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Abstract: The aim of this study is to investigate the effects of temperature-dependent viscosity
on the natural convection flow from a vertical permeable circular cone with uniform heat flux.
As part of numerical computation, the governing boundary layer equations are transformed into
a non-dimensional form. The resulting nonlinear system of partial differential equations is then
reduced to local non-similarity equations which are solved computationally by three different solution
methodologies, namely, (i) perturbation solution for small transpiration parameter (ξ), (ii) asymptotic
solution for large ξ, and (iii) the implicit finite difference method together with a Keller box scheme for
all ξ. The numerical results of the velocity and viscosity profiles of the fluid are displayed graphically
with heat transfer characteristics. The shearing stress in terms of the local skin-friction coefficient and
the rate of heat transfer in terms of the local Nusselt number (Nu) are given in tabular form for the
viscosity parameter (ε) and the Prandtl number (Pr). The viscosity is a linear function of temperature
which is valid for small Prandtl numbers (Pr). The three-fold solutions were compared as part of
the validations with various ranges of Pr numbers. Overall, good agreements were established.
The major finding of the research provides a better demonstration of how temperature-dependent
viscosity affects the natural convective flow. It was found that increasing Pr, ξ, and ε decrease the
local skin-friction coefficient, but ξ has more influence on increasing the rate of heat transfer, as
the effect of ε was erratic at small and large ξ. Furthermore, at the variable Pr, a large ξ increased
the local maxima of viscosity at large extents, particularly at low Pr, but the effect on temperature
distribution was found to be less significant under the same condition. However, at variable ε and
fixed Pr, the temperature distribution was observed to be more influenced by ε at small ξ, whereas
large ξ dominated this scheme significantly regardless of the variation in ε. The validations through
three-fold solutions act as evidence of the accuracy and versatility of the current approach.

Keywords: natural convection; computation; temperature-dependent viscosity; uniform heat flux;
permeable circular cone; finite difference; boundary layer

1. Introduction

Natural convection occurs in the environment. Different industrial applications, closed
containers, or any type of chamber, such as a greenhouse, are also good examples of loca-
tions where convective heat transfer occurs. In order to characterize different heat transfer
applications, heat flux is one of the major indices to be considered. Uniform heat flux is

Computation 2022, 10, 60. https://doi.org/10.3390/computation10040060 https://www.mdpi.com/journal/computation

https://doi.org/10.3390/computation10040060
https://doi.org/10.3390/computation10040060
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0000-0002-5909-0069
https://orcid.org/0000-0003-2877-4131
https://orcid.org/0000-0002-4892-745X
https://orcid.org/0000-0001-8724-5921
https://doi.org/10.3390/computation10040060
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation10040060?type=check_update&version=2


Computation 2022, 10, 60 2 of 21

often considered in geophysics as the soil is a complex porous material. The ability of a soil
specimen or soil surface to conduct heat, i.e., thermal conductivity, is significant to agricul-
tural systems, as the growth of plant canopies is directly dependent on soil temperature.
Soil has moisture contents, and moisture (water) exhibits temperature-dependent viscosity.
The viscosity of water hence directly influences the surface energy balance. Therefore, heat
flux through soil or any porous medium is significant in environmental or agricultural
applications. Due to different destructive geophysical applications, such as irrigations,
compactions, and sampling, the soil often loses its texture. Due to the complexities in the
geometry, the soil is often assigned a representative element to discuss different properties,
such as electrical or thermal conduction [1–3]. Therefore, heat transfer applications in
different geometries representing the soil, or any porous material, have attracted great
interest. Researchers have been studying natural convection for decades to solve different
heat transfer applications in different industries, such as renewable energy, agriculture, or
environment, to name a few [4–9]. In computational fluid dynamics (CFD) research, the
study of natural convective flow comprises different geometries and representative ele-
ments. The physical models or geometries are often considered to be square or rectangular
cavities with heated or cooled walls satisfying certain boundary conditions [10–13]. On the
other hand, the representation of elements is particularly defined by different dimensionless
parameters which are often varied to conduct sensitivity tests to understand the behavior
of the fluid flow under various conditions in order to perform the computation.

The study of heat transfer with different cross-sections has gained strong interest.
It is realistic to observe the patterns of fluid flow under various circumstances around
surfaces of different cross-sections, such as cylinders or cones, with possible inclusions
of permeability [14–18]. Merk and Prins [19,20] are often credited to be the pioneers in
developing solutions for the fluid flow past a vertical cone considering an axisymmetric
form. Later, Braun et al. [21] and Hering and Grosh [22] studied and developed the
numerical model further by keeping the Prandtl number (Pr) between 0.7 and 0.72. In
any case, all the studies mentioned above agreed on the existence of similar solutions for
natural convective flow from the vertical cone. Later, in the 2000s, the series of works done
by Hossain and Paul [23,24], as well as Hossain et al. [25], highlighted the investigation of
the natural convective flow from a heated vertical permeable circular cone by considering
both uniform [25] and non-uniform [23,24] surface heat flux and temperature. The three-
fold solutions were obtained by the finite difference method, series solution method, and
asymptotic solution method.

Most of the relevant published research works focused on sensitivity analyses on
constant viscosity. It is a well-known fact that the viscosity of the fluid does not remain
constant as a function of temperature. For example, Cebeci and Bradshaw [26] provided
a detailed chart outlining the changes in the water viscosity as a function of temperature,
where the value of viscosity decreased by approximately 240% as the temperature of the
fluid was elevated from 10 ◦C to 50 ◦C. A similar conclusion was drawn for other fluids as
well, such as air [26]. Therefore, a proper numerical establishment and computational model
in state-of-the-art research should take variable viscosity into account along with other
physical attributes. Some of the works have been found in the literature where viscosity was
varied, such as [27,28]. Ling and Dybbs [29] mentioned varying viscosity inversely for large
Pr numbers, but the possible implications of including small Pr numbers were not properly
investigated. In that case, many important fluids, such as liquid sodium (Pr ≈ 0.004) and
mercury (Pr ≈ 0.03), are being left out of consideration. Fluids with low Pr numbers are
thought to have small kinematic viscosity or a greater heat diffusivity. Therefore, fluids with
Pr << 1 will have heat being diffused quicker than the velocity. As a result, the numerical
models that are valid for high Pr numbers have significantly less versatility. In terms of
variable viscosity with temperature, Rahman et al. [18] investigated the natural convective
flow along the vertical wavy cone where viscosity was considered an exponential function
of temperature. In a similar geometry, Thohura et al. [30] emphasized the effects of the
temperature-dependent thermal conductivity. Recently, Khan et al. [31] studied the entropy
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generation of fluids within the incompressible boundary layer to understand the changes in
velocity and concentration profiles, which could only be explored due to the consideration
of temperature-dependent viscosity. Gladys and Reddy [32] also accentuated the role of the
temperature-dependent viscosity of non-Newtonian nanofluids through the accelerating
vertical plate to analyze the nonlinear buoyancy impacts.

In the literature, most of the works consider the constant viscosity of the fluid within
the boundary layer and failed to prove the accuracy of the model in various ranges of Pr
numbers. The current study considers both small (for example, 0.05) and large (for example,
0.7) Pr numbers. Therefore, it is essential to validate the current approach with different
numerical parametric tests to gain more confidence in the accuracy and versatility of the
approach. Therefore, more than one numerical solution/validation should be conducted to
gain a better understanding of the accuracy. Among different numerical techniques, the
Keller box method has been a popular and widely accepted numerical technique for nearly
five decades [33], with more applications being added to this scheme recently. For example,
Kamran et al. [34] have considered the Keller box approach to describe the Jefferey–Hamel
flow by considering different non-dimensional parameters to obtain solutions. Reddy
et al. [35] also obtained implicit finite difference results by the Keller box technique to study
the Joule heating and associated chemical reactions on the magneto Casson nanofluid.
Therefore, another evidence of expanding applications of the Keller box method was duly
noted. On the other hand, perturbation and asymptotic solutions were also found to be
highly efficient for small and large transpiration parameters (ξ), respectively, for the last few
years [36]. Therefore, the validations through a combination of conventional and modern
approaches should be adequate to prove the accuracy of the current approach and will
provide a new dimension to future study.

The present study aims to investigate natural convection flow in a vertical permeable
cone with uniform heat surface flux as viscosity varies in the computational model. The
present model is also valid for fluids with a low Prandtl number (Pr), thus resolving the
shortcomings of most of the literature in the past decades. The non-dimensional viscosity-
variation parameter (ε) has been included in the model, along with the pseudo-similarity
variable (η), to tune the fluid characteristics in the model. The suction parameter (ξ) has
been included at various ranges to observe the effect of changes in the rate of heat transfer
and shear stress. The sensitivity analyses have been conducted with both constant and
variable Pr numbers to observe the behaviors of the temperature and velocity distribution
of the fluid within the boundary layer. The model has been validated with both fixed and
variable Pr numbers to showcase the uniformity as well as the accuracy of the approach. The
three-fold numerical solutions have been conducted by implementing the aforementioned
parameters. The implicit finite difference method together with the Keller box scheme for
all ξ has been conducted, followed by perturbation for small ξ and, finally, the asymptotic
solution for large ξ. To the authors’ knowledge, there has not been any published work
that considers all the characteristics and scopes mentioned above.

2. Formulation of the Problem

A steady two-dimensional free convective flow in laminar form is considered over a
vertical permeable circular cone of radius r with uniform heat flux. The cone is immersed in
a viscous and incompressible fluid with temperature-dependent viscosity, for the numerical
investigation. It is assumed that the surface heat flux of the cone is qw. Here, T∞ is the
ambient temperature of the fluid, and the considered geometry is illustrated in Figure 1.
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Figure 1. Physical geometry and coordinate system of the vertical permeable circular cone considered
in this study.

The equations governing the flow are [23–25,30,37]:

Continuity equation :
∂(ru)

∂x
+

∂(rv)
∂y

= 0 (1)

Momentum equation : ρ

(
u

∂u
∂x

+ v
∂u
∂y

)
=

∂

∂y

(
µ

∂u
∂y

)
+ ρgβ(T − T∞) sin γ (2)

Energy equation : u
∂T
∂x

+ v
∂T
∂y

=
k

ρCp

∂2T
∂y2 (3)

The boundary conditions of Equations (1)–(3) are provided below [23]:

u = 0, v = −Vw, qw = −k
(

∂T
∂y

)
, at y = 0

u→ 0, T → T∞ as y→ ∞

}
(4)

where (u, v) are velocity components along the (x, y) axes, g is the acceleration due to
gravity, ρ is the density, γ is the cone apex half-angle, k is the thermal conductivity, β is the
coefficient of thermal expansion, µ(T) is the temperature-dependent viscosity of the fluid,
where T denotes the temperature, and V is the transpiration velocity, which is positive for
suction and negative for the injection of fluid through the cone. In the current research,
only the suction case has been considered, and therefore Vw has been considered to be
positive throughout.

Viscosity variations have multifarious forms. However, the one proposed by Char-
raudeau [38] is one of the most accepted ones and has been taken into account in this study.
The expression could be presented as the following:

µ = µ∞

[
1 +

1
µ f il

(
∂µ

∂T

)
f il
(T − T∞)

]
(5)

where the suffix fil represents the film temperature of the fluid.
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If suction is non-existent in the model, the boundary layer acts as the free convection
boundary layer near the leading edge, although improved downstream suction will be able
to dominate the flow to a greater extent. As a result, the following transformations are
required [23]:

ψ = ν∞rGr1/5
x

[
f (ξ, η) + 1

2 ξ
]
, T − T∞ = qwx

k Gr−1/5
x θ(ξ, η)

η = y
x Gr1/5

x , ξ = Vwx
ν∞

Gr−1/5
x , Grx = gβ cos γx4

kν2
∞

, r = x sin γ
(6)

where ν∞(=µ∞/ρ) is the reference kinematic viscosity, Grx is the local Grashof number, ξ is
the dimensionless transpiration parameter, η is the pseudo-similarity variable, f (ξ,η) and
θ(ξ,η) are the non-dimensional stream and temperature function, respectively, and ψ is the
stream function defined by the following:

u =
1
r

∂ψ

∂y
, v = −1

r
∂ψ

∂x
(7)

Substituting (6) into Equations (1)–(5) and after some algebraic calculation, the follow-
ing transformed equations are obtained:

(1 + εξθ) f ′′′ +
9
5

f f ′′ − 3
5

f ′2 + εξθ′ f ′′ + θ + ξ f ′′ =
1
5

ξ

(
f ′

∂ f ′

∂ξ
− f ′′

∂ f
∂ξ

)
(8)

1
Pr

θ′′ +
9
5

f θ′ − 1
5

f ′θ + ξθ′ =
1
5

ξ

(
f ′

∂θ

∂ξ
− θ′

∂ f
∂ξ

)
(9)

And the boundary conditions are presented hereby:

f = f ′ = 0, θ′ = −1, at η = 0
f ′ → 0, θ → 0, as η → ∞

}
(10)

where ε is the viscosity-variation parameter, and Pr is the Prandtl number defined as
the following:

ε =
1

µ f il

(
∂µ

∂T

)
f il

qwν∞

kV
and Pr =

µ∞Cp

k
(11)

The local non-similar partial differential equations presented in Equations (8) and (9)
need to be solved after finding the boundary conditions (Equation (10)), where the latter
could be obtained by the Keller box method, as verified in the literature [25]. The results are
computed by considering uniform grids in the ξ-direction with 1001 grid-points considered
in the 0 ≤ ξ ≤ 20. Further information on iterations and simulation strategies has been
included in Section 3.1.

After calculating the respective values of f, θ, and their derivatives, the fundamental
approach is to calculate the local skin-friction coefficient and the local Nu number from the
following expressions:

C f xGr1/5
x = f ′′ (ξ, 0) (12)

NuxGr−1/5
x =

1
θ(ξ, 0)

(13)

The results obtained by this method are presented in tabular form in Table 1 for
different values of the viscosity variation parameter ε (=0.0, 0.5, 2.0) and Prandtl number
Pr (=0.05, 0.1, 0.7). In the following sections, the solutions for small and large ξ have been
presented, and are numerically valid and accurate in both the neighboring leading edge
(small ξ) and downstream region (ξ).
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Table 1. Comparison of the finite difference solution with asymptotic solutions for the small and
large suction parameter ξ in terms of the CfxGrx

1/5 and Nux Grx
−1/5 while Pr = 0.2 for two different

values of ε.

ε = 0.0 ε = 1.0 ε = 0.0 ε = 1.0

CfxGrx
1/5 NuxGrx−1/5

ξ
Finite Diff.
For All ξ

Small &
Large ξ

Finite Diff.
For All ξ

Small &
Large ξ

Finite Diff.
for All ξ

Small &
Large ξ

Finite Diff.
for All ξ

Small &
Large ξ

0.0 1.9905 1.9929 1.9905 1.9929 0.3821 0.3821 0.3821 0.3821
0.02 1.9919 1.9958 1.9319 1.9354 0.3838 0.3836 0.3823 0.3822
0.04 1.9939 1.9987 1.8766 1.8823 0.3855 0.3852 0.3826 0.3824
0.06 1.9969 2.0014 1.8256 1.8337 0.3871 0.3867 0.3828 0.3826
0.08 1.9999 2.0042 1.7778 1.7895 0.3887 0.3883 0.3829 0.3827
0.10 2.0028 2.0069 1.7330 1.7499 0.3903 0.3898 0.3833 0.3831
0.14 2.0028 2.0122 1.6909 1.6842 0.3934 0.3929 0.3836 0.3833
3.0 1.6938 0.3584 - 0.6893 0.6591 -
5.0 0.9349 0.9388 0.1657 0.1620 1.0185 1.0169 1.0119 1.0095
6.0 0.6741 0.6774 0.1189 0.1145 1.2099 1.2081 1.2077 1.2046
7.0 0.5020 0.5044 0.0898 0.0846 1.4064 1.4044 1.4069 1.4025
8.0 0.3064 0.3284 0.0709 0.0649 1.8044 1.6026 1.6082 1.6014
10.0 0.2488 0.2495 0.0496 0.0416 2.0042 2.0011 2.0163 2.0006

2.1. Solution for Small ξ (ξ << 1)

The value ξ for x is small near the leading edge or small V or both, and the series
solution of Equations (8) and (9) can be found by applying the perturbation method
considering x as a perturbation parameter. In order to establish such an objective, the
functions f (ξ,η) and θ(ξ,η) in powers of ξ are expanded, and therefore:

f (ξ, η) =
∞

∑
i=0

ξ i fi(η) and θ(ξ, η) =
∞

∑
i=0

ξ iθi(η) (14)

Substituting the expansions from Equation (14) into Equations (8) and (9) and equating
the various powers of ξ up to 0(ξ2), the following batches of equations are obtained:

f ′′′0 +
9
5

f0 f ′′0 −
3
5

f ′0
2
+ θ0 = 0 (15)

1
Pr

θ
′′
0 +

9
5

f0θ′0 −
1
5

f ′0θ0 = 0 (16)

f0(0) = f ′0(0) = 0, θ′0(0) = −1
f ′0(∞) = θ0(∞) = 0

(17)

f ′′′1 + ε
(
θ′0 f ′′′0 + θ′0 f ′′0

)
+

9
5

f0 f ′′1 −
7
5

f ′0 f ′1 + 2 f ′′0 f1 + θ1 + f ′′0 = 0 (18)

1
Pr

θ
′′
1 +

9
5

f0θ′1 −
2
5

f ′0θ1 −
1
5

θ0 f ′1 + 2θ′0 f1 + θ′0 = 0 (19)

f1(0) = f ′1(0) = 0, θ′1(0) = 0
f ′1(∞) = θ1(∞) = 0

(20)

And

f ′′′2 + ε
(
θ0 f ′′′1 + θ1 f ′′′0 + θ′0 f ′′1 + θ′1 f ′′0

)
+ 9

5 f0 f ′′2 + 11
5 f ′′0 f2

− 4
5 f ′1

2 − 8
5 f ′0 f ′2 + 2 f ′′1 f1 + θ2 + f ′′1 = 0

(21)

1
Pr

θ
′′
21 +

9
5

f0θ′2 +
11
5

θ′ f20 −
2
5

f ′1θ1 −
1
5

θ0 f ′2 −
3
5

f ′0θ2 + 2θ′1 f1 + θ′1 = 0 (22)
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f2(0) = f ′2(0) = 0, θ′2(0) = 0
f ′2(∞) = θ2(∞) = 0

(23)

Equations (15)–(23) are solved pair-wise one after another. The solutions are obtained
by combining the famous Runge–Kutta–Butcher [39] initial value solver with the Nachts–
eim–Swigert iteration scheme [40]. Thus, solutions are found for f i and θi (i = 0, 1, 2) and
their respective derivatives.

Once the values of f i and θi for i = 0, 1, 2 and their derivatives are obtained, the local skin-
friction coefficient and the local Nusselt number are calculated from the following expressions:

C f xGr1/5
x = f ′′ (ξ, 0) = f ′′0 (0) + ξ f ′1(0) + ξ2 f ′′2 (0) (24)

NuxGr−1/5
x =

1
θ(ξ, 0)

= 1/
[
θ0(0) + ξθ1(0) + ξ2θ2(0)

]
(25)

The comprehensive values calculated from Equations (24) and (25) are presented in
Table 1. The comparison also served as part of the validations of the present approach.

2.2. Solution for Large ξ

Attention has been given in this part to the behavior of the solution to the Equations (8) and (9)
when ξ is considerably large. By the order of magnitude analysis of the various terms, ξθ′f ”
in (8) and ξθ′ in (9) were found to be the largest. However, in both of their equations, both
numerical terms need to be balanced mathematically. The balancing part is performed by
assuming η to be a small parameter, which will eventually make η-derivatives larger. It
is also important to determine the standard scaling approach considering θ = O(ξ − 1) as
ξ→ ∞. After balancing the f ′′′, θ, and ξθ′f ” terms in (9), η = O(ξ − 1) and f = O(ξ − 4) as
ξ→ ∞ would be found, which would also serve as a confirmation of the accuracy in the
balancing. As a result, the following expressions are substituted:

f = ξ−4 f̃ (ξ, η̃), θ = ξ−1θ̃(ξ, η̃), η̃ = ξη (26)

Substituting this transformation into Equations (8) and (9), we get the following equations:

(
1 + εθ̃

)
f̃ ′′′ + ξ−5 f̃ f̃ ′′ + θ̃ + f̃ ′′ + εθ̃′ f̃ ′′ =

1
5

ξ−4

(
f̃ ′

∂ f̃ ′

∂ξ
− f̃ ′′

∂ f̃
∂ξ

)
(27)

1
Pr

θ̃′′ + ξ−5 f̃ θ̃′ + θ̃′ =
1
5

ξ−4

(
f̃ ′

∂θ̃

∂ξ
− θ̃′

∂ f̃
∂ξ

)
(28)

The corresponding boundary conditions are

f̃ (ξ, 0) = f̃ ′(ξ, 0) = 0, θ̃′(ξ, 0) = −1
f̃ ′(ξ, ∞) = 0, θ̃(ξ, ∞) = 0

(29)

where primes describe differentiation with respect to η̃. Equations (27) and (28) are solved
in terms of an inverse power of series in ξ.

The functions f̃ (ξ, η̃) and θ̃(ξ, η̃) are expanded in the power series in the negative
powers of ξ, considering that ξ is large, which yields the following:

f̃ (ξ, η̃) =
∞

∑
i=0

ξ−5i f̃i(η̃) and θ̃(ξ, η̃) =
∞

∑
i=0

ξ−5i θ̃i(η̃) (30)

Now substituting the above expansions into Equations (27)–(29) and equating the
coefficient of power of ξ0 and ξ1, we get the following equations(

1 + εθ̃0

)
f̃ ′′′0 + f̃ ′′0 + θ̃0 + εθ̃′0 f̃ ′′0 = 0 (31)
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1
Pr

θ̃
′′
0 + θ̃′0 = 0 (32)

f̃0(0) = f̃ ′0(0) = 0, θ̃′0(0) = −1
f̃ ′0(∞) = 0, θ̃0(∞) = 0

(33)

(
1 + εθ̃0

)
f̃ ′′′1 + f̃0 f̃ ′′0 + θ̃1 + ε

(
θ̃1 f̃ ′′0 + θ̃′1 f̃ ′′0 + θ̃′0 f̃ ′′1

)
= 0 (34)

1
Pr

θ̃
′′
1 + 2θ̃′0θ̃′1 + f̃ ′0θ̃′0 + θ̃′1 = 0 (35)

f̃1(0) = f̃ ′1(0) = 0, θ̃′1(0) = 0
f̃ ′1(∞) = 0, θ̃1(∞) = 0

(36)

The local skin-friction and the local Nusselt number are as follows:

C f xGr1/5
x = f ′′ (ξ, 0) = ξ−2

[
f̃ ′′0 (0) + ξ−5 f̃ ′′1 (0)

]
(37)

NuxGr−1/5
x =

1
θ(ξ, 0)

=
ξ

θ̃0(0) + ξ−5θ̃1(0)
(38)

The asymptotic solutions obtained from (31)–(36) in terms of local skin-friction and
local Nusselt number and compared with the solution of the finite difference method
in Table 1.

3. Results and Discussion
3.1. Computational Methods

The analyses have been conducted by tuning the non-dimensional empirical param-
eters at different stages with both fixed and variable Pr numbers. The computation was
done by Fortran 90 [41]. The finite difference solutions were obtained by the Keller box
scheme [31–42], which is considered to be one of the most accurate implicit finite differ-
ence techniques in computational mathematics. Refer to [37] for a detailed explanation
of the Keller box method. In this method, the non-linear system of the partial differential
equations governing the fluid flow is solved, and an assumption is made in terms of the
functions and the derivatives to express the first-order equations. The derivatives in terms
of the central differences are approximated in both co-ordinate directions. This part is
particularly obtained by denoting the mesh points in the (ξ, η) plane by xi and ηI, where
i = 1, 2, 3, . . . , M and j = 1, 2, 3, . . . , N [37], followed by central difference approximations
where the equations containing x are centred explicitly at (ξi−1/2, ηj−1/2) and the rest at (ξi,
ηj−1/2), where ηj−1/2 = (ηj + ηj−1)/2, for instance. It yields a batch of non-linear differential
equations for the unknowns at xi in as a function of ξi−1. Then, those equations are subject
to linearization by Newton’s quasi-linearization method with a view to solving them by
taking a block-tridiagonal algorithm into account. The initial iteration of the converged
solution is considered to be at ξ = ξi−1. At the commencement, i.e., ξ = 0, the guess profiles
for all the considered variables are provided, and then the Keller box method comes into
the computation to solve the governing ordinary differential equations. By obtaining the
lower stagnation point solution, the steps could be performed along with the boundary
layer of the geometry [37]. The iteration is terminated once the target difference in velocity
and temperature computation is reached, and in this study it was |δf i| ≤ 10−6, where i
represents the number of iterations. It should be mentioned here that computations were
not conducted by a uniform grid in the y-direction. However, a non-uniform grid was
considered, which was then defined by ηj = sinh(( j − 1)/p), with j = 1, 2, . . . , 301 and
p = 100.

3.2. Overview of Numerical Analyses

At first, the validations were conducted by comparing the three different types of solu-
tions considered in this study. A different type of 3D analyses was conducted to assess the
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correlation coefficient, and good R2 values were obtained overall. As part of the discussion,
the streamlines and isothermal behavior have been presented. After that, the influence of
parameters has been investigated on the viscosity, velocity, and temperature distributions.
At the end of each analysis, a conclusion has been drawn outlining the significant and
non-significant impact of specified parameters under different circumstances.

3.3. Comparing Finite Difference Solutions with Perturbation and Asymptotic Solutions
3.3.1. Validation and Comparison at Fixed Pr

To assess the accuracy of the approach, the typical finite difference solutions have been
compared against the present approach with small and large suction parameters (ξ). To
achieve such an objective, two different values of ε were assigned (0 and 2), and Pr = 0.7
was considered. In other words, the comparisons have been made in both the absence
and presence of ε for the same type of fluid. The cross-validations were conducted by
observing the values of two different parameters namely, the local skin-friction coefficient
(CfxGrx

1/5) and the local Nusselt number (NuxGrx
−1/5). Table 1 contains the comprehensive

comparisons of the aforementioned conditions. In general, there is hardly any big difference
between the finite difference solutions and the asymptotic solutions. The slight deviation
in the values could be attributed to the percentage error in the approach.

According to Table 1, as ξ increased, CfxGrx
1/5 decreased, regardless of the ε values.

However, CfxGrx
1/5 values were found to be lower in the presence of ε, thus confirming

the role of the viscosity-variation parameter on the reduction of the local skin-friction
coefficient. This behavior could be explained in terms of the viscosity and temperature of
the fluid. As ε increased, the fluid temperature within the boundary layer increased, which
led to increased viscosity. Therefore, CfxGrx

1/5 decreased further. Similar patterns were
observed for both finite difference and asymptotic solutions.

Meanwhile, NuxGrx
−1/5 exhibited erratic trends. In general, NuxGrx

−1/5 increased
as ξ increased when ε = 0 was considered. However, as ε = 2 was assigned, NuxGrx

−1/5

values had a different pattern. Initially, NuxGrx
−1/5 kept on increasing as ξ increased when

ε = 2, and the values of local Nu number were lower than those achieved at ε = 0. However,
at ξ ≥ 2, the values of NuxGrx

−1/5 exhibited values higher than NuxGrx
−1/5 at ε = 0.

Furthermore, surface analyses were conducted to understand the rational behavior as
well as the accuracy of the approach. The purpose was to add one type of extra validation in
the current approach to check the model predictions for a different type of fluid. Therefore,
the local skin-friction coefficients and local Nu number were calculated at Pr = 0.7 and
the numerical accuracy was assessed by observing the coefficient of correlation (R2) at
ε = 0 and ε = 2. The surface analyses were performed by the data analysis software Origin
Pro, developed by OriginLab Corporation [42]. In the 3D analyses, solutions from the
finite difference method and perturbation-asymptotic solutions were illustrated in the same
frame to observe the analytical behavior as a function of the suction parameter (ξ). In
general, an R2 between 0.97 and 0.98 was obtained, which provides more confidence in the
calculative approach. Figure 2 depicts the predicted surfaces for CfxGrx

1/5 at different ξ in
the absence of ε (Figure 2a) and with an assigned value of ε (Figure 2b). Most of the obtained
points were found on the surface. In short, the marginal calculation error was noticed. On
the other hand, a similar analysis was conducted in terms of NuxGrx

−1/5 in Figure 3 under
the same ε conditions. It is evident that NuxGrx

−1/5 is increasing concurrently as ξ was
increasing in Figure 3a,b, in line with the argument presented in Table 1, where Pr = 0.2.
Furthermore, the calculated values from the asymptotic and perturbation solutions for
small and large ξ were found to be closer than those from the finite difference approach.
The missing values have not been included in the illustrations, and therefore the input
sample size is not consistent in all figures.
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Figure 3. Comparison of the finite difference solution with asymptotic solutions for the small and
large suction parameter ξ in terms of the NuxGrx

−1/5 while Pr = 0.7 for two different values of ε

namely, (a) ε = 0.0, and (b) ε = 2.0.

3.3.2. Comparison at Variable Pr

Figure 4 depicts the comparison of solutions at two different Pr values to confirm
the accuracy of the approach for two different types of fluids. It could be observed that
the agreements were excellent in terms of both CfxGrx

1/5 (Figure 4a) and NuxGrx
−1/5

at ξ ∈ [0,20] (Figure 4b)
It was observed that as Pr increased CfxGrx

1/5 values decreased, while NuxGrx
−1/5

increased concurrently. As ξ increased, the temperature of the fluid increased as mentioned
earlier, and hence at ξ = 20 the values of CfxGrx

1/5 were close to 0 due to the dominance
of the suction parameter, whereas at the same suction parameter value, NuxGrx

−1/5 was
found to be the highest regardless of Pr values. However, it should be mentioned that as
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ξ kept increasing, the difference between the NuxGrx
−1/5 of the fluid corresponding to

Pr = 0.1 became wider than the former, with Pr = 0.05.
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Figure 4. Comparison of the finite difference solution with asymptotic solutions for small and large
suction parameters ξ in terms of (a) the local skin-friction coefficient (CfxGrx

1/5) and (b) the local
Nusselt number (NuxGrx

−1/5) while ε = 0.5 and for two different values of Pr.

Since the temperature of the fluid kept increasing at increasing ξ values, the shear
stress, i.e., the local skin-friction coefficient, decreased, and to balance the temperature
difference, the rate of the heat transfer, i.e., the local Nu number, increased.

3.4. Development of Streamlines

This part of the discussion refers to fluids corresponding to two different types of Pr
numbers (Pr = 0.05, 0.1) to depict the changes in the streamlines as a function of the suction
parameter ξ. The streamlines illustrate the flow pattern within the momentum boundary
layer. The changes were analyzed by observing the variations in the values of the flow rate
(ψ). Two different viscosity-variation parameters (ε = 0.0, 0.5) were considered for each type
of fluid to include the effect of ε on the streamlines. It was anticipated that the differences
in the shapes of streamlines in both ε values would be quite marginal at low ξ(ξ < 4), due to
the lower effect of the suction parameter. However, as ξ increases to a considerably larger
value (ξ > 4), the differences between the shapes of streamlines of ε = 0.0 and ε = 0.5 increase
and do not overlap. Furthermore, since ε is the viscosity-variation parameter, its absence
will lead to the maximum flow rate, regardless of the Pr values. This behavior was expected
due to the effect of viscosity on the fluid movement, which has been explained in the later
sections, where the distribution of velocity profiles has been comprehensively discussed.

According to Figure 5, at lower ξ the streamlines corresponding to both ε values
overlap, indicating the non-significant impact of the suction parameter on the fluid charac-
teristics. A similar behavior was found for both Pr = 0.05 (Figure 5a) and Pr = 0.1 (Figure 5b).
However, as ξ kept on increasing, the differences in the maximum values of the fluid flow
rate of each segment corresponding to ε = 0.0 and ε = 0.5 were increasing gradually, which
was mentioned in the first paragraph. This behavior could be also explained in terms of
the effect of ε on the streamline’s development. In the presence of the viscosity-variation
parameter, the streamlines of the fluid seem to occupy less surface area due to the effect
of ε, which eventually restricts the local maximum of the velocity distribution of the fluid.
As per Figure 5a, while the maximum flow rate was found to be 42.90 in the absence of
ε, the value plummeted to 13.11 (Figure 5b). On the other hand, the fluid corresponding
to Pr = 0.1 exhibited a different trend in the pattern of streamlines. While the streamlines
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corresponding to the maximum flow rate were more aligned to the right side of the bound-
ary layer, the maximum flow rate curve at Pr = 0.1 shifted to the center of the boundary,
indicating the effect of Pr on the fluid characteristic. If Pr is increased, the momentum and
thickness of the thermal boundary layer decreased, and hence the flow rate got reduced.
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Figure 5. Streamlines for the two different viscosity-variation parameters ε at (a) Pr = 0.05 (b) Pr = 0.1.
Here, the solid lines stand for ε = 0.0 and the dashed lines for ε = 0.5. The values on each curve
represent the flow rate (ψ).

3.5. Isothermal Behavior within the Boundary Layer

After investigating the behavior of the streamlines, a similar parametric effect was
studied in terms of isotherms, illustrated in Figure 6. The isotherms depict the temperature
distribution within the boundary layer. It was expected that the isothermal lines closer to
the wall would be equal to the boundary temperature, which would lead to lines without
any significant peak values. The isothermal line considerably far from the wall boundary
would have peak values before plummeting gradually as the lines tended to come near the
boundary layer.
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Figure 6. Isotherms for the two different viscosity-variation parameters ε at (a) Pr = 0.05 (b) Pr = 0.1.
Here, the solid lines stand for ε = 0.0 and the dashed lines for ε = 0.5.

The isotherms appended in Figure 6 confirm the aforementioned statement. The
isothermal lines far from the boundary layer could be seen with a peak before gradually
starting to reduce. There is a slight deviation in the values between ε = 0.0 and ε = 0.5,
where the presence of ε reasonably increased the isothermal lines due to the influence of
the viscosity-variation. However, this was only visible when the lines were at an optimal
distance from the thermal boundary layer, where the influence of the latter would be less
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significant. A similar behavior was obtained in terms of streamlines as well where the
presence of ε shifted the streamlines up compared to the streamlines corresponding to
ε = 0.0. However, as the fluid motion decreases with an increase from Pr = 0.05 (Figure 6a)
to Pr = 0.1 (Figure 6b), the peak values of isothermal lines decrease (visible ones) due to
the reduction of the flow rate. The significant reduction in the maximum flow rate was
also recorded in Figure 6b, and hence the consistency of the streamlines and isothermal
analyses could be confirmed before heading towards the detailed parametric analyses in
the following sections.

3.6. Impact of ε, η, and ξ Fluid Characteristics at Fixed Pr
3.6.1. Influence on Viscosity Distribution

Figure 7 depicts the effects of both the viscosity-variation parameter (ε) and the suction
parameter (ξ) on the dimensionless viscosity. The pseudo-similarity variable (η) was varied
from 0 to a minimum of 6 (for ξ = 10) and a maximum of 10.0 (ξ = 1), depending on where
the viscosity started to remain indifferent regardless of the η values. In Figure 7a,b, Pr = 0.1
was considered to maintain the consistency of the fluid characteristics.
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Figure 7. Viscosity distribution profiles for different viscosity-variation parameters ε at (a) suction
parameter ξ = 1 and (b) suction parameter ξ = 10 while Pr = 0.1.

In general, it was found that as η increased, viscosity exhibited the local maximum
values at the maximum ε, in this case ε = 2, as well as at η = 0. However, the local maximum
viscosity was obtained at approximately 20.5 at ξ = 10, whereas it was found to be around
7.6 at ξ = 1. This behavior could be attributed to the fact that as the suction parameter
increases, the viscosity exhibits the maximum values due to the absence of a pseudo-
similarity variable which acts as a counterincentive to viscosity. On the other hand, ξ works
as a catalyst to the viscosity at an increased suction parameter, and at η = 0, the temperature
of the fluid within the respective boundary layer decreases, leading to the increased value
of viscosity. Meanwhile, the curves corresponding to ε ∈ [0,2] in Figure 7a,b showed similar
decreasing trends in viscosity. At ε = 0, there is no variation in the viscosity, and therefore
η will always be 1, regardless of the values of other influential parameters. As ε began
to increase, peak values started to increase from η = 0, before merging towards the unity,
indicating an insignificant impact of η on the viscosity. Due to the dominance of ξ = 10, the
viscosity reached the unity at a lower η than that of ξ = 1, which was also anticipated.
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3.6.2. Effect on Velocity Distribution (f ′)

In this part of the study, the changes in the non-dimensional velocity profiles were
investigated by varying η and ε ∈ [0,2], at Pr = 0.1.

It was anticipated that, in the absence of ε, the velocity distribution would keep
increasing as η increased and quickly reached the peak value, before η started to dominate,
which would lead to a rapid decrease in the velocity (f ′). As a consequence, at one
specific value of η, the fluid would not exhibit any rapid mobility within the boundary.
However, the local maximum of velocity would occur at a later stage of η if ε kept increasing.
Furthermore, the static condition of fluid was also expected to be quicker for a higher ξ (in
this case, ξ = 10), as a higher suction parameter demobilizes the fluid motion to a greater
extent. Figure 8 illustrates the influence of the aforementioned parameters on the velocity
distributions. As per Figure 8, as ε keeps increasing, the curves corresponding to the
velocity exhibited peak values and later started to decrease significantly, heading to the
static state as η increased.

Computation 2022, 10, x FOR PEER REVIEW 14 of 21 
 

 

= 10, the viscosity reached the unity at a lower η than that of ξ = 1, which was also antici-

pated.  

  

Figure 7. Viscosity distribution profiles for different viscosity-variation parameters ε at (a) suction 

parameter ξ = 1 and (b) suction parameter ξ = 10 while Pr = 0.1. 

3.6.2. Effect on Velocity Distribution (f’) 

In this part of the study, the changes in the non-dimensional velocity profiles were 

investigated by varying η and ε ∈ [0,2], at Pr = 0.1.  

It was anticipated that, in the absence of ε, the velocity distribution would keep in-

creasing as η increased and quickly reached the peak value, before η started to dominate, 

which would lead to a rapid decrease in the velocity (f’). As a consequence, at one specific 

value of η, the fluid would not exhibit any rapid mobility within the boundary. However, 

the local maximum of velocity would occur at a later stage of η if ε kept increasing. Fur-

thermore, the static condition of fluid was also expected to be quicker for a higher ξ (in 

this case, ξ = 10), as a higher suction parameter demobilizes the fluid motion to a greater 

extent. Figure 8 illustrates the influence of the aforementioned parameters on the velocity 

distributions. As per Figure 8, as ε keeps increasing, the curves corresponding to the ve-

locity exhibited peak values and later started to decrease significantly, heading to the 

static state as η increased.  

 
 

Figure 8. Changes in velocity distribution profiles for different viscosity-variation parameters ε at 

(a) suction parameter ξ = 1 and (b) suction parameter ξ = 10 while Pr = 0.1. 

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0.0

0.5

1.0

1.5

2.0



f
'

(a) 

Pr = 0.1
 =

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

0.0

0.5

1.0

1.5

2.0





(a) 

Pr = 0.1
 =

1.4 1.45 1.5 1.55 1.6
0.22

0.225

0.23

0.235

0.24

0.245

0.25

0.0

0.5

1.0

1.5

2.0

0 2 4 6
0

0.2

0.4

0.6

0.8

0.0

0.5

1.0

1.5

2.0





(b)


Pr = 0.1

 =

0 2 4 6
0

0.02

0.04

0.06

0.08

0.0

0.5

1.0

1.5

2.0



f
'

(b) 

Pr = 0.1
 =

0 2 4 6
0

5

10

15

20

25

0.0

0.5

1.0

1.5

2.0



v
is

co
si

ty
=

(b) 

Pr = 0.1
 =

(
+



)

0 2 4 6 8 10
0

2

4

6

8

0.0

0.5

1.0

1.5

2.0



(
+



)

(a) 

Pr = 0.1
 =

v
is

co
si

ty
=

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0.0

0.5

1.0

1.5

2.0



f
'

(a) 

Pr = 0.1
 =

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

0.0

0.5

1.0

1.5

2.0





(a) 

Pr = 0.1
 =

1.4 1.45 1.5 1.55 1.6
0.22

0.225

0.23

0.235

0.24

0.245

0.25

0.0

0.5

1.0

1.5

2.0

0 2 4 6
0

0.2

0.4

0.6

0.8

0.0

0.5

1.0

1.5

2.0





(b)


Pr = 0.1

 =

0 2 4 6
0

0.02

0.04

0.06

0.08

0.0

0.5

1.0

1.5

2.0



f
'

(b) 

Pr = 0.1
 =

0 2 4 6 8 10
0

2

4

6

8

0.0

0.5

1.0

1.5

2.0



(
+



)

(a) 

Pr = 0.1
 =

v
is

co
si

ty
=

0 2 4 6
0

5

10

15

20

25

0.0

0.5

1.0

1.5

2.0



v
is

co
si

ty
=

(b) 

Pr = 0.1
 =

(
+



)

0 2 4 6 8 10
0

1

2

3

4

0.0

0.5

1.0

1.5

2.0




(b) 

Pr = 0.1
 =

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0.0

0.5

1.0

1.5

2.0



f
'

(a) 

Pr = 0.1
 =

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

0.0

0.5

1.0

1.5

2.0





(b) 

Pr = 0.1
 =

0 2 4 6 8 10
0

2

4

6

8

0.0

0.5

1.0

1.5

2.0



v
is

co
si

ty

(b) 

Pr = 0.1
 =

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0.0

0.5

1.0

1.5

2.0



f
'

(a) 

Pr = 0.1
 =

0 2 4 6
0

0.02

0.04

0.06

0.08

0.0

0.5

1.0

1.5

2.0



f
'

(b) 

Pr = 0.1
 =

Figure 8. Changes in velocity distribution profiles for different viscosity-variation parameters ε at
(a) suction parameter ξ = 1 and (b) suction parameter ξ = 10 while Pr = 0.1.

At ε = 0 and ξ = 1 (Figure 8a), the velocity reached its maximum value of 0.955 at
η = 1, whereas it was 0.85 at ε = 0.5. The lowest peak was recorded at the maximum ε
values considered in this section (ε = 2), and due to the dominance of η and ε, the fluid
had the lowest peak. In any case, after reaching the peak, velocity started to decrease
significantly before reaching the completely static state at η = 10. On the other hand, at
ξ = 10 (Figure 8b), similar trends were observed for the velocity at different ε and η, but
due to the 10-time-increasing high suction parametric value, the peak velocity values were
significantly lower, which indicates the superiority of the high ξ values. It is also expected
that further increases in ξ will lead to further reduced peak values, and, at one stage, the
fluid will remain static.

3.6.3. Changes in Temperature Distribution

Studying the changes in the temperature was crucial to the current research, since
it provided more information on the effect of ε and η. To maintain consistency in the
presentation, the changes in the non-dimensional temperature were studied by varying η
and ε ∈ [0,2], at Pr = 0.1.

Figure 9 reports the consistent decreasing trend of temperature as η increased. How-
ever, the peak θ was recorded at the highest ε (in this case ε = 2) and lowest pseudo-similarity
variable (η = 0), where ξ was unity. This behavior could be well-explained in the light
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of a conceptual understanding of the effect of the viscosity-variation parameter on the
temperature. In the absence of η and ε, the temperature exhibited the lowest peak value
of 2.9, whereas at ε = 2 the value of dimensionless temperature was found to be 3.35. The
differences in the θ outline the impact of the viscosity-variation parameter on the tempera-
ture. However, as η started to have non-zero input, the temperature kept on decreasing
rapidly and it was close to 0 as η reached maximum input values corresponding to the case
studies (η = 10 for Figure 9a, η = 6 for Figure 9b). The lowest temperature values could
also be linked with the velocity profiles obtained in Figure 8, which showed that in similar
η values, the velocity reached 0, thus almost demobilizing the fluid within the boundary
layer. Since there was no velocity or marginal velocity recorded at η = 10 in Figure 8a and
η = 6 in Figure 8b, this backs up the concept that temperature will be close to 0 or equal to
0 as the fluid remains static. In addition, the influential impact of the suction parameter
ξ largely reduced the temperature of the fluid, and the impact of ε was quite marginal,
indicating the dominance of ξ (Figure 9b). While the curves seemed to overlap in Figure 9b,
the magnified frame demonstrated the marginal differences at the narrowed axes.
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Figure 9. Temperature distribution for different viscosity-variation parameters ε at (a) suction
parameter ξ = 1 and (b) suction parameter ξ = 10 while Pr = 0.1.

3.7. Impact of ε, η, and ξ Fluid Characteristics at Variable Pr
3.7.1. Impact on Viscosity Distribution

In general, the Pr number distinguishes different types of fluids. For example, Pr = 0.01
refers to sodium, Pr between 0.02 to 0.03 refers to mercury. The purpose of different Pr tests
in this study is to explore the uniformity of the numerical solution.

Figure 10 shows the changes in the non-dimensional viscosity values as a function of
Pr. The value of ε was kept constant at 1, whereas two different suction parameters were
appended in the numerical simulations. In addition, η ∈ [0,10] was also considered. It was
observed that the fluid corresponding to Pr = 0.01 exhibited the highest peak value when
η = 0, indicating the absence of η or the fact that the low viscosity-variation parameter
increased the viscosity value. As Pr got increased, the peak values got reduced as well.
While the local maximum viscosity of the fluid of Pr = 0.01 was found to be 9.45 at η = 0,
the fluid corresponding to Pr = 0.1 exhibited a local maximum viscosity of 4.2. However,
as η kept on increasing, the viscosity kept decreasing due to the dominance of η on the
viscosity values. However, these phenomena were obtained at a low suction parametric
value ξ = 1, as presented in Figure 10a. As ξ increased to 5, the peak values of each fluid
at different Pr exhibited a rapid increase in the local maxima. The fluid corresponding
to Pr = 0.01 demonstrated a peak viscosity value of approximately 40, which was 9.45
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when ξ = 1 was considered. This 323.28% increase in the value could be attributed to the
increase in ξ, which eventually increased the viscosity value in the absence of η. The rest of
the fluids with further increased Pr also demonstrated similar characteristics, as depicted
in Figure 10b.
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Figure 10. Viscosity distribution for the different Prandtl number (Pr): at (a) suction parameter ξ = 1
and (b) suction parameter ξ = 5 while ε = 1.0.

3.7.2. Changes in the Velocity Distribution

Velocity distribution corresponding to different Pr implies the influence of Pr on
different types of fluids, as other parameters, such as η and ξ, are varied. The viscosity-
variation parameter εwas fixed at 1. In general, the patterns of velocity distribution had
similarities with those obtained in Figure 11, which also indicates consistency in the current
approach. As η started to increase from 0, the velocity started to increase rapidly before
hitting the peak, followed by a sharp decrease in a fluid motion. However, within the
η ∈ [0,10] boundary, only fluids corresponding to Pr = 0.01, 0.02 remained mobile, although
the values of f ′ were significantly lower at η = 10, as shown in Figure 11a. On the other
hand, the rest of the fluids headed towards the static condition within the boundary layer
at η = 10, thus establishing the preeminence of η over the fluid mobility. A similar behavior
was observed at an increased ξ = 5 (Figure 8b), but the influence on f ′ was not robust. As ξ
increased to 5 from 1 in Figure 11b, the local maxima decreased. While at ξ = 1, Pr = 0.02,
the local maximum was recorded to be approximately 1.4, and the value was found to
be around 0.85 when ξ = 5 was considered. It should be mentioned here that while ξ
attenuated the peak values of the velocity, it also influenced the local maxima of fluids
with lower Pr values to occur at higher η. For example, fluid corresponding to Pr = 0.02
had a peak at η ≈ 2 at ξ = 1 (Figure 11a), whereas it was found to be at η ≈ 3 when ξ = 5
(Figure 11b).

3.7.3. Effect on Temperature Distribution

In the final part of sensitivity analyses, the effect of dimensionless parameters η and ξ
has been investigated on the temperature distribution as Pr varied from 0.01 to 0.1 under
no viscosity variation, i.e., ε was constant 1 throughout this analysis. In general, it was
expected that η would have more influence on the temperature distribution with varied
Pr numbers, as fluids’ temperature would likely to be more influenced by Pr values, as it
would characterize the type of fluid, and η would be able to dominate, since the viscosity-
variation parameter was kept constant. The suction parameter ξ was expected to have a
marginal influence on the temperature distribution of fluids with low Pr (in this case 0.01
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and 0.02) and a pronounced effect on the rest. In any case, the influence of ξ will not be
significantly large on temperature distribution.
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Figure 11. Velocity distribution for the different Prandtl number (Pr): at (a) suction parameter ξ = 1
and (b) suction parameter ξ = 5 while ε = 1.0.

Figure 12 supports the aforementioned claims. For instance, the fluid corresponding
to Pr = 0.01 had the highest peak temperature value, regardless of the ξ values. However,
the peak was only visible at η = 0 in both cases (ξ = 1 or ξ = 5). As η increased gradually,
the temperature value θ kept decreasing, indicating a reduction in fluid temperature within
the boundary layer. However, fluids with Pr ≥ 0.05 exhibited a θ close to 0 as η = 10 was
considered in the input. This behavior was also observed in both ξ values. At Pr = 0.01, θ
marginally decreased from 7.9 (Figure 12a) to 7.6 (Figure 12b) as ξ increased from 1 to 5
when η was non-existent in the computation. A similar attribute was noticed at Pr = 0.02
as well. However, at Pr = 0.1, the plummeting rate was significantly larger. While θ = 3.6
was observed for P r= 0.1 under no η condition (Figure 12a), the value was found to be
decreased to 1.8 when ξ = 5 was considered. This decrease could be attributed to the
thermal properties of the fluid. Increased Pr values imply the fluids which have low or
decreasing thermal conductivity. Therefore, as the Pr increased, the fluid was not able to
conduct heat significantly, which eventually decreases the thickness of the boundary layer.
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Figure 12. Temperature distribution for the different Prandtl number (Pr): at (a) suction parameter
ξ = 1 and (b) suction parameter ξ = 5 while ε = 1.0.
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4. Conclusions

The present study discusses the effect of viscosity-variation in the natural convective
flow inside a permeable vertical cone with a uniform surface heat flux. The numerical
analyses performed in this study will provide elaborate explanations on the novelty of
considering temperature-dependent viscosity to aid in different environmental and agri-
cultural applications targeting uniform heat flux of a porous medium such as soil. Soil
contains different types of fluids and may be represented in different geometries to explore
all possible scenarios that occurred by either natural or human-made phenomena. Different
types of fluids have been assigned by varying Pr numbers. Later, further investigations
have been conducted in different parametric studies, which could be subcategorized into
two major categories: (i) fixed Prandtl number (Pr) and (ii) variable Prandtl number (Pr).
The numerical model was developed by transforming the governing boundary layer equa-
tions into a dimensionless form. In addition, the local non-similarity equations, obtained as
a result of a non-linear system of partial differential equations’ reduction, were solved by
three different solution techniques. The validations were conducted at both fixed Pr and
variable Pr to assess the accuracy of the model. The model assessment was conducted by
comparing the finite difference solution with the asymptotic solutions for large and small
ξ values, and good agreements were established. The summary of the present study is
mentioned in the following:

• Increasing the suction parameter (ξ) leads to decreasing shear stress (local skin-friction
coefficient) and increasing the rate of heat transfer (local Nusselt number). The increas-
ing and decreasing characteristics could be attributed to the temperature difference of
the fluid within the boundary layer, which requires balancing the physical difference.

• As the viscosity-variation parameter (ε) increases, the local skin-friction coefficient
decreases concurrently due to the effect of viscosity. On the other hand, increasing the
rate of heat transfer as a function of ε does not remain consistent due to the effect of
ξ. A small ξ rate of heat transfer decreases as ε increases, but the opposite behavior
is observed with a large ξ, which indicates the superiority of the suction parameter
over viscosity.

• If Pr increases, the local skin-friction coefficient decreases, and the rate of heat transfer
increases rapidly due to the changes in the physical characteristics of the fluid and
its viscosity.

• At ε 6= 0, as η increases, viscosity decreases rapidly and heads towards 0 due to the
dominance of η. However, at fixed ε and variable Pr, the curves corresponding to
viscosity values exhibit the lowest value at a much later stage, indicating the high
viscous characteristics of fluids with low Pr number.

• At any value of ε, at η ∈ [0,1], velocity increases the maximum at one point and
then sharply plummets towards static condition at η > 6. However, a large suction
parameter (ξ = 10) significantly lowers the peak values regardless of ε or types of fluids.

• An increased value of ε leads to the highest local maximum of temperature distribution
in the absence of η and at a fixed Pr number. However, at η 6= 0, the temperature
starts to decrease gradually. The large suction parameter (ξ = 10) also suggestively
lowers the peak values regardless of ε or types of fluids. Meanwhile, at the variable Pr
number, the local maxima of temperature distribution get marginally affected at a low
Pr number (<0.05).
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Nomenclature
C Specific heat
Cf Skin-friction
f Dimensionless stream function
Gr Grashof number
k Thermal conductivity
Nu Nusselt number
Pr Prandtl number
q Heat flux
r Radius of the cone
u Velocity component in the x-direction
v Velocity component in the y-direction
x Coordinate along a cone ray
y Coordinate normal to cone surface
g Acceleration due to gravity
T Temperature
V Transpiration velocity
Greek Symbols
β Thermal expansion coefficient
ε Viscosity-variation parameter
γ Cone apex half-angle
Σ Summation
θ Dimensionless temperature function
η Pseudo-similarity variable
ξ Dimensionless transpiration/suction parameter
ρ Fluid density
µ Viscosity of the fluid
ψ Stream function
Subscripts
fil Film temperature
i Sequence of term
p Constant pressure or isobaric
x Differentiation with respect to x
w Surface
∞ Ambient state
Superscript
‘ Differentiation with respect to η̃

i Number of iterations
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