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Abstract: The objective of the present study is to improve the genetic algorithm (GA) supremacy in
selecting the most suitable and relevant features within a highly dimensional dataset. This results
in cost reduction and improving classification performance. During text classification, employing
terms such as features using vector space representation can result in a high dimensionality of future
space. This condition presents some issues, including high computation cost in data analysis and
deteriorating classification accuracy performance. Several computational feature selection techniques
can be applied in eliminating the least significant features within a dataset, including a genetic
algorithm. The present study improved the performance of the classifier in classifying Pima Indian
diabetes data. Despite the popularity of GA in the feature selection area, it does not provide the
most optimal features due to one of its underlying issues: premature convergence due to insufficient
population diversity in the future generations. GA was improved in its crossover operator using
two steps: define a variable slice point on the size of the gene to be interchanged for every offspring
generation and apply feature frequency scores in deciding the interchanging of genes. The above
obtained results to the proposed technique will be better results than the results for standard GA. Our
proposed algorithm attained an accuracy of 97.5%, precision of 98, recall of 97% and F1-score of 97%.

Keywords: type 2 diabetes mellitus; machine learning; homogenous ensemble; decision tree; genetic
algorithm; Pima Indian Diabetes Dataset

1. Introduction

During text classification, such as medical data with machine learning or deep learning
techniques, employing terms such as features using vector space representation can cause
a high dimensionality of feature space and sparsity [1,2]. This kind of condition introduces
some issues, including high computation cost in data analysis and reducing the classifica-
tion accuracy performance [3]. The present study enhanced the classifier’s performance
in classifying a diabetes medical condition [4]. To address this concern [5], the majority
of studies introduce feature selection techniques [6], which is a feature dimensionality
reduction approach [7]. Several evolution techniques were used for feature selection subset
search as a sort of optimization issue, which include particle swarm optimization (PSO), ant
colony optimization (ACO), and genetic algorithm (GA) [8]. With well-optimized parame-
ter tuning, PSO can locate optimal parts of the complicated search space and effectively
traverse the search space to obtain global optima, but PSO comprises several numeral
mathematical operations that need user-specified parameters with difficult-to-find optimal
values [9]. ACO is inspired by ants’ optimization behavior and effectively discovers opti-
mum features by using ants’ shortest path; however, it suffers from insufficient pheromone
update rules. On the other hand, GA is more ideal for large-scale issues, since it replicates
the process of natural selection in producing an optimal feature set. Its effectiveness in
feature selection is due to its capacity to search for solutions in a large search area and its
high performance in optimization problems.
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Running GA as a search function in many applications, on the other hand, has cer-
tain acknowledged flaws, such as premature convergence [10]. The population diversity
problem in feature selection, where simple GA starts with a varied population but after
a few generations converges to a point where each chromosome tends to have similar
solutions, is one of the causes that contribute to this difficulty. Premature convergence
is one of the challenges in feature selection, which claims that it is one of the drawbacks
when applied using basic GA. This constraint makes it difficult for the algorithm to find
better answers in succeeding generations. The authors claimed that the aimless searching
or simply randomized process in the crossover operator to create offspring might affect
the algorithm’s convergence rate. Several studies [11] applied GA feature selection and
recorded inadequacy when selecting suboptimal features.

In this study, we proposed Enhanced Genetic Algorithm (EGA), which seta variable
slice point on the size of the gene to be interchanged for every offspring generated and
applied feature frequency scores in deciding the interchanging of genes. Our evaluation
proved that our proposed technique obtained better results than standard GA.

Contributions: The main contributions of this study are the following:

(1) Improve genetic algorithm feature selection technique with improved convergence
properties that better explore good solutions in the search space.

(2) Divide the dataset randomly into smaller subsets using the average splitting technique
and separately model each subdivision using the decision tree classifier.

(3) Improve the performance of the proposed homogenous ensemble technique by using
the accuracy ranking technique to retain excellent performing base models and reject
worse performing ones.

To effectively evaluate the performance of our proposed scheme technique, the Pima
Indian Diabetes Dataset (PIDD) was used. A comparative study is then conducted using
well-known ensemble techniques, including XGBoost, Gradient boost and Catboost, as
well as some recently published studies. Finally, our proposed scheme performance was
evaluated using Accuracy, F1-score, Recall, Precision, and Auroc metrics.

2. Literature Review

In recent years, predictive classification using machine learning algorithms has been
vibrant among data science researchers. The accuracy obtained by most researchers is
reasonably good and acceptable (70–85%); see, for instance [12–14]. Nevertheless, there
is a lot to be understood in this area. This section presents some ensemble learning
techniques and genetic algorithm feature selection related to our proposed study. Machine
learning techniques can be applied in a variety of disciplines due to their excellent powerful
classification capabilities. Therefore, there are many research studies on diabetes prediction
continuously formulating novel techniques to improve classification accuracy performance.
An example of such a technique is an ensemble learning method. Perveen et al. (2016) in [15]
compared the performance of Adaboost, J48 decision tree, and bagging using the Canadian
primary care sentinel surveillance network medical dataset to classify diabetic and non-
diabetic patients. The results obtained after the experiment using the weka data-mining
toolkit show that the Adaboost ensemble technique outperforms the bagging ensemble
technique and the J48 decision tree technique. Vijayan and Anjali (2016) in [11] compared
decision tree, SVM and naïve Bayes as Adaboost ensemble technique base classifiers. The
authors constructed integrated models based on the three mentioned base classifiers for
the early prediction of diabetes. The PIDD dataset was used to compare and evaluate
the performance of the proposed integrated AdaBoost classifiers. The study revealed that
integrating a single machine learning base classier yielded higher performance than a
single machine learning classifier. The authors in [16] applied different machine learning
ensemble techniques such as bagging, AdaBoost and random forest along with the PSO
feature selection method on a heart disease medical condition dataset. The experimental
results show that bagging ensemble techniques outperformed other ensemble classifiers.
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Maclin (1999) in [17] compares the performance of decision tree, neural network, bagging
and boosting ensemble techniques.

The study’s experimental results demonstrated that bagging and boosting performed
better than single classifiers such as decision tree and artificial neural network. The study
also revealed that bagging outperformed boosting ensemble technique. Kala et al. (2011)
in [18] proposed a new, improved technique for diagnosing breast cancer using Artificial
Neural Networks (ANN). This study’s proposed model was used to solve breast cancer
prediction using a genetic algorithm to select the best features in a dataset and Artificial
Neural Network for classification. In conclusion, the above study was shown to be both
efficient and scalable. In what follows, Paul and Choubey (2017) in [5] proposed a new
hybrid algorithm using a genetic algorithm (GA) for selecting the most suitable features
in the PIDD dataset, and in [19] the Radial Basis Function Neural Network (RBFN) was
used for classifying patient with diabetes and non-diabetes. The authors concluded that the
hybrid method was better than the RBFN alone. Next, the authors applied in [20] a genetic
algorithm feature selection technique to find the most relevant features and eliminate the
redundant features using different medical datasets. The SVM classification technique was
applied. The authors reported a significant classification improvement across the datasets
when GA feature selection was applied compared to when all features were used. In our
current study, we aim to build and develop on what has been previously accomplished and
come up with a well-performing ensemble learning technique for T2DM prediction.

3. Proposed Scheme
3.1. Dataset Description

The Pima Indian Diabetes Dataset (PIDD) was used to conduct our study, which is
publicly available on the Kaggle dataset repository in CSV format [20]. This dataset contains
young females of at least 21 years of age of Pima Indian heritage living around Phoenix,
Arizona, in the USA. The dataset contains 768 records of patients—268 (34.9%) patients
tested positive for diabetes, 500 (65.1%) patients tested negative for diabetes—and nine
attributes, including class variables. The dataset attributes and statistics are presented in
Table 1. This dataset reports a class imbalance that will occur when there is a great difference
between minor classes and major classes in classes with binary values (0 or 1). This study’s
primary purpose is to predict whether a person would test positive using diabetes medical
test results that are provided in the dataset. We solve a binary class problem with a class
value “1” being interpreted as a patient who tested positive for diabetes. The class value
“0” is interpreted as a patient who tested negative for diabetes. Our proposed scheme is
shown in Figure 1.

Table 1. PIDD Dataset Description and Statistics.

Attribute
Number Attribute Name Attribute Description Standard

Deviation Mean Type

1 Pregnancies Occurrences of pregnancy 3.4 3.8 Numeric

2 Glucose Plasma glucose concentration in a
2 h oral glucose tolerance test 32.0 120.9 Numeric

3 Blood Pressure Diastolic blood pressure (mmHg) 19.4 69.1 Numeric
4 Skin Thickness Triceps skin fold thickness (mm) 16.0 20.5 Numeric
5 Insulin 2 h serum insulin (mu U/mL) 115.2 79.8 Numeric
6 BMI Weight in kg/(height in m2) 7.9 32.0 Numeric

7 Diabetes Pedigree
Function (DPF) Diabetes pedigree function 0.3 0.5 Numeric

8 Age Age of person (years) 11.8 33.2 Numeric

9 Outcome Class variable (0 for non-diabetic
and 1 for a diabetic)
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3.2. Data Cleansing
Missing Values

Missing values imputation is a critical preprocessing approach. The Pima Indian
Diabetes Dataset contains several missing and impossible figures for a normal living
human being, such as 0 glucose, 0 blood pressures, 0 skin thickness, 0 insulin, and 0 BMI,
indicating that the real value is missing. Missing values affect the performance of the
classifier severely. So, it is essential to handle the missing values carefully. We applied
K-mean clustering with a based distance data imputation technique [21].

3.3. Data Subdivision

In this section, the proposed data subdivision technique will be presented. Let dataset
(PIDD) be denoted by DT, where DT = {(ai + bi), 1, 2, 3, 4 . . . . . . . . . .N}. The dataset’s inde-
pendent variables are denoted as:

ai = {xi1,xi2,xi3, xi4 . . . . . . . . . . . . . . . . . . . . . xin} (1)

bi denotes the outcome variable of the dataset where yi ε{0, 1}. For example, let one
independent dataset variable of the different instance be:

aj =
{

a1j,a2j,a3j, xa4j . . . . . . . . . . . . . . . . . . . . . aNj
}

(2)

The weighted average of aj is computed as:

aj =
1
N

N

∑
i=1

ω}tiaij, ω}t ≥= 0, i =
N

∑
i=1

ω}ti = 1 (3)

Data with additional weight contribute more to the weighted average than those with
low weight. From Formula (3), weight can never be negative, although it can be 0.
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To develop a proposed data subdivision algorithm that randomly subdivides the
dataset into reduced subsets, i.e., each subset, the algorithm will randomly pick indepen-
dent variable sets. The randomization technique can yield any amount of trees, and this
will reduce variance and improve performance.

Let the original dataset be DT, which is the root node, and it represents the whole
population, which can be divided into distinct homogenous sets. The algorithm will
randomly pick a data point from variable sets (features). The data point is substituted in
the set for further selection. Dataset DT is divided into two subsets using average based
partitioning rules:

DT =

{
DT1, i f

(
xij < xj

)
DT2, i f

(
xij ≥ xj

) (4)

Each child is considered separately, i.e., DT1 and DT2 as the root node; as in (4),
DT1 generate DT11 and DT12, while DT2 gives DT13 and DT14. This partitioning process
will continue until the termination rule is reached. To ensure that the dataset is not
over partitioned, we proposed a maximum tree height stopping technique, where Hmax
terminates the algorithm from infinite. The tree halts growing when H = Hmax; in the root
node, the tree height is H = 0 and H1 = 1 for DT1 and DT2.

After the dataset has been divided into smaller subsets, the decision tree classifier is
utilized to model each partition independently. As a result, decision tree classification is
characterized by a high degree of robustness and interpretability. In addition, the decision
tree utilizes Gini impurity to determine the likelihood of a wrongly classified variable when
randomly selected.

Gini = 1−
J

∑
i=1

p2
1 (5)

Pi is the probability of an object being classified into a particular class, and we now
have a forest of Tmax trees all fittedwith the decision tree algorithm.

3.4. Feature Selection Using Enhanced Genetic Algorithm (EGA)

GA imitates the natural selection process in obtaining the optimal feature set in a
given dataset. It can search for the solution in an immense search space, and its fantastic
performance in the optimization problem is due to its success in the feature selection
technique. GA is well known to have a premature convergence flaw. Simple traditional GA
starts with a diverse population after a small number of generations converged to a certain
point where each chromosome will contain a similar solution [22].

Figure 2 displays the workflow of the GA feature selection technique. Premature
convergence is the biggest challenge in feature selection, primarily when implemented
using simple GA. The will hamper the algorithm from looking for a better solution in each
subsequent generation. In this study, EGA was improved in crossover operator by:

• Allocating placeholder slice point on the size of the gene to be interchanged for every
offspring generated.

• Applying features occurrence scores in determining the swapping of genes.

EGA is deployed as a feature subset optimizer, therefore increasing the performance
of the machine learning classifiers.

EGA Procedure

Chromosome Encoding: The binary encoding of chromosomes is widely adapted. In
our study, the chromosome is a bit string with the value 0 and value 1. Value 1 indicates
the feature is included, while 0 means the feature is not included in the feature set with the
length equal to the total number of features.

Population Initialization: A whole number from 0 and 1 is randomly populated to
each chromosome with a length equal to the total number of features in the dataset.
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Fitness Function: In the current population, each chromosome fitness is computed
as follows:

f itness = (BF ∗ acc(F)) + (1− BF) ∗
(

1
F

)
(6)

where F represents active or selected dataset features, and BF is the balancing factor
between the features subset size and machine learning classification accuracy. Acc (F) is the
measured accuracy score of the ML algorithm on the already selected feature subset.

Selection: Two parents’ chromosomes selection is based on the ranking selection
approach. This will ensure that chromosomes with superior fitness will not be lost in the
forthcoming generation; this will give more opportunity to the supreme chromosome to
mate in the pool to generate better offspring.

Crossover: The genetic algorithm is enhanced on this operator as follows:

• The crossover point was improved by adjusting a placeholder slice point for the genes
to be interchanged when generating offspring.

• The crossover operator is managed and controlled by a collective feature occurrence
score to decide on swapping the selected genes.

The feature subset showed by a particular cut point was calculated to obtain the
cumulative frequency score. This procedure is similar to other feature subsets. Afterwards,
the subset of both parents was compared. The feature subset with a more excellent score is
stored as child1. The different feature subset is accumulated as child2. The variable-slicing
multi-point crossover is illustrated in Figure 3.

Mutation: The offspring undergo a mutation process using mutation probability such
as bit flipping.

Population Update: When a certain number of chromosomes have been reached in
the population, a new population will be generated and passed to the next generation.

GA Parameters: Population size—300, Number of generation—10, Crossover operator
—2-point crossover, Crossover probability—0.6, Mutation operator—bit flip, Mutation
probability—0.333, Selection—Roulette wheel.
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Figure 3. Proposed placeholder slice point for genes interchanging in the offspring generation cycle.

3.5. Enhanced Ensemble Algorithm

To compute a homogenous ensemble from multiple base decision tree models clas-
sifiers, first, we identified and retained the best-performing base classifiers and removed
the worst-performing base classifiers. Then, a homogenous accurateness weighted aging
classifier was then utilized to compute ensemble from only the best-performing decision
tree models.

Let Pa (Ψi) indicate the occurrence of the correct prediction of classifier Ψi and let Ψi
denote the total number of iterations that the formula has been used for in the ensemble.
The classifier’s weight is denoted by Ψi and is represented as:

Pa (Ψi) > PΠ
a then ω(Ψi) = Pa = (Ψi) (7)

else ω(Ψi) =
Pa (Ψi)√
itter(Ψi)

(8)

where PΠ
a represents the mean accurateness of the classifiers in the ensemble technique.

The final prediction of the homogeneous ensemble technique Ψ is obtained as:

Ψ(x) = i i f (9)

Tmax

∑
t=1

ω(Ψt)Fi
t (x) = maxj{1,2....j}

Tmax

∑
t=1

ω(Ψt)Fj
t (x) (10)

The proposed ensemble technique functions by assigning weights to the numerous
classifier algorithms, depending on the classifier algorithm accuracy and time spent in the
ensemble. If the classifier algorithm’s weight drops below a determined threshold, the
classifier algorithm is removed from the ensemble. By utilizing accuracy as the optimization
criterion, this ensures that the ensemble technique attains the optimal results.

3.6. Model Validation

There are two main validation techniques to validate the machine learning model
performance: the hold-out technique and the K-fold cross-validation technique. Each
method’s choice primarily depends on the magnitude of the dataset and each classification
problem’s goal. The hold-out technique splits data into two: that is, training data and
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testing data. The K-fold cross-validation technique is the technique that has been applied
in this study; this is a preferred and widely applied validation technique in many other
studies. In this technique, the data are split into K equivalent size of folds. K-1 groups are
used for the model’s training, while the rest is used for the classifier. This procedure will be
iterated until each fold of 10 folds has been used as a testing set and the same case as to
each k. The accuracy of the classifier is computed [23]. The final evaluation is computed
based on the accuracy mean. Our study applied k = 10, representing 90% of the training
data and 10% used for testing. This validation method has the following merits:

• Decreases the variance in the prediction errors.
• Reduces overfitting and overlapping of data between training and testing.

4. Experimental Result
4.1. Experimental Setup

This section explains the experimental results obtained after evaluating our proposed
enhanced genetic algorithm for optimal feature selection and improved homogenous
ensemble learning for classification in detail. The experiments were conducted on a 3.3 GHz
Intel dual-core i3 processor with 8 GB of RAM running the Windows 10 operating system
to evaluate the proposed scheme’s performance. A Jupyer notebook (3.7.6) was used for
implementation, and Python Programming language (3.8) was used to analyze the dataset
and classify T2DM. Various libraries, such as genetic algorithm, numpy, pandas, matplotlib,
and scikit-learn, were used to perform different tasks. The simulation was performed
to evaluate our proposed scheme against other ensemble techniques such as XGBoost,
Gradient boost and CatBoost.

4.2. Performance Evaluation Metrics

This section discusses the performance evaluation of the improved proposed ho-
mogenous ensemble technique for effectiveness and efficiency in the early diagnosis and
prediction of T2DM. The performance evaluation of any machine learning classifiers is
measured in terms of accuracy metrics; however, relying on only accuracy metrics could be
misleading from time to time. Therefore, we used other metrics, such as precision, recall,
F1-score, and area under the curve (AUC), and a 10-fold cross-validation technique to
evaluate our proposed binary classification model’s performance.

The efficiency of the machine learning classifier algorithms is evaluated using parame-
ters that are obtained from the confusion matrix, which is True Positive (TP), which means
T2DM is detected as T2DM, True Negative (TP), which means Normal predicted as Normal,
False Positive (FP) which means Normal is predicted as T2DM, and finally False Negative
(FN), which means T2DM predicted as Normal.

Accuracy is defined as the metrics determining the number of correctly classified
classes from the total samples in the testing dataset. The accuracy metric is calculated
as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

Precision is the total number of correct positive results obtained divided by the total
number of positive results predicted by the classifier algorithm. It is calculated as follows:

Precision =
TP

TP + FP
(12)

Recall: The total number of correct positive results is obtained divided by the total
number of all relevant samples. It is calculated as follows:

Recall =
TP

TP + FN
(13)
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F1-Score: It is used to evaluate a test’s accuracy. The F1-score is the combination Mean
between Precision and Recall metrics. The range for the F1-score is [0, 1]. It tells you how
accurate and robust your classifier is. It is calculated as follows:

F1 = 2∗ = 1(
1

Precision

)
+
(

1
Recall

) (14)

AUC (Area Under Curve) is the performance metrics founded on the varying threshold
values for binary classification problems. The AUC metric shows the model’s ability to
distinguish the binary classes. The higher the AUC, the better the model. It is calculated by
plotting the TPR (True Positive Rate), i.e., sensitivity or recall vs. FPR (False Positive Rate),
i.e., specificity, at various threshold values.

4.3. GA Convergence Properties

This section gives a detailed analysis of EGA and GAMP convergence properties given
the same GA parameter settings, as shown in Table 2. In Figure 4, it can be observed that
the proposed enhanced genetic algorithm made a consistent improvement over GAMP,
especially after the 40th generation. GA-MP tried to compete with EGA on several gener-
ations, and after reaching the 20th generation, it started experiencing the exhibition. As
a result of the exhibition, loss of diversity was encountered, which eventually led to not
exploring the global search space; therefore, they cannot produce offspring better than their
parents, resulting in an early convergence.

Table 2. Best parameters settings that attained highest Accuracy in EGA.

Parameter Value

Generation 100

Population 200

Mutation probability 0.05

A trade-off between the number of
features and classification accuracy 0.85

Crossover type EGA—placeholder slice point
GAMP-Multi-Point

EGA produced consistent improvement throughput; therefore, it was able to make
better offspring, which are passed to the succeeding generation, and it explored the search
space better. EGA achieved a better convergence property than standard GA feature selec-
tion, thus choosing the most optimal features within a dataset, which improves classification
performance.

Table 3 displays selected features using EGA and GAMP techniques where EGA
picked the five most optimal features, while GA-MP chose the six features.

Table 3. Best parameters settings that attained highest Accuracy in EGA.

GAMP Selected Features EGA Selected Features

Glucose Glucose

Age Insulin

BMI BMI

Pregnancies Diabetes Pedigree Function

Diabetes Pedigree Function Age

Blood Pressure
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Figure 4. Convergence on PIDD.

4.4. Classification Results

The primary purpose of this study is to present an effective and efficient scheme
for the early detection and prediction of T2DM using the machine learning technique. To
validate our proposed enhanced homogenous ensemble scheme effectiveness and efficiency,
a comparative study was conducted with other well-known ensemble techniques such as
XGBoost, Gradient Boost and CatBoost.

From Table 4, it can be observed that our enhanced homogenous ensemble classifier
outperformed other conventional ensemble techniques, with an accuracy of 94.47%, Preci-
sion of 94%, Recall of 94% and F1-score of 95%, while Gradient Boost classifier registered the
lowest classification accuracy. The high performance was achieved due to the application
of the accuracy ranking technique, which eliminates the least performing base classifiers,
hence improving classification performance.

Table 4. Evaluation performance of classifiers algorithms models before EGA feature selection.

Algorithm Accuracy Precision Recall F1-Score

XGBoost 90.36 89 88 89

Gradient Boost 86.90 86 86 87

Cat Boost 88.53 88 88 89

Enhanced Homogenous Ensemble 94.47 94 94 95

Table 5 indicates that the performance of the classifier algorithms has been improved
when the feature selection techniques have been applied as compared to when using all
features provided by the dataset. EGA found an optimal features subset that recorded the
highest classification accuracy compared to GA-MP; this is because EGA has improved
convergence properties, which will maintain population diversity, proving the ability to find
a better solution in search space and end up obtaining the most optimal feature selection.
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Table 5. Evaluation performance of classifiers algorithms models after EGA feature selection.

Algorithm EGA Feature Selection GA-MP Feature Selection

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

XGBoost 93.25 92 93 92 90.89 91 90 91

Gradient Boost 91.22 90 90 91 88.16 88 87 88

Cat Boost 92.46 92 92 93 89.76 89 89 90

Enhanced Homogenous Ensemble 97.5 98 97 97 95.27 94 95 95

Our proposed scheme, which combines the improved homogenous ensemble tech-
nique and improved genetic algorithm feature selection, outperformed other well-known
classification algorithms with an Accuracy of 98.75%, Precision of 98%, Recall of 98% and
F1-score of 99%.

Figure 5 further evaluated the performance of our proposed algorithm using AUROC
curve. Our approach outperformed other algorithms by scoring 98% while gradient boost
was the last ranked algorithm with 91.6%.

Computation 2022, 10, x  11 of 15 
 

 

the application of the accuracy ranking technique, which eliminates the least performing 
base classifiers, hence improving classification performance. 

Table 5 indicates that the performance of the classifier algorithms has been 
improved when the feature selection techniques have been applied as compared to when 
using all features provided by the dataset. EGA found an optimal features subset that 
recorded the highest classification accuracy compared to GA-MP; this is because EGA 
has improved convergence properties, which will maintain population diversity, proving 
the ability to find a better solution in search space and end up obtaining the most optimal 
feature selection. 

Our proposed scheme, which combines the improved homogenous ensemble 
technique and improved genetic algorithm feature selection, outperformed other 
well-known classification algorithms with an Accuracy of 98.75%, Precision of 98%, 
Recall of 98% and F1-score of 99%. 

Figure 5 further evaluated the performance of our proposed algorithm using 
AUROC curve. Our approach outperformed other algorithms by scoring 98% while 
gradient boost was the last ranked algorithm with 91.6%. 

 
Figure 5. PIDD ROC curve: proposed homogenous against other ensemble techniques. 

A Comparative Study with Other Recently Published Studies 
We carried out a comparative study between our proposed scheme and some 

recently published related studies. The experimental results indicate that our proposed 

Figure 5. PIDD ROC curve: proposed homogenous against other ensemble techniques.



Computation 2022, 10, 104 12 of 14

A Comparative Study with Other Recently Published Studies

We carried out a comparative study between our proposed scheme and some recently
published related studies. The experimental results indicate that our proposed scheme
outperformed other well-known ensemble techniques. A comparative study was conducted
with recently published studies that utilized the PIDD dataset to demonstrate our proposed
scheme further. Table 6 displays the comparison; as it can be observed, our proposed
scheme technique outperformed other recently published studies.

Table 6. Comparison of our proposed ensemble technique with other recently published studies.

Author/Year Dataset Method Accuracy

(Nnamoko and
Korkontzelos, 2020) PIDD C4.5 (IQRD +SMOTED)

Validation: 10-fold CV 89.5%

(Ramezani et al., 2018) PIDD
Logistic Adaptive Network based
Fuzzy Inference System (LANFIS)
Validation: 3-fold CV

88.05%

(Wu et al., 2018) PIDD K-means + Logistic regression
Validation: 10-fold CV 95.42%

(Mahajan et al., 2017) PIDD PCA + ANN
Validation: 10-fold CV 92.2%

(Polat et al., 2008) PIDD

Ensemble of Generalized
Discriminant Analysis (GDA)
and LS-SVM
Validation: 10-fold CV

82.0%

(Alirezaei et al., 2019) PIDD KNN + K-means + MOPSO + SVM
Validation: 10-fold CV 94.64%

Proposed Approach PIDD
EGA + Enhanced
Homogenous Ensemble
Validation: 10-fold CV

97.5%

The experimental results have demonstrated that our proposed scheme has signifi-
cantly improved the classification performance.

The proposed scheme is a two-step process:

• Enhanced genetic algorithm optimal feature selection, with a better convergence
characteristic which can maintain population diversity, is the key to its ability to find
the better solution in the search spaces, therefore selecting the most optimal features
in a dataset.

• Enhanced homogenous ensemble technique is achieved by randomly portioning
dataset into smaller subsets using the average based splitting technique; the subsets
are modeled by decision tree classifiers individually.

The homogenous ensemble is generated using decision tree models as base classifiers.
We applied the accuracy ranking technique to expel poor ranking classifiers and retain
outstanding performing classifiers. These two novel techniques boosted our proposed
scheme to achieve the best results as compared to other studies.

The majority of the studies represented in Table 6 did not consider the feature selection
approach, and few studies considered the feature selection technique. Their studies did not
offer the best classification results because their proposed technique is incapable of selecting
the most optimal features within the dataset. The EGA feature selection approach is the
reason behind the best classification performance observed by our proposed approach.

Most of the feature selection approaches suffer from premature convergence and can-
not select the most optimal features. Our proposed technique involves enhancing genetic
algorithm feature selection using two steps: setting a variable slice point on the size of the
gene to be interchanged for every offspring generation and applying feature frequency
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scores in deciding the interchanging of genes. Our experimental results have proven that it
is the most efficient in selecting the most optimal features, therefore outperforming other
proposed techniques.

4.5. Discussion on the Results

The improved genetic algorithm feature selection with enhanced convergence proper-
ties gave an efficient optimal feature subset compared with the standard genetic algorithm.
An enhanced homogenous ensemble technique was established to predict T2DM patients
accurately. The approach involves randomly subdividing the dataset into smaller subsets
using the average-based splitting technique. The smaller subsets are then modeled individ-
ually using decision tree classifiers. Homogenous ensemble classifiers then developed from
different decision tree models; by applying the accuracy ranking technique, we retained the
excellent performing base classifiers and eliminated the least-performing base classifiers.
Our experimental results and analysis using the Pima Indian Diabetes Dataset (PIDD)
attained an Accuracy of 97.5%, Precision of 98%, Recall of 97%, and F1-score of 97%. In
addition, our study also revealed that Glucose, Insulin, BMI, Diabetes Pedigree Function
and Age are the leading indicators ofT2DM.

The results show that T2DM high risks can be predicted effectively and efficiently
using our proposed scheme. Therefore, our technique can be applied in real diabetes
diagnostic centers for the clinical decision-making process.

5. Conclusions

This study proposes a novel method of predicting T2DM involving a two-stage process:
enhanced genetic algorithm feature selection (EGA) and enhanced homogenous ensemble
classification technique.

The EGA feature selection technique was achieved to attain the most relevant fea-
tures and discard the redundant features. Our experimental results and analysis intro-
duced the effectiveness of EGA in dimensionality reduction, therefore raising classifica-
tion performances compared to the normal standard GA (GA-MP) algorithm; this was
attributed to the capacity of EGA to sustainpopulationdiversitywhichisthekeytoitsabili-
tyinexploringbettersolutionsinthesearch. Meanwhile, the enhanced homogenous ensemble
classifier was able to improve classifier performance due to its ability to eliminate the
worse-performing classifiers.

Future Work

It is crucial to bring in huge real hospital data for the continuous training and opti-
mization of our proposed scheme. In addition, it is also necessary to validate our proposed
scheme using other chronic medical condition datasets.
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