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Abstract: Cracks in structural components may ultimately lead to failure of the structure if not
identified sufficiently early. This paper presents a crack-identification method based on time-domain.
Captured time-domain data are processed into central difference approximation of displacement of
each node (point) in the structure. Abnormally high central difference approximation of displacement
of a node relative to those of its neighborhood points indicates a crack at that point. A suite of
simulation experiments and numerical calculations was conducted to find out whether the proposed
identification method could accurately identify the location of a crack in a cantilever beam under
moving load compared to the location found by an exact solution method, and the outcomes indicated
that it was as able as the analytical method. The proposed method is an FEA analysis, an approach
familiar to virtually every engineer. Therefore, the relative amount of time and effort spent on
developing the proposed method for a specific application is much less than those spent on developing
an analytical method. The saved time and effort should enable more engineering personnel to perform
routine checks on structural elements of their interest more simply and frequently.

Keywords: crack identification; curvature shape; central difference approximation; cantilever beam;
moving load; forced vibrational response

1. Introduction

Methods for identifying damage in structures, such as aircrafts, bridges, ships, and
buildings is an important area of research and development that has a great potential for
cost-saving and safety improvement to those structures [1–3]. The presence of cracks in
a structure brings about local variations in the stiffness of the structure. The extent of
such variations mainly depends on the depth and location of the cracks, which affects the
dynamical behavior of the whole cracked structure. Vibration-based damage-detection
methods based on change in physical properties of a structure have attracted the attention
of many developers over the past few decades. Originally, Dimarogonas developed a
theory of vibration of cracked shafts and wrote it up in a textbook [4]. Nevertheless, the
crack-identification method based on this theory could indicate whether there was a crack
or not but could not specify the crack location. Later, a new technique was developed to
achieve both, based on a new parameter of change in displacement mode shape of a beam
called “Curvature Mode Shape”. Pandey et al. [5] was the first to develop a version of it.
Their version successfully identified typical crack locations. The study by Pandey et al. [5]
was adapted by Sahin and Shenoi [6] to obtain a damage-detection algorithm based on the
combined method of global (changes in natural frequencies) and local (curvature mode
shape) analysis. A gapped smoothing damage-detection method was also carried out by
Ratcliffe and Bagaria [7] for evaluating a damage index of composite beams. A modal
curvature-based method was also employed by Hamey et al. [8] to determine cracks in
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carbon/epoxy composite beams. In addition, Qiao et al. [9] demonstrated the use of
dynamic-based damage detection techniques to identify cracks in composite laminated
plate. However, those previous studies were not able to identify a crack at some node—
a node is a point at which no motion occurs—exists in a beam. Later, to counter the
issue of crack identification at the node existing on the beam, two development teams,
Chandrashekhar et al. [10] and Frans et al. [11], each proposed a similar method but based
on additional pre-selected vibrational modes of a beam. The method was demonstrated
to be effective as intended. However, it was not practical for on-site analysis of various
structures because not all factories were equipped with sophisticated tools to measure those
extra vibrational parameters.

This paper attempted to develop a curvature mode shape method that did not rely on
difficult-to-obtain vibrational parameters. The developed method would also be based on
moving load because we learned that moving load or moving mass on a bridge produced
larger deflections and higher stresses compared to the case when an equivalent load was
applied statically, and hence the deflections would be easier to measure precisely [12–16].
This idea of easier detection by using a variety of moving loads in the analysis was inspired
by the results of a study by Chouiyakha et al. [17] as well as the results of a study by Roveri
and Carcaterra [18] that demonstrated that their proposed methods based on moving
load were truly able to identify the locations of the cracks precisely. The approaches
based on moving load for damage detection in structures were widely used by several
researchers in the past [19–22]. In contrast, our proposed method would be based on
vibrational data in time domain instead of vibrational data in frequency domain (used in
most of the studies mentioned above) to counter a common problem for many engineers
that is responsible for crack identification of their facilities: complex and time-consuming
tasks encoding unnecessarily complex mathematical calculation steps into a functioning
and precise crack-identification app for their intended structure. The complexity of the
mathematical calculation steps for finding a solution based on frequency domain data was
higher than that based on time domain, as stated by Asnaashari et al. [23].

In addition, the developed method from the present study should work right out of
the box—engineer users would not have to derive any exact analytical expression for the
dynamics of the structural components under investigation to use the method; only readily
available on-site data would be needed for the method to make accurate predictions.

The rest of the paper is organized as follows. Section 2 describes our methodology
of crack-identification scheme. Section 3 reports numerical results and discusses them.
Section 4 concludes the paper. Finally, Section 5 suggests future work and limitations of the
proposed method.

2. Methods
2.1. A Previous Crack Identification Method

When a crack occurs in the structure of a beam, some structural properties will change.
A crack in a beam can be identified by the curvature mode shape of the beam, as presented
by Pandey et al. [2]. The authors now introduce a verified relationship between the flexural
stiffness and amplitude of curvature of natural modes of vibration at a point in or on a
common beam, which could be used to identify a crack effectively.

The curvature of a beam is related to the flexural stiffness of the beam. The curvature
at a point in or on the beam is given by Equation (1),

κ=
M
EI

(1)

where κ is the curvature at that point; M is the bending moment at the section; E is the
modulus of elasticity; and I is the second moment of the cross-sectional area. If a crack
occurs in a structure, it reduces the EI of the structure at the cracked point, which makes
the magnitude of the curvature higher at that point. The change in the curvature is local in
nature, and hence it can be used to locate a crack in a small, suspected region.
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Pandey et al. [5] used the displacement (or magnitude) of mode shape to calculate the
curvature mode shape by central difference approximation as in Equation (2) below,

y′′= (yi+1 − yi + yi−1)/h2 (2)

where y′′ = the central difference approximation at node or point i; h = the length between
node i and i + 1; y = the magnitude (or displacement in the original paper) of mode shape
at node i; i = node number, i = 1, 2 . . . m; and m = Total number of nodes.

A crack at node i is identified by the absolute difference in the central difference
approximation at that node.

∆y′′ i=
∣∣y′′ci − y′′uci

∣∣ (3)

∆y′′i = the absolute difference in the central difference approximation at node i;
y′′ci = the central difference approximation of the cracked beam at node i; y′′uci = the central
difference approximation of an uncracked beam at node i.

2.2. Proposed Identification Method
2.2.1. Main Modules in the Proposed Method

The proposed crack-identification method consists of three main modules: dynamic de-
flection module, central difference approximation calculation module, and crack-identification
module. The first module determines the average dynamic deflection (vertical displace-
ment) of every point (node) on the beam. The second module takes this set of deflection
values as input and processes them into a set of central difference approximation values
of every point on the beam. Finally, this set of central difference approximation values is
inputted into the crack-identification module and processed, the output of which will be a
graph of magnitude of central difference approximation at every point (node) of the beam.
A sharp peak at any point in this graph indicates a crack at that point. All three modules
were manually MATLAB-coded by the author. The flow diagram of the operations of these
main modules is illustrated in Figure 1 below.
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2.2.2. Rationale behind the Proposed Method

The rationale behind the proposed method is that time and effort is hugely saved in
composing simulation experiments in an all-familiar FEA framework than composing a
physical experiment or manually coding analytical methods to solve a particular problem.

Early on in this research project, the authors attempted to apply the magnitude of
mode shape method [4] to identify a cracked beam by themselves, but we encountered
two unexpected issues that might also deter other engineers from effectively applying the
method to their research work.

Firstly, the frequencies of several natural vibrational modes of an investigated beam
had to be obtained from a costly and time-consuming measurement setup using sophisti-
cated and specialized instruments.

Secondly, the operational steps of the curvature mode shape crack-identification
method consist of determining the vertical displacement of points (nodes) in and on the
beam and using those displacement values to construct curvature mode shapes, then
identifying the crack location from the relationship between the flexural stiffness of points
in and on the beam and the constructed curvature mode shapes. These operational steps
were lengthy and time-consuming, both in program coding effort and computational
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time. Since the only necessary data point for identifying a crack is the flexural stiffness at
that point, and since that point can be determined directly by a basic beam displacement
measurement setup without any need for theoretical or experimental determination of
natural vibrational modes, it will be simpler, easier and more efficient for engineers to use
the proposed method.

In the operations of the proposed method, the authors observe the local peak of the
absolute difference in the central difference approximation of the cracked beam and the
uncracked beam at a point in or on the beam, obtained from the vertical displacement
value of the beam at that point (the vertical displacement was a result of a load moving
along the beam). This local peak is then the indicator of a crack. To summarize, a crack
is observed as a positive peak at a point on or in a beam of the graph of vertical central
difference approximation from vibration due to moving load versus position coordinates.

A moving load or mass induces vibration of the structural element along which it
travels. It produces a larger deflection and a higher stress compared than an equivalent
static load. The deflection is a function of both time and speed of the moving load.

Getting back to the practical disadvantage of the mode shape method, it is not easy to
obtain an accurate magnitude of central difference approximation through differentiation
of mode shape. Moreover, differentiation may further amplify measurement error. In
contrast, since vertical displacement at a point in and on a beam is easy to obtain by a
basic displacement sensor, the central difference approximation in or on every point of a
beam can be readily determined by using central difference approximation. When central
difference approximation values of displacement of all points are plotted on a graph, it will
show a crack at a point (node) where a peak is located.

2.2.3. Detailed Operations in Each Main Module

As shown in Sub Section 2.2.1, the proposed system has three main modules. The
operational procedure of each module is described in this subsection.

The first module is the dynamic deflection module, consisting of two steps. In the first
step, from a specified velocity of the moving load parameter, external force acting on each
specified node —1, 2, 3, . . . , m—as shown in Figure 2, this module determines the time
step and the total number of time steps for average displacement calculation.
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The time of contact T on a beam depends on the speed of the moving load on the beam
contact surface. One-time step ∆T is calculated as below,

∆T=
T

p · n (4)
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where p is a specified number of intervals, and for each interval, n is the number of
sub-intervals. the total number of time steps, N, for a specified speed of moving load is
evaluated as below,

N= p · n. (5)

In the second step, the first module calculates the average displacement values of
every node. Then, the displacement values at every point for each time step are summed,
and the average displacement values at every point for the whole time T is calculated as a
sum below,

wi=
1
N

N

∑
j=1

yi,j (6)

where wi = the average displacement value at point i for the whole time T; yi,j = the
displacement value at point i at time step j. i = Node label, 1, 2 . . . , m; j = Number of time
steps along which the load moves from one fixed end to the other open-end of the beam, 1,
2 . . . , N.

The second module calculates the magnitude of central difference approximation of
the average displacement value output obtained from the first module. This magnitude of
central difference approximation of average displacement under moving load is calculated
with central difference approximation as follows,

w′′i =

∣∣∣∣∣ 1
N

N

∑
j=1

yi+1,j − 2
1
N

N

∑
j=1

yi,j +
1
N

N

∑
j=1

yi−1,j

∣∣∣∣∣/h2 (7)

where w′′ = the central difference approximation of average displacement of each node;
yi,j = Displacement at node i at time step j; h = Length between two nodes.

This central difference approximation procedure was coded in MATLAB.
The third module calculates the absolute difference in the magnitude of central differ-

ence approximation of displacement between each node, which are parallel to one another
on the uncracked beam and cracked beam (Section 2.1). It was also coded in MATLAB.

2.3. Finite Element Analysis of Beam Vibration under Moving Load

FEA analysis was run to evaluate the efficiency of the proposed method, as described
in Section 2.2. Displacement results obtained from the FEA approach could be substituted
into Equation (7) to obtain a graph of central difference approximation of displacement
versus position, in which the location of an abnormal peak would be identified as the
crack location. In this subsection, the background of this kind of finite element analysis
is described.

Finite Element Analysis (FEA) is a simulation of physical phenomenon with a nu-
merical technique called Finite Element Method. In our proposed method, vibration in
or on every point (node) of the beam under moving load needs to be simulated with this
numerical technique in combination with the parameters of the static beam. Therefore, the
simulation needs to include a moving load to induce vibration.

The governing equation and boundary conditions of a beam vibrating under the
influence of a moving load are Equations (8)–(12) below,

EI
∂4y(x, t)

∂x4 + ρA
∂2y(x, t)

∂t2 = Fδ(x− vt) (8)

where E is the young’s modulus of elasticity of the beam; I is the second moment of inertia
of the beam cross section; ρ is the material density of the beam; A is the area of cross section
of the beam; x is the point of interest on the beam; v is the speed of load moving along
the beam; t is time from the start. A simple beam model labelled with these variables is
illustrated in Figure 3 below.
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One end of the beam is fixed to a location (x = 0), while the other end (x = l) can move
freely when a force is acting on it, hence

y(0, t) = 0 (9)

∂y(0, t)
∂x

= 0 (10)

∂2y(l, t)
∂x2 = 0 (11)

∂3y(l, t)
∂x3 = 0 (12)

In an FEA simulation, those equations above are represented by the matrix equation
below, Equation (13), reported by Lee [24],

[M]
{ ..

D
}
+ [K]{D}= {F} (13)

where [M] is the n × n mass matrix of the discrete system; [K] Is the n × n stiffness matrix
of the discrete system; {D} Is the n × 1 vector of displacement magnitude of every node
in the discrete system; {F} Is the n × 1 vector of external forces on every node in the
discrete system.

These matrix equations are selectable in the transient structure analysis module of a
popular FEA software named ANSYS, and are familiar to every engineer.

The FE settings for the dimensions and material properties of the beam for every
simulation run are tabulated in Table 1 below, following exactly those values for the beam
in an analytical work of Lin and Chang [25]. The input of the beam was a 3D model of the
beam, created by SolidWork software. The dimensions of the beam were already specified
in the creation of the 3D model, but the material property settings were specified in the
Ansys FEA software [26]. The outputs were values of vertical displacement of every node
in a Microsoft Excel file.
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Table 1. FE Settings for Dimensions and material properties of the beam.

Material Properties Value Unit

Dimension 580 × 20 × 20 mm

Density 7800 kg/m3

Young’s Modulus 206 GPa

Poisson Ratio 0.3

In detail, a number of FE simulation runs were carried out on a 3D model of a cantilever
beam hosting a transverse notch (representing a physical crack). A three-dimensional
geometrical model of solid cantilever beam, constructed with SolidWorks software and
saved as an IGES file, was imported into the ANSYS software.

2.4. Evaluation of the Finite Analysis Model and Transient Simulation

To ensure the suitability of the FE model and the transient simulation of the cracked
cantilever beam, we verified them against the results of a study by Lin and Chang [25] of a
cantilever beam with the same dimensions and mechanical properties. The verification pro-
cess against the analytical solution of their investigated beam was done in two approaches:
(i) verifying by using natural transverse frequency with Fourier analysis and (ii) verifying
by using forced deflection responses at the free end of the cracked cantilever beam under
moving load.

The first approach used a model of cracked cantilever beam with a modeled crack at
x1/l = 0.3 and a notch depth of 30% of the beam thickness. An impulse load was applied
on the free end. The magnitude of this load was 100 N applied for 0.001 s on one node
at the free end of the cantilever, as shown in Figure 4. A transient analysis of the beam
was conducted in ANSYS to simulate the free vibration response of the beam due to the
impulse load. The length of the beam, L, was 580 mm. A Newmark’s integration scheme
was employed as the solver, and the time increment was kept fixed at 0.000025 s. After the
impulse load was applied, the free vibration of the beam was calculated up to 0.1 s. The
first three natural frequencies of the beam, calculated by applying fast Fourier transform of
acceleration at the mid-span of the beam, were then compared with the analytical values
obtained from the closed form solution reported in [25]. As listed in Table 2, the FE results
were less than 3% different from the analytical results, indicating that the FE model and
the transient analysis were reasonably accurate in simulating the dynamic behavior of
the beam.

Table 2. Comparison of natural frequencies calculated from FE model and analytical solution.

Mode Natural Frequency (Hz)

Analytical [25] FE Model Percentage Error
1 30.88 30 2.85
2 195.60 200 2.24
3 540.48 540 0.09

The second approach compared the forced deflection responses at the free end of
the cracked cantilever beam under moving load (from the proposed method) and those
from the analytical method. The speed of the moving load was 0.6 time of the critical
speed (Vcrit). This speed was 0.6 time critical speed Vcrit, where Vcrit was defined as
Vcrit = 1.8751/L(

√
EI/ρA) by Lin and Chang [25]. A speed higher than this critical speed

would cause insignificant deflection, while a speed lower than this speed will make the
deflection more clearly observable. The forced displacement responses from this model’s
FE analysis at the free end of the cracked cantilever beam under moving load was plotted
against the analytical results in the paper by Lin and Chang [25], and it can be clearly
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seen that the two curves trace one another closely almost everywhere, shown in Figure 5,
indicating the accuracy of the proposed model in this experimental range.

Computation 2022, 10, 101 8 of 19 
 

 
Figure 4. Beam with meshes assigned for FEA analysis. 

Table 2. Comparison of natural frequencies calculated from FE model and analytical solution. 

Mode Natural Frequency (Hz) 
 Analytical [25] FE Model Percentage Error 
1 30.88 30 2.85 
2 195.60 200 2.24 
3 540.48 540 0.09 

The second approach compared the forced deflection responses at the free end of the 
cracked cantilever beam under moving load (from the proposed method) and those from 
the analytical method. The speed of the moving load was 0.6 time of the critical speed (

critV ). This speed was 0.6 time critical speed critV , where critV  was defined as 

1.8751/ ( / )critV L EI Aρ=  by Lin and Chang [25]. A speed higher than this critical 
speed would cause insignificant deflection, while a speed lower than this speed will make 
the deflection more clearly observable. The forced displacement responses from this 
model’s FE analysis at the free end of the cracked cantilever beam under moving load was 
plotted against the analytical results in the paper by Lin and Chang [25], and it can be 
clearly seen that the two curves trace one another closely almost everywhere, shown in 
Figure 5, indicating the accuracy of the proposed model in this experimental range. 

Figure 4. Beam with meshes assigned for FEA analysis.

Computation 2022, 10, 101 9 of 19 
 

 
Figure 5. Force deflection response of the modeled cracked beam against analytical response. 

2.5. Evaluation of the Proposed Method 
The location of a crack found by the proposed method was evaluated against that 

detected by the mode shape curvature method in the paper by Pendy et al. [5]. In the 
evaluation of the proposed method, calculation of displacement at each point in and on 
the beam in response to moving load was performed by ANSYS. The displacement calcu-
lation method, selected from a menu in ANSYS, was the Newmark’s integration scheme, 
with a fixed time increment of 0.00001 s. 

The assigned 3D model and FEA settings were the following. 
1. Element type Selection: SOLID 186 Hex 20 node brick elements. 
2. FE Model Creation (Meshing): Mesh generation is a process of dividing the structure 

continuum into a number of discrete parts or finite elements. In this study, the 
uncracked beam was assigned a total number of FE elements of 4620 and the total 
number of nodes of 2,4768. For the cracked beam, the total number of elements was 
the same, at 4620, but the number of nodes were higher, at 2.4803, because a higher 
number of meshes were assigned at the crack region to model it more precisely. The 
meshes were constructed using 232 rows of elements along the length of the beam, 
six rows of elements across the width, and four rows of elements through its depth 
or thickness. The maximum size of a mesh was 0.25 mm. The boundary condition for 
one end of the beam was that it was fixed to a location in the environment, while the 
boundary condition for the other end was that it could move freely in response to 
various forces acting on it. The illustration of the meshed FE model of the cracked 
beam is shown in Figure 4. 

3. Assigned material properties: assigned Young’s modulus and Poisson’s ratio are 
listed in Table 1. 

4. Applied loads: concentrated load (F) acting on a point of contact on the surface of the 
cantilever beam, moving from the left end to the right end of the beam at a speed of 

30.9 m/s. This speed was 0.6 time critical speed critV
 as defined by Lin and Chang 

[25]. The tested magnitudes of the moving load were 70 N, 80 N, 90 N, and 100 N. 
Five replications were conducted for each magnitude. The goal was to determine 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Moving Load Position

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

N
or

m
al

iz
ed

 D
is

pl
ac

em
en

t R
es

po
ns

es
 a

t T
he

 F
re

e 
En

d

Ref [11]
FEM

Figure 5. Force deflection response of the modeled cracked beam against analytical response.



Computation 2022, 10, 101 9 of 18

2.5. Evaluation of the Proposed Method

The location of a crack found by the proposed method was evaluated against that
detected by the mode shape curvature method in the paper by Pendy et al. [5]. In the
evaluation of the proposed method, calculation of displacement at each point in and on the
beam in response to moving load was performed by ANSYS. The displacement calculation
method, selected from a menu in ANSYS, was the Newmark’s integration scheme, with a
fixed time increment of 0.00001 s.

The assigned 3D model and FEA settings were the following.

1. Element type Selection: SOLID 186 Hex 20 node brick elements.
2. FE Model Creation (Meshing): Mesh generation is a process of dividing the structure

continuum into a number of discrete parts or finite elements. In this study, the
uncracked beam was assigned a total number of FE elements of 4620 and the total
number of nodes of 24,768. For the cracked beam, the total number of elements was
the same, at 4620, but the number of nodes were higher, at 2.4803, because a higher
number of meshes were assigned at the crack region to model it more precisely. The
meshes were constructed using 232 rows of elements along the length of the beam,
six rows of elements across the width, and four rows of elements through its depth
or thickness. The maximum size of a mesh was 0.25 mm. The boundary condition
for one end of the beam was that it was fixed to a location in the environment, while
the boundary condition for the other end was that it could move freely in response to
various forces acting on it. The illustration of the meshed FE model of the cracked
beam is shown in Figure 4.

3. Assigned material properties: assigned Young’s modulus and Poisson’s ratio are listed
in Table 1.

4. Applied loads: concentrated load (F) acting on a point of contact on the surface of the
cantilever beam, moving from the left end to the right end of the beam at a speed of
30.9 m/s. This speed was 0.6 time critical speed Vcrit as defined by Lin and Chang [25].
The tested magnitudes of the moving load were 70 N, 80 N, 90 N, and 100 N. Five
replications were conducted for each magnitude. The goal was to determine which
moving load magnitude would provide the most distinguishable peak in a graph of
central difference approximation of displacement versus location coordinates (detailed
in Section 2.1). The way that this proposed method calculated the displacement of a
point in and on a beam depended only on the concentrated load, F, exerting itself on
the numbered nodes—1, 2, 3, . . . , m—as shown in Figure 1.

For the curvature mode shape method, the magnitude of the first displacement
mode shape was used to calculate the curvature mode shape with the Modal Module
in ANSYS. The assigned settings for the beam were the same as in the evaluation of the
proposed method.

We assigned a crack to be at one-third, the middle, and two-thirds of beam length
and identified their locations. Then, we did the same but using the proposed method and
compared the results. Figures 6–8 show plots (with 10−4 scaling) of three crack locations
identified by the proposed method (for which a moving load of 70 N was applied) overlayed
on plots of the three crack locations identified by Pendy’s curvature mode shape method.
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3. Numerical Results and Discussions

This section discusses five main points: Verification of forced vibration behavior of a
cracked beam calculated by FEA against that of Hai-Ping Lin and Shun-Chang Chang’s
exact method [25]; Inability of average dynamic deflections of cantilever beam under
moving load to detect a crack by themselves; Dependence of difference in central difference
approximation of displacement of cracked beam and uncracked beam on the magnitude of
moving load; Comparison of crack locations identified by the proposed method and the
mode shape method of Pendy et al., [5]; and Advantage of FEA in comparison with Lin
and Chang’s analytical method.

3.1. Verification of Forced Vibrational Behavior Using FEA

To check the validity of the forced vibration behavior of a cracked cantilever beam
under moving load calculated by FEA, the results from FEA analysis were verified against
such behavior calculated by Hai-Ping Lin and Shun-Chang Chang’s exact method. The
graphs of the results from both methods were overlayed on top of the other in Figure 8.
It can be clearly observed that in the range of position from 0–0.7 beam length, the two
graphs almost coincided, while they did not deviate more than 5% in the range of po-
sition from 0.7–0.9 beam length. Therefore, it can be concluded that the beam vibra-
tional behavior was modeled sufficiently precisely for crack identification by the proposed
crack-identification method.

3.2. Average Dynamic Deflection Results

Average dynamic deflection was evaluated by Equation (6). The calculated results
are plotted against the position of the beam under four magnitudes of moving load in
Figures 9–11, where a crack was positioned at x/l = 0.3, 0.5, and 0.7, respectively. It can be
observed that all four curves in each figure are smooth curves that do not show a peak or
trough at any position, i.e., a crack cannot be identified directly from these curves under any
magnitudes of moving load. To conclude, average dynamic deflection data alone cannot be
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used to identify a crack. However, the higher the moving load, the higher the magnitude
of average deflection or average displacement.

Computation 2022, 10, 101 12 of 19 
 

3. Numerical Results and Discussions 
This section discusses five main points: Verification of forced vibration behavior of a 

cracked beam calculated by FEA against that of Hai-Ping Lin and Shun-Chang Chang’s 
exact method [25]; Inability of average dynamic deflections of cantilever beam under mov-
ing load to detect a crack by themselves; Dependence of difference in central difference 
approximation of displacement of cracked beam and uncracked beam on the magnitude 
of moving load; Comparison of crack locations identified by the proposed method and 
the mode shape method of Pendy et al., [5]; and Advantage of FEA in comparison with 
Lin and Chang’s analytical method. 

3.1. Verification of Forced Vibrational Behavior Using FEA 
To check the validity of the forced vibration behavior of a cracked cantilever beam 

under moving load calculated by FEA, the results from FEA analysis were verified against 
such behavior calculated by Hai-Ping Lin and Shun-Chang Chang’s exact method. The 
graphs of the results from both methods were overlayed on top of the other in Figure 8. It 
can be clearly observed that in the range of position from 0–0.7 beam length, the two 
graphs almost coincided, while they did not deviate more than 5% in the range of position 
from 0.7–0.9 beam length. Therefore, it can be concluded that the beam vibrational behav-
ior was modeled sufficiently precisely for crack identification by the proposed crack-iden-
tification method. 

3.2. Average Dynamic Deflection Results 
Average dynamic deflection was evaluated by Equation (6). The calculated results 

are plotted against the position of the beam under four magnitudes of moving load in 
Figures 9–11, where a crack was positioned at x/l = 0.3, 0.5, and 0.7, respectively. It can be 
observed that all four curves in each figure are smooth curves that do not show a peak or 
trough at any position, i.e., a crack cannot be identified directly from these curves under 
any magnitudes of moving load. To conclude, average dynamic deflection data alone can-
not be used to identify a crack. However, the higher the moving load, the higher the mag-
nitude of average deflection or average displacement. 

 
Figure 9. Average Dynamic Deflection of Cracked Beam (crack at x/l = 0.30) under moving load. 

0 50 100 150 200 250
Node in or on Beam

0

0.5

1

1.5

2

2.5 10-3

Moving Load 70 N
Moving Load 80 N
Moving Load 90 N
Moving Load 100 N

Figure 9. Average Dynamic Deflection of Cracked Beam (crack at x/l = 0.30) under moving load.

Computation 2022, 10, 101 13 of 19 
 

 
Figure 10. Average Dynamic Deflection of Cracked Beam (crack at x/l = 0.50) under moving load. 

 
Figure 11. Average Dynamic Deflection of Cracked Beam (crack at x/l = 0.70) under moving load. 

It can be observed in Figures 12 and 13 that the average dynamic deflection of the 
uncracked beam was the lowest. However, it cannot be used to indicate the crack position 
in a cracked beam. 

0 50 100 150 200 250
Node in or on Beam

0

0.5

1

1.5

2

2.5 10-3

Moving Load 70 N
Moving Load 80 N
Moving Load 90 N
Moving Load 100 N

0 50 100 150 200 250
Node in or on Beam

0

0.5

1

1.5

2

2.5 10-3

Moving Load 70 N
Moving Load 80 N
Moving Load 90 N
Moving Load 100 N

Figure 10. Average Dynamic Deflection of Cracked Beam (crack at x/l = 0.50) under moving load.



Computation 2022, 10, 101 13 of 18

Computation 2022, 10, 101 13 of 19 
 

 
Figure 10. Average Dynamic Deflection of Cracked Beam (crack at x/l = 0.50) under moving load. 

 
Figure 11. Average Dynamic Deflection of Cracked Beam (crack at x/l = 0.70) under moving load. 

It can be observed in Figures 12 and 13 that the average dynamic deflection of the 
uncracked beam was the lowest. However, it cannot be used to indicate the crack position 
in a cracked beam. 

0 50 100 150 200 250
Node in or on Beam

0

0.5

1

1.5

2

2.5 10-3

Moving Load 70 N
Moving Load 80 N
Moving Load 90 N
Moving Load 100 N

0 50 100 150 200 250
Node in or on Beam

0

0.5

1

1.5

2

2.5 10-3

Moving Load 70 N
Moving Load 80 N
Moving Load 90 N
Moving Load 100 N

Figure 11. Average Dynamic Deflection of Cracked Beam (crack at x/l = 0.70) under moving load.

It can be observed in Figures 12 and 13 that the average dynamic deflection of the
uncracked beam was the lowest. However, it cannot be used to indicate the crack position
in a cracked beam.
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Figure 12. Average dynamic deflection of cracked and uncracked beam under a 100 N moving load.
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3.3. Dependence of Difference in Central Difference Approximation on the Magnitude of
Moving Load

Even though the graph of average dynamic deflection or average vertical displacement
of a vibrational cracked beam under moving load could not show the location of a crack, a
plot of the difference in central difference approximation of displacement of the cracked
beam and an uncracked beam under moving mass did show a sharp peak at the crack
location on the cantilever beam due to the change in stiffness of the beam at the crack.

Figures 14–16 illustrate the results obtained from the absolute difference in the central
difference approximation of displacement at a node of a cracked beam and an uncracked
beam, evaluated by Equation (3), at each of three wedge-shaped notch locations: a notch
(or a crack) at x1/l = 0.3; a notch at mid-span of the beam; and a notch at x1/l = 0.75. The
notch depth was 30% of the beam thickness. It can be observed that for all notch locations,
varying the moving load from 70 N to 100 N still provided clearly distinguishable peaks
at the same notch location, though a load of 100 N provided the highest peak because it
caused more deflection or displacement.
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3.4. Comparison of Crack Locations Identified by the Proposed Method and Pendy’s Mode
Shape Method

Figures 6–8 show plots (with 10−4 scaling) of three crack locations identified by the
proposed method (for which a moving load of 70 N was applied) overlayed on plots of the
three crack locations identified by Pendy’s curvature mode shape method. It can be clearly
seen that the locations were all corresponding to the exact same locations, showing that the
proposed method could be used as an alternative to Pendy’s analytical method without
any significant errors for identifying a crack in or on a cantilever beam.

3.5. Advantage of FEA in Comparison with Hai-Ping Lin and Shun-Chang Chang’s
Analytical Method

The operation of FEA was performed to evaluate the efficiency of the proposed method,
as an alternative to conducting an experiment or using an analytical method to simulate
vibration of the cracked beam and the uncracked beam.

At present, some kinds of vibration simulation of a cracked beam can be conducted by
analytical method [25], mostly analyzed with Fourier series. However, analytical solutions
to different sets of governing equation and boundary conditions may be too complex to
solve or even unsolvable for some specific applications. Engineers, however, want a fast
and familiar way to tackle a problem, instead of trying to find an analytical solution to the
problem and spend a lot of time and effort to code it in an efficient computational program-
ming language that they are not familiar with in order to finish a project in a sufficiently
short time. The bread-and-butter ready-made application program—SolidWorks, Ansys
FEA, and Matlab—that all engineers are familiar with are the tools that they can use to
develop a project much faster and easier than finding and coding an analytical solution of
the same problem. For instance, engineers only need to construct a 3D model of the object
and input it directly into Ansys without having to write a procedure to import a 3D file
into a manually coded program; then, they only need to assign boundary conditions, there
is no need to write code for them, and they can assign the moving load from a menu and
run the simulation, all with a few clicks of a mouse. The amount of time to complete a
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project, most likely, approximates the amount of time for finding an analytical solution and
manually coding a program to run the simulation (for engineers that are quite comfortable
with the programming language). As shown in our work, the result for crack identification
was virtually identical, and the economy in time and effort was real.

4. Conclusions

In the present work, a crack-identification method by FEA is presented based on
an assumption of a transverse surface crack, extending uniformly along the width of a
cantilever beam. In a numerical study, forced responses of an uncracked and a cracked
cantilever beam under a moving load were simulated by transient analysis using the
Ansys FEA software. Various notch locations for a crack were investigated. A time
domain procedure relying on measured time response was presented. Displacement at
each point on the beam was obtained from probe deformation menu for transient analysis
in Ansys software.

For forced responses of cantilever beams under a moving load, a numerical procedure
based on curvature mode shape was developed. Forced responses of cracked beams were
investigated with varying moving load. Locations of cracks were indicated by peaks of
absolute changes in central difference approximation of displacement plot. The effective-
ness of the proposed damage-identification scheme was positively verified by, first, its
ability to find the exact same location of the simulated crack as the exact solution method
has found, and second, by its simpler one-vibrational-mode procedure than the multi-
vibrational-mode that the curvature mode shape method of Pendy [5], quite often, required.
Therefore, it has a great application potential with the following advantage: only the deflec-
tion parameters of the beam are needed to perform damage localization, and the height of
curvature peaks can be varied by adjusting the weight of the moving load. The method can
be regarded as a relatively simple, low cost, and effective tool for nondestructive testing
(NDT) that does not require sophisticated equipment.

Since virtually every engineer is familiar with Ansys FEA but much less familiar with
coding an exact solution (when derivable) in a programming language, the advantage
of this method is that it can provide the location of a crack as accurately as an actual
experiment or an analytical method can, while taking much less time and effort to develop
and implement. With very little amount of trial and error, it can be expected that this
method will also accurately identify crack location in a more complex structure with
difficult-to-code boundary conditions.

5. Future Work and Limitations of the Proposed Method

This study was a first exploration and development of a crack-identification method,
so it is not extensive: (i) Only Euler beam type cantilever was investigated; (ii) the method
assumes a single damage location; and (iii) No noise was introduced to the simulated data
to test its robustness.

In the near future, we will test the method on various practical structures as case
studies. The method is a promising step towards establishing a practical and reliable piping
health monitoring procedure, where the location of a potential crack (such as a weld line) is
known beforehand.
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