr2, and Vbr3 correspond to the
points on the curve where the linear zone begins, i.e., 0 V, 2.318 V and 5.979 V, respectively.
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The values of the resistors (R1 = 90 Ω, R2 = 40 Ω and R3 = 26.31 Ω), which correspond
to the slopes of the linear zones, were calculated through Ohm’s Law using the extreme
points of the corresponding linear zone.

(a)

(b)

Figure 5. Selection of the estimation parameters for the SDM. (a) Mesh of fitness function in relation
with the number of iterations and population size. (b) Contour of fitness function in relation with the
number of iterations and population size.

Table 5. Parameters estimated for each model (mean ± standard deviation).

Parameter SDM Bishop DRM

Iph [A] 0.431 ± 0.019 0.434 ± 0.0244 0.433 ± 0.025
I0[10−8 A] 5.665 ± 2.538 5.722 ± 2.538 5.118 ± 3.023

A 1.172 ± 0.065 1.361 ± 0.219 1.179 ± 0.081
Rs [Ω] 0.211 ± 0.086 0.619 ± 0.390 0.267 ± 0.124
Rsh [Ω] 47.409 ± 8.764 58.018 ± 16.597 59.877 ± 26.566
Vbr [V] - −24.58 ± 9.15 -

m - −5.682 ± 1.774 -
a - 0.016 ± 0.009 -

RMSE 0.022 ± 0.008 0.047 ± 0.017 0.032 ± 0.013
MAPE 0.155 ± 00940 0.3966 ± 0.1843 0.318 ± 0.169

Time [s] 49.803 ± 0.867 1.274 ± 0.601 3.123 ± 0.206

The circuit in Figure 4 was simulated in Simulink to obtain the I–V curve for the DRM.
Then, an interpolation with the voltage vector of the experimental data was performed to
compare the results of the cell current estimated by the DRM with that predicted by the
SDM and the Bishop model.

Figure 7 illustrates the I–V curves obtained with each model using the best population
function results taken from Table 6. In Q1, the three models show a high accuracy between
simulation and experimental data. In Q2, the Bishop model provides the best result, while
the SDM and the DRM exhibit a decrease in their accuracy.



Computation 2022, 10, 111 11 of 15

Figure 6. Estimation of DRM parameters for Q2.

The accuracy of the curve for the DRM depends on the linear zones chosen for the I–V
characterization, as well as on the precise calculation of the number of branches. Moreover,
the estimation of the parameters that define the DRM model in the first quadrant are the
same ones used for the SDM, and those were estimated using only the information of
the experimental I–V curve in the first quadrant. Finally, those parameters also affect the
behavior of the models in the second quadrant (Q2).

On the other hand, it is observed that the estimation provided by the SDM did not
have a good approximation in Q2. This model presents a linear behavior for Q2, thus the
breakdown voltage is not observed. Here, for the parametrization of this model, the whole
information of the experimental I–V curve was used (Q1 and Q2).

Table 6. Parameters used for the best solution.

Parameter SDM Bishop DRM

Iph [A] 0.427 0.428 0.436
I0[10−8 A] 6.325 9.957 3.391

A 1.165 1.201 1.115
Rs [Ω] 0.157 0.179 0.117
Rsh [Ω] 41.825 63.900 86.443
Vbr [V] - −23.31 -

m - −6.975 -
a - 0.025 -

Table 7 presents the relative error of the main points of interest, i.e., Isc, Voc, IMPP, and
VMPP. The three models show low error values, making them suitable for applications
where the delivered power needs to be estimated [43].

As observed in Figure 8, the SDM and the Bishop model exhibit high accuracy for Q1
representation, especially at the Maximum Power Point (MPP), which is the most relevant
point for power analysis. For the DRM, there is a significant difference in the estimation of
Voc, while the estimation of Isc exhibits a lower difference. However, both differences affect
the estimated location of the maximum power point (MPP) in comparison with the one
obtained in the experimental stage.

Figure 9 shows the power vs. voltage (P–V) curves near the MPP obtained with each
model. Such curves were generated using the best population function results taken from
Table 6. In this case, the Bishop model and SDM provide the best results for MPP estimation
based on the experimental data. The Bishop model exhibits the smallest estimation error of
0.43%, while the error provided by SDM is 2.26%. On the other hand, the DRM presents an
error of 4.01%, which is the highest deviation obtained.
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Figure 7. Comparison between the experimental and estimated curves in Q1 and Q2 (zoom-in for Q2).

Table 7. Relative error of some points of interest in the I–V and P–V curves.

Parameter SDM Bishop DRM

Isc [A] 0.0415 0.007 0.0246
Voc [V] 0.0795 7.91 × 10−4 0.1526

IMPP [A] 0.1316 0.0561 0.1422
VMPP [V] 0 0.0207 0.1134
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Figure 8. Comparison between the experimental and estimated curves (zoom-in for Isc).

Finally, Figure 10 depicts the errors obtained for the best estimation of the SDM,
the Bishop model, and the DRM. For Q1, the SDM provides the best result for I–V
characterization, while for Q2 the Bishop model exhibits the lowest error. In the case
of the DRM, the I–V characterization depends on the accurate parameter estimation in Q1,
highlighting the impact of Rsh as previously discussed.
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Figure 9. Maximum power point for each model .
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Figure 10. Estimation error for each model.

5. Conclusions

This paper presented a simple strategy for the I–V characterization of a PV cell
considering three PV models. This proposed strategy uses GA and Simulink to extract
the parameters from an experimental I–V curve. The analysis results demonstrate that
the SDM model does not correctly reproduce the cell behavior when the current grows
exponentially while the voltage at the cell terminals grows negatively (Q2).

The parameter estimation of the DRM model, which was carried out in two stages,
demonstrated that estimating the parameters per quadrant has a negative influence in the
model accuracy. When estimating the parameters of the first quadrant, exclusively using
the experimental information related to that quadrant, the critical parameter Rsh is not
correctly identified, which is one of the parameters that imposes the behavior in the second
quadrant. Moreover, the results reveal the need for a mathematical formulation that allows
estimating the whole set of parameters of this particular model. Here, this procedure was
developed with the circuital model evaluation in Simulink, which required the estimation
of the five parameters for Q1 described in Table 1 and the calculation of the parameters for
Q2 (see Figure 6), in an independent way.

It is also important to highlight that the proposed procedure can be used, along with
PV array modeling methodologies, to analyze the behavior of cells operating in both Q1
and Q2, which is needed for power analysis and losses estimation during partial shading
conditions. Future works could consider estimating energy per day, month, or year using
the electrical representation described for the PV cell modeling. Also, another future work
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could consider to apply other optimization techniques to solve the parameter estimation
problem, which may reduce both estimation errors and computation time.
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