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Abstract: This study aims at developing models in analyzing the results of proficiency testing (PT)
schemes for a limited number of participants. The models can determine the best estimators of location
and dispersion using unsatisfactory results as a criterion by combining: (a) robust and classical
estimators; (b) kernel density plots; (c) Z-factors; (d) Monte Carlo simulations; (e) distributions
derived from the addition of one or two contaminating distributions and one main Gaussian. The
standards ISO 13258:2015, ISO 5725:2:1994, and EN ISO/IEC 17043:2010 are the basis of the analysis.
The study describes an algorithm solving the optimization problem for (a) Gaussian, bimodal or
trimodal distributions; (b) participating labs from 10 to 30; (c) fraction of the contaminating population
up to 0.10; (d) variation coefficient of the main distribution equal to 2; (e) equal standard deviations
of all the distributions, and provide figures with the optimal estimators. We also developed a
generalized algorithm using kernel density plots and the previous algorithm, which is not subject
to restrictions (b)–(e) and implemented in the results of a PT for the 28-day strength of cement with
12–13 participants. Optimal estimators’ figures and the generalized algorithm are helpful for a PT
expert in choosing robust estimators.

Keywords: proficiency testing; robust estimator; kernel; Monte Carlo; optimization

1. Introduction

In an interlaboratory test, different laboratories measure one or more characteristics
of one or various homogenous samples, following the corresponding standards and doc-
umented procedures. The evaluation of participant performance against pre-established
criteria through interlaboratory comparisons is called proficiency testing (PT) [1] (p. 2).
The PT is a means in verifying and improving the technical competence of labs, and it
is one of the accreditation requirements according to ISO/IEC 17025: 2017 [2] (p. 14).
Z-score usually expresses the performance of each participant. The value of Z depends on
both assigned value and standard deviation for proficiency assessment [1] (p. 30). These
two values are frequently affected by results appearing inconsistent with the remainder
dataset, called outliers. ISO/IEC 17043:2010 requires the use of robust statistical methods
or appropriate tests to detect statistical outliers, where such statistical methods are defined
as being insensitive to small departures from underlying assumptions surrounding a prob-
abilistic model [1] (pp. 2–3). The vulnerability of the most common statistical estimators
to the data contamination by noise or outliers led to this research and motivated the use
of robust statistical estimation. The robustness measure of the first statistical estimators
was the influence function, and they were robust to small changes of a single measurement.
Later, the focus of robust estimation became methods with a high breakdown point [3]. In
connection to the above, the finite sample breakdown point of an estimator is the minimum
proportion of observations that, when altered sufficiently, can render the statistic beyond
all bounds [4,5]. A systematic treatment of robust statistics is provided by Hampel et al. [6],
Huber et al. [7], and Maronna et al. [8]. A series of researchers focused on specific areas of
robust statistics, such as the kernel density estimation [9–11] and the robust estimates of
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location and standard deviation in control charts [12,13]. Annex C of ISO 13258:2015 [14] de-
scribes a series of robust estimators for the population mean and standard deviation widely
used in PT schemes as an alternative to the classical method analyzed in 5725–2:1994 [15].
The estimators of the population mean are the median value, MED; the average according
to algorithm A with iterated scale, Ax*; the Hampel estimator for mean, Hx*. The corre-
sponding estimates of the standard deviation are the scaled median absolute deviation,
MADe; the normalized interquartile range, nIQR; the estimator according to algorithm A
with iterated scale, As*; the estimator according to the Q method, Hs*. ISO 13253:2015 [14]
(p. 53) notifies that the MADe estimator shows appreciable negative bias for participants
less than 30, which may adversely affect the Z values. Rosseeuw et al. [16] constructed alter-
native estimators to the MADe by studying their influence functions, their bias curves, and
their finite sample performance. These methods rely on applying univariate algorithms to
results of one measurand or test material at a time. A multivariate approach is necessary if
the participants provide measurements of a characteristic in several test materials. Various
researchers have faced and successfully solved the multivariate problem [17–20].

Although there is widespread development and implementation of PT schemes world-
wide for a variety of types of analyzes, tests, and laboratories, the number of studies
comparing these estimators for their optimality is limited. Rosario et al. [21] evaluated
one round of data of a PT scheme on precious alloys by comparing four statistical meth-
ods: (a) ISO 5725-2 to calculate the grand mean and reproducibility; (b) MED and MADe;
(c) algorithm A of ISO 13528 for the robust average and standard deviation; (d) fit-for-
purpose criterion [22] using the robust average and a target reproducibility derived from
past tests. They comment on the results of each method without coming up with an optimal
one for these results. Srnková et al. [23] investigated 953 datasets of chemical analyzes
performed in soils, sludge and sediments, and other materials of various PT schemes. The
processing using the average and standard deviation calculated according to algorithm
A with iterated scale [14] was found to be the most suitable for matrices and levels of
measurands. Tripathy et al. [24] compared a series of statistical methods for outliers’ detec-
tion in PT data of lead analysis in an aqueous solution. They used typical outliers’ tests
described in ISO 5725-2 and the Z-score derived from robust methods like MED-nIQR and
method A with an iterated scale. They also utilized a procedure provided by the National
Association of Testing Authorities (NATA) of Australia, concluding that it seems more
suitable in outliers’ detection for the evaluated dataset. Daszykoswki et al. [25], in an
excellent review of robust statistics in data analysis, note that the Q estimator shows higher
efficiency than MADe at Gaussian distributions. De Oliveira et al. [26] compare different
statistical approaches, classical and robust, to evaluate the participants’ performance in
a PT program for lead in blood determination. One of their main conclusions is that a
PT provider should conduct studies using different statistical approaches to obtain the
best standard deviation estimate since there is no consensus on which method is more
suitable for the experimental data. All the reported comparative studies between the
procedures described in the international standards refer to individual PT schemes. A more
generalized and practical approach to the robustness and optimal use of these methods
remains challenging. Kojima et al. [27] attempted such generalization using a Monte Carlo
approach by adding a contaminating Gauss distribution to the main one. They also discuss
an actual PT for a dioxin isomer compared with the simulation results. They restricted their
study to the next set of parameters: (a) The number of participants is 200; (b) the standard
deviation of the main population is 5% of the mean value; (c) the secondary population is
20% of the total. They concluded that the robustness to outliers of the MED-nIQR is more
significant than the algorithm A with iterated scale and the Q-Hampel method. However,
they noticed that the MED-nIQR does not always provide the best conclusion in the actual
PT due to its reduced degrees of freedom.

ISO 13528:2015 dedicates a part of the informative annex D to describe procedures for
a small number of participants [14] (pp. 63–64). Belli et al. [28] and Kuselman et al. [29]
studied the implementation of PT schemes for a limited number of participants and the
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comparability of their results. Hund et al. [30] report the importance of the labs’ number
to determine repeatability and reproducibility. The PT organizer usually performs the
test several times a year because the participating labs must regularly demonstrate their
technical competence.

This study uses the Monte Carlo approach to investigate the optimal use of the robust
methods mentioned above by taking as initial point the idea of the addition of a Gaussian
distribution and one or two contaminating ones and considering participants ranging
from 10 to 30. The ISO guide 98-3 [31], referred to the expression of the uncertainty in
measurement, also utilizes the same Monte Carlo approach to investigate the propaga-
tion of distributions. The simulation cooperates with the kernel density plots created
following ISO 13528:2015 [14] (pp. 32–33). Actual results of the 28-day cement strength
measured according to EN 196-1 [32] are also processed, belonging to a PT scheme of
cement organized by Eurocert S.A. This company is the provider for several accredited
and fully conforming with ISO/IEC 17043:2010 PT schemes in construction materials, one
of which is the PT of cement. The organizer performs the cement scheme nine rounds a
year with 11–14 participants per round, including all the tests defined by the standard
EN 197-1 [33]. All tests performed on all PT schemes follow international test standards
of the respective materials to minimize the uncertainty due to the measurement method.
For all the PT schemes, the organizer shows special care for the homogeneity and stability
of the distributed samples by strictly applying the corresponding sections of the stan-
dards ([1] pp. 8–9, [14] pp. 44–51). Note that this is not an easy task for samples of some
building materials. Examples include preparing cubic specimens of fresh concrete and
obtaining hardened concrete cores. Participants pass their results on specialized software
forms to avoid numerical errors as much as possible. The organization has a committee
to assess the results of all schemes and a technical expert who developed the software
for evaluating the results. This software computes all estimators for location, standard
deviation, and repeatability provided in [14,15], including uncertainties for assigned value
and repeatability. The algorithm calculates the Z-factors per participant and each test
result, using the respecting values of Hx* and Hs*. The report of each round comprises,
except the numerical results, various charts assisting in evaluating the performance of each
lab: Control charts of Z-score; Grubbs’ test; Cochran’s test; Kernel density plots; plots of
repeatability standard deviation. The central evaluating indicator is the Z-score, while the
others are informative.

The structure of the paper is as follows. Section 2 presents the kernel density plots as
a possibility to estimate the results’ distribution and shows that the sum of two or three
normal distributions of adjustable parameters can adequately approximate an actual kernel
density plot. The section also describes the Monte Carlo-based model and its inputs and out-
puts. Section 3 compares the population means and standard deviations of all the methods
reported in [14,15] for selected distributions. It also provides an algorithm in determining
the best estimators for a small number of laboratories when the contaminating populations
are up to 10% of the total. Section 4 implements this algorithm concluding in some tables
of optimal estimators if the model assumptions are valid or nearly valid. Additionally,
it provides a generalized algorithm taking into account the findings of Sections 2 and 3,
which, finally, is applied to 18 datasets of actual PT results. The author developed all
software in C#.

2. Model Development

One of the main goals of a PT scheme is to enable the participating laboratories to
have a unimodal distribution of results through the corrective actions taken in each round
of tests. However, the distribution of most data sets is not symmetrical or includes a
proportion of results that are distant from the rest. One of the tasks of this research is the
effective modeling of these density functions in a form convenient to apply the estimators
of the location and variance referred to the statistical standards related to the PT schemes
and to calculate the respecting Z-factors. The probabilistic assumption used in modeling
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the density distribution of the PT results is that it comes from the addition of Gaussian
distributions of different mean values and equal or unequal variations. The model assumes
up to three distributions, one of which is the main one and the others are contaminating
ones. The resulting sum of such distributions fits well with the actual ones, as one can see
in Section 2.1.

2.1. Kernel Density Plots and Initial Simulations

ISO 13258-2015 [14] (p. 10, Note 1) refers that a kernel density plot is functional in
identifying bimodalities or lack of symmetry. This standard describes the algorithm to
develop these plots in paragraph 10.3 [14] (pp. 32–33), and Figure 1 shows two examples of
kernels plots of two 28-day strength tests performed during 2020. The software utilizes
normal distributions and the nIQR as the standard deviation estimator to derive the kernels,
as the standard recommends [14] (p. 32).

Figure 1. Examples of kernel density plots.

The results of each test belong to distributions that are difficult to disclose for par-
ticipating laboratories, 11 to 13 per round. However, the results of all yearly tests are a
population large enough to estimate the distribution. The algorithm achieves normalization
by using the difference of the assigned value from the mean value of each participant,
Dij = xij − xpt,j, where i is the participant and j is the round. Figure 2 depicts the kernel
functions and the actual 28-day strength results for the 2019 and 2020 rounds.

Figure 2. Actual distributions, kernel plots, and calculated distributions for all the yearly results.
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The addition of one or two contaminating normal distributions to the main distribution
effectively simulates such situations. The best-fitting mix of normal distributions, having
the minimum distance from the kernel distribution, is also presented in Figure 2. The
fraction of the surface of each distribution and the corresponding parameters have been
computed using the Generalized Reduced Gradient non-linear regression technique, and
their values are shown in Table 1.

Table 1. Parameters of the normal distributions.

Parameter 2019 2020

Main distribution mean value, m1, MPa 0.00 0.04
Main distribution standard deviation, s1, MPa 1.24 1.46

Second distribution mean value, m2, MPa 2.51 4.00
Second distribution standard deviation, s2, MPa 0.90 0.70

Third distribution mean value, m3, MPa −4.30 −3.60
Third distribution standard deviation, s3, MPa 0.90 0.70

Fraction of the main distribution, fr1 0.812 0.925
Fraction of the second distribution, fr2 0.107 0.019
Fraction of the third distribution, fr3 0.081 0.057

Distance of m1 and m2, |m2 − m1|/s1 2.0 2.7
Distance of m1 and m3, |m3 − m1|/s1 3.5 2.5

Using the subsequent two simple simulations, one can observe the impact of the
secondary contaminating distributions on the main one:

(i) The main normal distribution with m1 = 0 and s1 = 1 represents 90% of the population,
while a secondary group representing the rest 10% has m2 = 2s1, 4s1, 6s1, and s2 = s1.
The sum of the two populations results in a bimodal distribution.

(ii) The main distribution with m1 = 0 and s1 = 1 represents 90% of the population, a
second one the 5% with m2 = 4s1, while a third distribution the rest 5% with m3 =−4s1,
−2s1, 2s1. All the standard deviations are equal to one, and the derived distribution
is trimodal.

(iii) Figures 3 and 4 demonstrate the results of these initial simulations, and one can
recognize a lot of actual distributions obtained in proficiency testing.

2.2. Monte Carlo Simulations

The model developed utilizes the Monte Carlo approach to investigate and compare
the robust methods used in the PT schemes. It assumes a default normal distribution of
mean m1 and standard deviation s1, contaminated with one or two secondary distributions
with mean values m2 and m3, respectively, and standard deviations equal to s1. The
following data are inputs and independent variables of the algorithm:

• Number of participating laboratories, Nlab;
• Number of replicate analyses per laboratory, Nrep;
• Repeatability standard deviation, sr;
• Mean of the main normal distribution, m1;
• Standard deviation of the main normal distribution, s1;
• Mean and standard deviation of the second distribution, m2, s2;
• Population fraction of second distribution, fr2;
• Mean and standard deviation of the third distribution, m3, s3;
• Population fraction of third distribution, fr3;
• Number of iterations, Niter;
• Number of simulations, Ns;
• Number of buckets to create histograms, Nb.



Computation 2022, 10, 44 6 of 21

Figure 3. Distribution of populations consisting of a main and secondary distribution. Dashed lines;
main and secondary groups, and solid line; total population.

Figure 4. Distribution of populations consisting of a main and two secondary distribution. Dashed
lines; main and secondary groups, and solid line; total population.

The Monte Carlo simulation initially selects a main normal distribution with mean
value m1 and standard deviation s1 and adds two distributions contaminating the first one.
The mean values of these two added populations are m2 and m3, their standard deviation
s2 = s3 = s1, the repeatability of each result is equal to sr, and their fractions fr2 and fr3
correspondingly. Consequently, the fraction of the main population is fr1 = 1 − fr2 − fr3.
This approach manages to create three types of distributions: (a) if fr2 = fr3 = 0, a single
normal distribution; (b) if fr2 > 0 and fr3 = 0, a bimodal population; (c) if fr2 > 0 and fr3 > 0,
a trimodal population. The simulation assumes Nlab participating laboratories and selects
for each laboratory’s result a random number, Rnd, between 0 and 1. If Rnd < fr3, the result
belongs to the third population. If fr3 ≤ Rnd < fr3 + fr2, it belongs to the second population.
If fr3 + fr2 ≤ Rnd, it is found in the main distribution. The mean value of each laboratory
result is calculated by Equation (1):

Xi = Norm.Inv(mk, sk, Rnd1) (1)

where Xi is the mean value of the laboratory i, Norm.Inv is the inverse of the cumulative
function of the normal distribution with mean value mk, standard deviation sk, and proba-
bility Rnd1 which is a random number between 0 and 1. The index k is 1, 2, or 3 depending
on the value of Rnd. The number of replicate analyses per laboratory is assumed to be
always two. The same formula (1) applies to computing the value of each analysis by
replacing: (a) mk with Xi; (b) sk with sr; (c) Rnd1 with Rnd2 and 1-Rnd2 for each calculation
where Rnd2 represents a random number between 0 and 1. Each simulation includes
Niter = 1000 iterations, and for each dataset, the software performs Ns = 25 simulations to
compute the statistics of the randomly generated populations. The developed algorithm
calculates the mean values, standard deviations, and the performance statistics shown in
Table 2, according to the analysis of ISO 13258-2015 [14] (pp. 52–62), ISO 5725-2:1994 [15]
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(pp. 10–14), and EN ISO/IEC 17043:2010 [1] (pp. 30–33). This table demonstrates the
respecting clause of the standard applied as well as the variable name.

Table 2. Classical and robust statistics.

Statistic Applied Standard Variable Name

Mean values

General mean ISO 5725-2:1994, 7.4 GM 1

Median value ISO 13528:2015, C. 2.1 MED
Robust mean—Algorithm A with iterated scale ISO 13528:2015, C. 3.1 Ax*

Hampel estimator for mean ISO 13528:2015, C. 5.3.2 Hx*
Standard deviations

Scaled median absolute deviation ISO 13528:2015, C. 2.2 MADe
Normalized interquartile range ISO 13528:2015, C. 2.3 nIQR

Reproducibility standard deviation without outliers ISO 5725-2:1994, 7.4 sRep
Robust standard deviation—Algorithm A with iterated scale ISO 13528:2015, C. 3.1 As*

Robust standard deviation—Q method ISO 13528:2015, C. 5.2.2 Hs*
Absolute Z factors

Z using MED, MADe

17043:2010. B3.1.3

Z_MADe
Z using MED, nIQR Z_nIQR

Z using GM, sRep Z_sRep
Z using Ax*, As* Z_A

Z using Q/Hampel, Hx*, Hs* Z_Hamp
1 The abbreviation GM, used for general mean, should not be confused with that commonly used for GM-
estimators (generalized M-estimators) described in [34].

The outliers in the application of ISO 5725-2 for mean and reproducibility were deter-
mined using the Cochran’s and Grubbs’ tests: The first test was applied once, while the
second one for the highest and lowest values. Tables 4 and 5 of ISO 5725-2 have critical
values of the two outliers’ tests, up to a maximum number of participating laboratories
Nlab = 40 [15] (pp. 21–22). The software used the following Equations (2) and (3) to compute
the 1% critical values for any Nlab [35,36], which were also verified in case Nlab ≤ 40:

Ccrit =
1(

1 + Nlab−1

1+F.Inv
(

a
Nlab

,Nrep−1, (Nlab−1)· (Nrep−1)
)
) (2)

Gcrit =
(Nlab − 1)·t.Inv

(
a

Nlab
, Nlab − 2

)
√

Nlab
·
√√√√ 1

Nlab − 2 + t.Inv
(

a
Nlab

, Nlab − 2
)2 (3)

where Ccrit, Gcrit are the critical values of Cochran’s and Grubbs’ tests, correspondingly, for
α = 0.01, and t.Inv, F.Inv are the inverse functions of the Student and Fisher distributions.
The software applied the robust algorithms described in Annex C of ISO 13528:2015 to
calculate the population means and standard deviations provided in Table 2. The Z-factor
for laboratory value Xi, assigned value xPT, and population standard deviation σPT is
determined using Equation (4) according to 17043:2010 [1] (p. 30):

Z =
Xi − xPT

σPT
(4)

3. Comparisons of Population Mean Values and Standard Deviations
3.1. Initial Implementation of Simulations

The Monte Carlo simulation was first applied to a wide range of participating labora-
tories and a narrow range for the other independent variables presented in Section 2.2. In
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Section 2.1, one can see kernel density plots of actual 28-day strength results and computed
parameters of the mix of three Gaussian distributions. The initial implementation of the
simulation uses long-term 28-day strength data for the mean value and the variance of the
normally distributed main population. Afterwards, the simulator adds a contaminating
population following the same distribution with the main one and differing in mean value
from it. The settings used were: Nlab = 15, 20, 30, 40, 60, 80, 100, 150, 200, 300, 400; Nrep = 2;
sr = 0.40, 0.01 MPa; m1 = 50.8 MPa; s1 = 1.76 MPa; m2 = 52.6, 54.4, 56.2 MPa; s2 = 1.76 MPa;
fr2 = 0, 0.05, 0.10; fr3 = 0; Niter = 1000; Ns = 25; Nb = 20; The mean value m1 = 50.8 MPa is
the average of the population means of 81 rounds the PT scheme performed from 2012
to 2020 using the Hampel estimator. The s1 = 1.76 and sr = 0.4 represent the average
between laboratories’ standard deviation, sL, and the repeatability for the same rounds.
Q-method uses all the results of each laboratory, while the other robust methods use the
mean value of each participant. By applying two sr values, the simulation investigates
the possible impact of the repeatability on the Q-method results. The settings selected
correspond to bimodal distributions, where the mean of the second population m2 is in
distances of 1.02 (=1.8/1.76), 2.05, and 3.07 from the mean m1 in s1 units. Table 3 presents
the average values and standard deviations of mean values of the population, mav and sav,
correspondingly, calculated from Equations (5) and (6), for fr2 = 0.10:

mj = ∑Niter
i=1 mij/Niter, smj =

√
∑Niter

i=1

(
mij −mj

)2

Niter − 1
j = 1 to Ns (5)

mav = ∑Ns
j=1 mj/Ns, sav = ∑Ns

j=1 smj/Ns (6)

where mij are the mean values of each Nlab, mj is the mean value, and smj is the standard
deviation of mij for the simulation j.

Table 3. Average and standard deviation of the mean values.

GM MED Ax* Hx* GM MED Ax* Hx* GM MED Ax* Hx* GM MED Ax* Hx*

Nlab Mean values, mav Standard deviations, sav Mean values, mav Standard deviations, sav

m2 = 52.6 MPa, mtot = 50.98 MPa, fr2 = 0.10 m2 = 54.4 MPa, mtot = 51.16 MPa, fr2 = 0.10

15 50.98 50.96 50.97 50.97 0.48 0.59 0.50 0.50 51.16 51.05 51.09 51.09 0.54 0.63 0.55 0.55
20 50.98 50.96 50.97 50.97 0.41 0.50 0.42 0.42 51.15 51.04 51.09 51.09 0.47 0.53 0.47 0.47
30 50.97 50.96 50.97 50.97 0.33 0.41 0.34 0.34 51.15 51.04 51.09 51.09 0.38 0.44 0.38 0.38
40 50.98 50.96 50.97 50.97 0.28 0.34 0.28 0.28 51.15 51.03 51.08 51.08 0.31 0.36 0.31 0.31
60 50.98 50.96 50.97 50.97 0.23 0.28 0.23 0.23 51.15 51.03 51.09 51.09 0.26 0.30 0.26 0.26
80 50.98 50.96 50.97 50.97 0.21 0.25 0.21 0.21 51.16 51.03 51.09 51.09 0.23 0.27 0.23 0.23

100 50.98 50.96 50.97 50.97 0.18 0.23 0.19 0.19 51.16 51.03 51.09 51.09 0.21 0.24 0.21 0.21
150 50.98 50.96 50.97 50.97 0.15 0.19 0.15 0.15 51.16 51.04 51.09 51.09 0.17 0.20 0.17 0.17
200 50.98 50.96 50.97 50.97 0.13 0.16 0.13 0.13 51.16 51.03 51.09 51.09 0.15 0.17 0.15 0.15
300 50.98 50.96 50.97 50.97 0.11 0.13 0.11 0.11 51.16 51.03 51.09 51.09 0.12 0.14 0.12 0.12
400 50.98 50.96 50.97 50.97 0.09 0.11 0.09 0.09 51.16 51.03 51.09 51.09 0.10 0.12 0.10 0.10

m2 = 56.2 MPa, mtot = 51.34 MPa, fr2 = 0.10

15 51.31 51.06 51.15 51.15 0.63 0.64 0.59 0.59
20 51.31 51.06 51.16 51.15 0.55 0.54 0.51 0.51
30 51.32 51.05 51.15 51.15 0.45 0.44 0.41 0.41
40 51.32 51.05 51.15 51.15 0.38 0.37 0.34 0.34
60 51.33 51.05 51.14 51.14 0.31 0.31 0.28 0.28
80 51.33 51.05 51.14 51.14 0.27 0.27 0.25 0.25

100 51.33 51.05 51.14 51.14 0.24 0.25 0.23 0.23
150 51.33 51.05 51.14 51.14 0.20 0.20 0.18 0.18
200 51.34 51.05 51.14 51.14 0.17 0.17 0.16 0.16
300 51.34 51.05 51.14 51.14 0.14 0.14 0.13 0.13
400 51.34 51.05 51.14 51.14 0.12 0.12 0.11 0.11
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For comparison reasons, the mean value of the bimodal distribution is provided,
computed from Equation (7):

mtot = (1− f r2)·m1 + f r2·m2 (7)

The four estimators of the mean population value are approximately equal for m2 = 52.6 MPa
and close to m1. For larger values of m2, the GM estimator starts to be higher than the
others and approaches the mtot value, meaning that when m2 > m1 + s1, GM is not a robust
estimator. The three robust estimators provide a good approximation of m1, but the median
value shows a higher variance, especially for smaller Nlab.

The average values and standard deviations of the population standard deviations are
computed by Equations (8) and (9):

sj = ∑Niter
i=1 sij/Niter, ssj =

√
∑Niter

i=1

(
sij − sj

)2

Niter − 1
j = 1 to Ns (8)

mstd = ∑Ns
j=1 sj/Ns, sstd = ∑Ns

j=1 ssj/Ns (9)

where sij is the standard deviation of each Nlab, sj is the mean value, and ssj is the standard
deviation of sij for the simulation j. Figures 5 and 6 show the average values and standard
deviations of the population standard deviation for fr2 = 0 and 0.10, from which one can
conclude the following:

(i) For a large number of laboratories, Nlab ≥ 200, the mean values of the estimators
converge to different values. MADe, nIQR, and As* approach approximately the same
value, while the convergence value of Hs* is higher for both repeatability values. The
sRep is between these values for fr2 = 0 and m2 = m1 + s1 and becomes higher from
both for m2 ≥ m1 + 2s1. The above proves that this estimator is not resistant to outliers.
The high value of sRep for high m2 can underestimate the number of laboratories with
|Z|>3.

(ii) All functions between estimators and Nlab are monotonic. Those of MADe, sRep, and
As* are increasing and those of nIQR and Hs* are decreasing. The MADe and As* low
values for small Nlab may overestimate |Z| values. The current analysis shows MADe
and As* are the lowest among robust estimators for small Nlab.

(i) Increasing the m2 value, the average value and standard deviation of the population
standard deviation also increase.

(ii) The standard deviation of the population standard deviation of MADe and nIQR is
continuously higher than the respecting values of the other three estimators. The
above is in good agreement with paragraph 6.5.2 of ISO 13253:2015 [14] (p. 12), which
further notes that more sophisticated robust estimators provide better performance
for approximately normally distributed data, while retaining much of the resistance
to outliers offered by MADe and nIQR.

(iii) The average standard deviation of the Q method with sr = 0.40 is a little higher than
that with negligible repeatability, sr = 0.01. Further simulations will utilize only
sr = 0.01 for the Q method to be comparable with the other robust methods.

Figure 7 depicts the distributions of the population standard deviations for one simu-
lation with Niter = 10000, Ns = 1, sr = 0.01, m2 = 52.6 MPa, 56.2 MPa, fr2 = 0.10, Nb = 20, and
Nlab = 20, 40, from where one can observe:

(i) All distributions are approximately symmetric around their mean;
(ii) The variance of MADe and nIQR is greater than that of other estimators, especially for

lower values of m2.
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Figure 5. Average values of the population standard deviations. MADe: scaled median absolute
deviation; nIQR: normalized interquartile range; sRep: reproducibility standard deviation without
outliers; As*: standard deviation—Algorithm A; Hs*, 0.40: standard deviation using Q method and
sr = 0.40; Hs*, 0.01: standard deviation using the Q method and sr = 0.01.

Figure 6. Standard deviations of the population standard deviations. MADe: scaled median absolute
deviation; nIQR: normalized interquartile range; sRep: reproducibility standard deviation without
outliers; As*: standard deviation—Algorithm A; Hs*, 0.40: standard deviation using Q method and
sr = 0.40; Hs*, 0.01: standard deviation using Q method and sr = 0.01.
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Figure 7. Distribution of the population standard deviations.

3.2. Determining the Best Estimators for a Small Number of Laboratories

As proved in Section 3.1, the estimators GM and sRep are not resistant to outliers.
The problem needing a solution is the determination of the best robust estimators based
on the number of participants and the actual distribution of the results. The proposed
method uses the absolute value of the Z-factor given by Equation (4). According to EN
ISO/IEC 17043:2010 [1] (p. 32), if |Z|>3, the laboratory performance is unsatisfactory,
and the result is an outlier. Using robust estimators to detect the outliers indicates that
the approach is nonparametric. Supposing that a distribution of a large number of results,
actual or simulated, contains Zu% non-satisfactory results, the question is which robust
estimators best approach these values when the number of labs is Nlab. The developed
algorithm applies the Monte Carlo simulation presented in Section 2.2 and follows the
subsequent steps:

(i) It creates a main normal distribution D1 with mean value m1 and standard deviation
s1 and two contaminating distributions D2, D3 with mean values m2, m3, and standard
deviations s2 = s3 = s1.

(ii) The fractions of the contaminating distributions are fr2 and fr3, and, depending on
these two values, the total distribution can be unimodal, bimodal, or trimodal.

(iii) The mean values m2 and m3 differ by an integer number of standard deviations s1
from m1, n2 and n3, shown in Equation (10). In the case of trimodal distribution, if
n2·n3 > 0, then D2 and D3 are both to the same side of the D1. Otherwise, one is to the
left and the other to the right of D1. Figure 4 of Section 2.1 depicts such distributions:

m2 = m1 + n2·s1 , m3 = m1 + n3·s1 with n2 ≥ 0 and n3 ≥ 0 or n3 < 0 (10)

(iv) According to the values of fr2, fr3, n2, and n3, the software calculates the values of
Zu%, which are unsatisfactory, compared to the normal distribution function with
mean and standard deviation m1 and s1, correspondingly. These values are the initial
values. For example, if fr2 = 0.1, fr3 = 0, and n2 = 3, then Zu% = 0.24 (from D1) + 5.0
(from D2) = 5.24.

(v) The algorithm calculates all the estimators for the mean and standard deviation
shown in Table 1 and the Zu% for the absolute values of the five Z-factors presented
in the same table using a Nlab = 400. Afterwards, it calculates the average of Zu%
for Niter = 400 and Ns = 4. The other settings are the ones shown in Table 4. For this
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number of participants, all estimators converge to their final value. Figure 8 illustrates
the procedure.

Table 4. Simulation settings.

Setting Value

Nlab 10, 15, 20, 30 and 400 1

Nrep 2
sr, MPa 0.01
m1, MPa 50
s1, MPa 1
m2, MPa m2 = m1 + n2·s1, n2 = 1 to 8 and step 1

fr2 0, 0.025, 0.05, 0.075, 0.1 2

m3, MPa m3 = m1 + n3·s1, n3 = −8 to 8 and step 1
fr3 0, 0.025, 0.05

s2, s3, MPa 1
Niter 1000
Ns 25

1 If Nlab = 400, then the Ns = 4. 2 If fr3 = 0, then the maximum value of fr2 is 0.1. Otherwise fr2Max = 0.075 and
fr2 + fr3 ≤ 0.1.

Figure 8. Function between Zu% and number of standard deviations n2, n3, and Nlab = 400. Calcula-
tion of initial values using step (iv) of Section 3.2.

(vi) The Zu% of each of the five Z-factors are compared with the initial results of step (iv).
Those results closest to the initial ones are the reference values and represent the best
estimation of the robust methods in approaching the unsatisfactory results calculated
using the main distribution.

(vii) The simulations implemented all the settings shown in Table 4 for participants up to
30. The populations correspond to unimodal, bimodal, and trimodal distributions
with a maximum total fraction of secondary distributions up to 0.1. The coefficient of
variation of the main distribution is 2% (=1/50 × 100).

(viii) The software performs Niter iterations and Ns simulations for each Nlab. For all these
results, the average of each one of the five Zu% is calculated. These results are
compared with each other and with reference values. The estimator providing the
closest value to the reference value for each parameter set is optimal.

Figure 8 proves that the calculation of Zu% using Z_sRep results leads to a severe
underestimation of the percentage of the unacceptable Z-factors, compared to all the
other estimators. The Zu% values derived from the robust estimators are close to each
other and not far from the initial values computed using the main normal distribution.
The Zu% values calculated by Z_Hamp are slightly worse than the values calculated by
Z_MADe, Z_nIQR, and Z_A. The simulator compared all Zu% for Nlab = 400 and all the
other settings of Table 4. It found that the closest estimator of unacceptable Z-factors to the
estimation based on the main normal distribution is the Z_MADe in 95% of cases. For this
reason, it uses the values of this estimator as a reference in further calculations. However,
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this does not mean that the Z_MADe is consistently the optimal estimator for a small
number of participants.

Figures 9 and 10 depict the Zu% for the reference values and all the robust estimators
for selected bimodal and trimodal distributions of the results’ population. In both figures,
the number of labs is from 10 to 30.

Figure 9. Functions between Zu% and number of standard deviations n2, for the reference values
and robust estimators, and Nlab = 10, 15, 20, 30.

Figure 10. Functions between Zu% and number of standard deviations n3, for the reference values
and robust estimators, and Nlab = 10, 15, 20, 30.

One can observe that the optimal estimator is a function of both the number of
deviations and the number of labs. In bimodal distribution and for the given f 2, Z_Hamp is
optimal for n2 ≤ 2 and n2 ≥ 6, depending on the Nlab value. Z_MADe is more efficient for
Nlab ≥ 20 and n2 = 4, while for the other values of n2 and Nlab, the optimal estimators are
Z_nIQR and Z_A. The trimodal distributions of Figure 10 contain two bimodal distributions
in the case n3 = 0 and 8. For the given value of n2, Z_Hamp is more efficient in the center
for −2 ≤ n3 ≤ 2. Z_A and Z_nIQR are optimal in the two side zones for n3 ≤ −6 and
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n3 ≥ 7 and n3 = −3, n3 = 3. Finally, Z_MAde is the closest estimator to the reference values
in the two intermediate zones for −5 ≤ n3 ≤ −4 and 4 ≤ n3 ≤ 6. The conclusion from
the processing so far is that there is no generally optimal robust estimator, but its choice
depends on the type of population distribution and its variance.

4. Optimal Robust Estimators for a Limited Number of Participants
4.1. Use of a Normal Distribution Mix

The application of steps (i)–(viii) of 3.2 for the full range of Nlab, n2, n3, fr2, and fr3 of
Table 4 leads to a complete and exhaustive evaluation of the optimal robust estimator of the
percentage of unacceptable results for each set of the mentioned settings and guides a PT
scheme expert on which estimator to choose. The core of such an option for an actual PT is
to disclose the distribution of results using the kernel plots and to fit a mixture of normal
distributions into it, as described in Section 2.1. If the PT scheme organizer executes the test
several times a year, selecting the results of the last and several recent rounds to generate
the kernel plots is preferable. The last results have a significant probability of belonging to
a population similar to the recent results’ population, especially if the same or almost the
same laboratories participate. On the contrary, if the PT scheme expert would use only the
last round to build the distribution, the parameters could have severe uncertainty due to
the small number of participants.

Figure 11 shows the optimal robust estimators of Zu% for the bimodal distributions
and the settings of Table 4. For f 2 = 0.025, the Q/Hampel estimator is predominant for most
of the n2 values, and only for n2 = 4 method A and MED-nIQR are optimal. By increasing
f 2, Q/Hampel remains optimal for n2 ≤ 2, and its performance gradually decreases to high
values of n2. For f 2 = 0.05, method A and MED-nIQR predominate for 3 ≤ n2 ≤ 6. As f 2
increases, MED-MADe becomes optimal near the mid-range of n2, while the optimal Z_A
move to the right, replacing Z_nIQR and Z_Hamp.

Figure 11. Optimal robust estimators of Zu% for number of standard deviations n2 = 0 to 8,
f 2 = 0.025 to 0.10 and Nlab = 10, 15, 20, 30.

Figures 12–15 depict the optimal estimators of Zu% for the trimodal distributions
and all the combinations of f 2 and f 3 with f 2 + f 3 ≤ 0.10. For f 2 + f 3 = 0.05, Q/Hampel
is optimal in the center (−3 ≤ n3 ≤ 3) and in the two sides (n3 ≤ −6, n3 ≥ 6) for low
and high n2 values. Method A and MED-nIQR are highly performing in the remaining
area of n2, n3. These results agree with those of Figure 11. For f 2 + f 3 = 0.075, Q/Hampel
is optimal mainly in the center (−2 ≤ n3 ≤ 2) for low and high n2 values. MED-MADe
shows the higher performance for the two mid-ranges of n3 (n3 = −4, −5, and n3 = 4, 5)
while method A and MED-nIQR remain optimal in the remaining area. For f 2 + f 3 = 0.10,
the area covered by optimal Z_MADe is larger, replacing Z_A and Z_nIQR. Especially for
f 2 = 0.05 and f 3 = 0.05, the region of optimal Z_Hamp becomes narrower, replaced mainly by
Z_nIQR. Figures 11–15 are suitable for practical reasons because they allow the PT scheme
expert to select the proper robust estimator to evaluate the unsatisfactory results when the
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number of participants is between 10 and 30 with the underlying assumption that the main
distribution presents a coefficient of variation ~2. Rounding to the values given in these
figures is necessary for the number of labs and the f 2 and f 3 fractions calculated from the
actual distribution.

Figure 12. Optimal robust estimators of Zu% for trimodal distributions, f 2 = 0.025 and f 3 = 0.025.

Figure 13. Optimal robust estimators of Zu% for trimodal distributions, f 2 = 0.025 and f 3 = 0.05.
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Figure 14. Optimal robust estimators of Zu% for trimodal distributions, f 2 = 0.025 and f 3 = 0.075.

Figure 15. Optimal robust estimators of Zu% for trimodal distributions, f 2 = 0.05 and f 3 = 0.05.

4.2. Use of Kernel Density Plots

Using the methods described in Sections 2.1 and 3.2, we provide a generalized algo-
rithm in determining the optimal robust estimators using actual results. The description of
the algorithm follows using the practical example of the mentioned EUROCERT PT scheme.
In that particular PT example, the organizer performs the 28-day strength test 9 times a
year. The proposed algorithm implements the kernel density plot of each round, including
the last test and the previous eight. For a small number of participants and several repeats
of the test during the year, the estimated distribution using moving time horizon results
should be closer to the real one than taking into account the limited number of the last
round’s results. The algorithm performs normalization using the formula Dij = xij − xpt,j,
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described already in Section 2.1, before building the kernel density plot. It then assumes a
main normal distribution. The addition of one or two contaminating normal distributions
to the main follows, and the best-fitting mix of them, having the minimum distance from
the kernel plot, is computed via non-linear regression. The values of m1, m2, m3, s2, s3, f 2,
and f 3 are the outputs of this process. Afterwards, the algorithm applies steps (i) to (viii) of
Section 3.2 and determines the optimal estimator.

Table 5 shows the parameters of the distributions for 18 consecutive 28-day strength
tests, along with the average Nlab and the optimal robust estimators of Zu% using the
mentioned algorithm. If a second estimator differs from the reference value less than 5%
from the respecting distance of the optimal one, the estimator is also optimal. If f 2 + f 3
is lower than or close to 0.1, the algorithm compares the optimal estimator with the one
predicted in Figures 11–15. In the case of a positive check, the table indicates the values
of Nlab, n2, and n3 of the corresponding figure. In 8 out of the 9 cases where f 2 and f 3
meet the conditions of Figures 11–15, the prediction of these figures is correct, although
the standard deviations are not equal and s1 ≈ 1.5 MPa. The long-term average of the
populations’ means is around 50 MPa, as reported in 3.1, concluding that the coefficient
of variation of D1 is about 3%. That means that the results of Figures 11–15 obtained for a
variation coefficient of 2% are robust for values up to 3%. Table 5 shows that the algorithm
is suitable for an expanded range of the secondary populations’ fractions and unequal
standard deviations s1, s2, and s3.

Table 5. Normal distribution parameters and optimum robust estimators for 18 consecutive 28-day
strength tests.

Code

012019 022019 032019 042019 052019 062019 092019 102019 112019

Count 1 2 3 4 5 6 7 8 9

Nlab average 12 12 13 13 13 13 12 13 13

m1, MPa 0.12 0.09 0.03 0.05 0.12 0.07 0.12 0.1 -0.02

s1, MPa 1.48 1.56 1.59 1.64 1.51 1.37 1.46 1.48 1.23

f 2 0.024 0.015 0.019 0.017 0.015 0.036 0.015 0.033 0.105

m2, MPa 4.55 4.5 5.19 5.28 5.36 3.75 5.34 4 2.46

s2, MPa 0.67 0.82 0.74 0.63 0.52 1.45 0.49 1.36 0.85

f 3 0.101 0.08 0.044 0.053 0.08 0.074 0.06 0.056 0.081

m3, MPa −3.52 −3.51 −4.14 −4.31 −3.9 −3.96 −4.16 −4.5 −4.32

s3, MPa 1.15 1.13 0.8 0.88 1.01 0.93 0.96 0.88 0.99

(m2 −m1)/s1 2.99 2.83 3.25 3.19 3.47 2.69 3.58 2.64 2.02

(m3 −m1)/s1 −2.46 −2.31 −2.62 −2.66 −2.66 −2.94 −2.93 −3.11 −3.50

f 2 + f 3 0.125 0.095 0.063 0.070 0.095 0.110 0.075 0.089 0.186

Optimal Z_Hamp Z_Hamp Z_nIQR, Z_Hamp Z_nIQR, Z_Hamp Z_nIQR Z_nIQR Z_nIQR, Z_A Z_nIQR Z_nIQR

Status N/A OK OK OK OK OK OK OK N/A

Figure 14 13 13 14 14 13 13

Nlab, n2, n3 10, −2, 3 15, −3, 3 15, −3, 3 15, −3, 3 15, −3, 3 10, −3, 4 15, −3, 3

Code

012020 022020 032020 042020 052020 062020 092020 102020 112020

Count 11 12 13 14 15 16 17 18 19

Nlab average 12 12 12 12 12 12 12 12 12

m1, MPa −0.14 0.43 −0.28 −0.3 −0.37 −0.41 0.08 0.16 0.04

s1, MPa 1.28 1.51 0.73 0.71 0.71 0.78 1.26 1.43 1.5

f 2 0.142 0.154 0.171 0.196 0.367 0.375 0.08 0.045 0.015

m2, MPa 2.31 −0.58 1.47 1.42 1.25 1.34 2.94 1.43 4.7

s2, MPa 0.84 0.6 0.62 0.61 0.9 0.9 1.3 2.63 0.8

f 3 0.059 0.068 0.383 0.389 0.166 0.151 0.081 0.061 0.041

m3, MPa −4.27 −4.04 −0.16 −0.23 −2.63 −3.03 −3.54 −3.61 −3.69
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Table 5. Cont.

s3, MPa 1.01 1.1 2.49 2.46 1.52 1.29 0.82 0.69 0.53

(m2 −m1)/s1 1.91 −0.67 2.40 2.42 2.28 2.24 2.27 0.89 3.11

(m3 −m1)/s1 −3.23 −2.96 0.16 0.10 −3.18 −3.36 −2.87 −2.64 −2.49

f 2 + f 3 0.201 0.222 0.554 0.585 0.533 0.526 0.161 0.106 0.056

Optimal Z_nIQR Z_nIQR Z_nIQR Z_nIQR Z_nIQR Z_nIQR, Z_Hamp Z_Hamp Z_Hamp Z_Hamp

Status N/A N/A N/A N/A N/A N/A N/A Not OK OK

Table 13

Nlab, n2, n3 10, −2, 3

Figure 16 depicts all the Zu% results, including the optimal ones, Z_Optim, leading to
the following conclusions for Nlab = 12–13:

• The best estimator provided by the generalized algorithm depends on the distribu-
tion parameters.

• Z_sRep is always much lower than the reference values, Z_Ref, proving that it is not a
robust estimator and verifying the findings of Section 3.2.

• For the given levels of Nlab and distribution parameters, Z_MADe is always much higher
than Z_Ref and never optimum, verifying paragraph C. 2.3 of 13253:2015 [14] (p. 53).
Z_A is closer to Z_Ref than Z_MADe but continuously overestimates Zu%.

• For the given range of m1, m2, m3, and s1, Z_nIQR and Z_Hamp are the best estimators:
the first is 13 times, while the second is 8 times optimal. The results show that Z_Hamp
is optimum for lower values of Zu% and Z_nIQR for higher Zu% values.

Figure 16. Estimators of Zu% for 18 rounds of the 28-day strength test.

5. Conclusions

This study developed efficient models in analyzing the results of PT schemes by
combining: (a) robust and classical estimators of the population mean and standard devia-
tion; (b) kernel density plots; (c) distributions derived from the addition of two or three
Gaussians; (d) Monte Carlo simulations; and (e) Z-factors.

The analysis shows that the sum of two or three normal distributions of adjustable
parameters can adequately approximate an actual kernel density plot, so it is a good
approximation of the results’ distribution. The one distribution is the main while the others
contaminate it. Monte Carlo simulations implemented to such sums of distributions are
effective in studying the characteristics of location and dispersion estimators based on
ISO 13258:2015 and ISO 5725:2:1994. Assuming a distribution of a large number of results
contain Zu% unsatisfactory results according to EN ISO/IEC 17043:2010, the simulator can
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find the estimators providing non-satisfactory results close to this percentage when the
number of labs is limited. The study describes an algorithm solving the above optimization
problem with the following constraints: (a) Gaussian, bimodal or trimodal distributions;
(b) participants from 10 to 30; (c) fraction of the contaminating population up to 0.10 of
the total; (d) variation coefficient of the main distribution equal to 2; (e) equal standard
deviations of all the distributions. The analysis proves that using the robust estimators of
location and variance is necessary because the classical estimators based on ISO 5725-2:1994
lead to a severe underestimation of the percentage of outliers. The answer to which is the
best robust estimator is by no means categoric because the selection depends on the fraction
of the contaminating populations and the distances of the mean values of the distributions.
The corresponding figures showing the optimal estimators for the constraints (a)–(e) are
helpful for a PT expert to decide which estimator to choose if the Gaussian distributions
approximating the actual kernel density plot fulfill these constraints. Generally, if the
fraction of the contaminating population is ≤0.05 of the total, the selection of MED-MADe
is not suitable.

By extending the above, we provided a generalized algorithm, using actual kernel
density plots and the previous algorithm, which is not subject to restrictions (b)–(e) and
implemented to the results of 18 consecutive rounds of a PT for the 28-day strength of
cement with 12–13 participants in average per round. The optimal estimators in the
cases studied in this particular test were the MED-nIQR and Q/Hampel methods. The
generalized algorithm is suitable for various PT schemes in selecting the optimal robust
estimators because it covers an expanded range of the secondary populations’ fractions
and unequal standard deviations.

Based on the above arguments, the novelty of this study is the combination of actual
kernel density plots and robust estimators through Gaussian distributions and Monte Carlo
simulations, helping to select the best robust estimator for the correct calculation of outliers.
The investigation of the optimal estimators can continue in the following directions:

n The impact of assigned value and standard deviation uncertainty on the Z-factors;
n Type I and Type II errors of the estimators;
n Comparison of the statistic estimators (a) for a medium and large number of partici-

pants; (b) for a range of variation coefficient of results’ distribution;
n Direct use of the kernel density plots, by taking into account our generalized algorithm,

in determining the best estimator;
n Estimators’ comparisons for Z-factors of absolute value between two and three.
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4. Jurečková, J.; Picek, J.; Schindler, M. Robust Statistical Methods with R, 2nd ed.; CRC Press: New York, NY, USA, 2019.
5. Wilcox, R.R. Introduction to Robust Estimation and Hypothesis Testing, 5th ed.; Academic Press: London, UK, 2021.



Computation 2022, 10, 44 20 of 21

6. Hampel, F.R.; Ronchetti, E.M.; Peter, J.; Rousseeuw, P.J.; Stahel, W.A. Robust Statistics: The Approach Based on Influence Functions;
John Wiley & Sons, Inc.: New York, NY, USA, 1986.

7. Huber, P.J.; Ronchetti, E.M. Robust Statistics, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009.
8. Maronna, R.A.; Martin, R.D.; Yohai, V.J.; Salibián-Barrera, M. Robust Statistics: Theory and Methods (with R), 2nd ed.;

John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018.
9. Wang, H.; Mirota, D.; Hager, G.D. A Generalized Kernel Consensus-Based Robust Estimator. IEEE Trans. Pattern Anal. Mach. Intell.

2010, 32, 178–184. [CrossRef] [PubMed]
10. Vandermeulen, R.A.; Scott, C.D. Robust Kernel Density Estimation by Scaling and Projection in Hilbert Space. Available online:

https://arxiv.org/pdf/1411.4378.pdf (accessed on 16 February 2022).
11. Humbert, P.; Le Bars, B.; Minvielle, L.; Vayatis, N. Robust Kernel Density Estimation with Median-of-Means Principle. Available

online: https://arxiv.org/pdf/2006.16590.pdf (accessed on 16 February 2022).
12. Nazir, H.Z.; Schoonhoven, M.; Riaz, M.; Does, R.J. Quality quandaries: A stepwise approach for setting up a robust Shewhart

location control chart. Qual. Eng. 2014, 26, 246–252. [CrossRef]
13. Nazir, H.Z.; Riaz, M.; Does, R.J. Robust CUSUM control charting for process dispersion. Qual. Reliab. Eng. Int. 2015, 31, 369–379.

[CrossRef]
14. ISO/TC 69. ISO 13528:2015 Statistical Methods for Use in Proficiency Testing by Interlaboratory Comparison, 2nd ed.; ISO:

Geneva, Switzerland, 2015; pp. 12, 32–33, 44–51, 52–62.
15. ISO/TC 69. ISO 5725-2:1994 Accuracy (Trueness and Precision) of Measurement Methods and Results—Part 2: Basic Method for

the Determination of Repeatability and Reproducibility of a Standard Measurement Method, 1st ed.; ISO: Geneva, Switzerland, 1994;
pp. 10–14, 21–22.

16. Rousseeuw, P.J.; Croux, C. Alternatives to the Median Absolute Deviation. J. Am. Stat. Assoc. 1993, 88, 1273–1283. [CrossRef]
17. Filzmoser, P.; Maronna, R.; Werner, M. Outlier identification in high dimensions. Comput. Stat. Data Anal. 2008, 52, 1694–1711.

[CrossRef]
18. Kalina, J.; Schlenker, A. A Robust Supervised Variable Selection for Noisy High-Dimensional Data. Biomed. Res. Int. 2015, 320385.

[CrossRef] [PubMed]
19. Hubert, M.; Debruyne, M.; Rousseeuw, P.J. Minimum covariance determinant and extensions. Wiley Interdiscip. Rev. Comput. Stat.

2018, 10, e1421. [CrossRef]
20. Ellison, S.L.R. Applications of Robust Estimators of Covariance in Examination of Inter-Laboratory Study Data. Available online:

https://arxiv.org/abs/1810.02467 (accessed on 16 February 2022).
21. Rosário, P.; Martínez, J.L.; Silván, J.M. Evaluation of Proficiency Test Data by Different Statistical Methods Comparison. In Pro-

ceedings of the First International Proficiency Testing Conference, Sinaia, Romania, 11–13 October 2007.
22. Thompson, M.; Ellison, S.L.R. Fitness for purpose–the integrating theme of the revised harmonized protocol for proficiency

testing in analytical chemistry laboratories. Accredit. Qual. Assur. 2006, 11, 467–471. [CrossRef]
23. Srnková, J.; Zbíral, J. Comparison of different approaches to the statistical evaluation of proficiency tests. Accredit. Qual. Assur.

2009, 14, 373–378. [CrossRef]
24. Tripathy, S.S.; Saxena, R.K.; Gupta, P.K. Comparison of Statistical Methods for Outlier Detection in Proficiency Testing Data on

Analysis of Lead in Aqueous Solution. Am. J. Theor. Appl. Stat. 2013, 2, 233–242. [CrossRef]
25. Daszykowski, M.; Kaczmarek, K.; Heyden, Y.V.; Walczaka, B. Robust statistics in data analysis—A review: Basic concepts.

Chemom. Intell. Lab. Syst. 2007, 85, 203–219. [CrossRef]
26. De Oliveira, C.C.; Tiglea, P.; Olivieri, J.C.; Carvalho, M.; Buzzo, M.L.; Sakuma, A.M.; Duran, M.C.; Caruso, M.; Granato, D.

Comparison of Different Statistical Approaches Used to Evaluate the Performance of Participants in a Proficiency Testing Program.
Available online: https://www.researchgate.net/publication/290293736_Comparison_of_different_statistical_approaches_used_
to_evaluate_the_performance_of_participants_in_a_proficiency_testing_program (accessed on 12 February 2022).

27. Kojima, I.; Kakita, K. Comparative Study of Robustness of Statistical Methods for Laboratory Proficiency Testing. Anal. Sci. 2014,
30, 1165–1168. [CrossRef] [PubMed]

28. Belli, M.; Ellison, S.; Fajgelj, A.; Kuselman, I.; Sansone, U.; Wegscheider, W. Implementation of proficiency testing schemes for a
limited number of participants. Accredit. Qual. Assur. 2007, 12, 391–398. Available online: https://link.springer.com/article/10.1
007/s00769-006-0247-0 (accessed on 16 February 2022). [CrossRef]

29. Kuselman, I.; Belli, M.; Ellison, S.L.R.; Fajgelj, A.; Sansone, U.; Wegscheider, W. Comparability and compatibility of proficiency
testing results in schemes with a limited number of participants. Accredit. Qual. Assur. 2007, 12, 563–567. Available online:
https://link.springer.com/article/10.1007/s00769-007-0309-y (accessed on 16 February 2022). [CrossRef]

30. Hund, E.; Massart, D.; Smeyers-Verbeke, J. Inter-laboratory studies in analytical chemistry. Anal. Chim. Acta 2000, 423, 145–165.
[CrossRef]

31. Working Group 1 of the Joint Committee for Guides in Metrology. ISO/IEC GUIDE 98-3/Suppl.1 Uncertainty of Measurement, Part 3:
Guide to the Expression of Uncertainty in Measurement (GUM:1995), Supplement 1: Propagation of Distributions Using a Monte Carlo
Method; ISO: Geneva, Switzerland, 2008.

32. CEN/TC 51. EN 196-1:2005, Methods of Testing Cement–Part 1: Determination of Strength; CEN Management Centre:
Brussels, Belgium, 2005.

http://doi.org/10.1109/TPAMI.2009.148
http://www.ncbi.nlm.nih.gov/pubmed/19926908
https://arxiv.org/pdf/1411.4378.pdf
https://arxiv.org/pdf/2006.16590.pdf
http://doi.org/10.1080/08982112.2013.874562
http://doi.org/10.1002/qre.1596
http://doi.org/10.1080/01621459.1993.10476408
http://doi.org/10.1016/j.csda.2007.05.018
http://doi.org/10.1155/2015/320385
http://www.ncbi.nlm.nih.gov/pubmed/26137474
http://doi.org/10.1002/wics.1421
https://arxiv.org/abs/1810.02467
http://doi.org/10.1007/s00769-006-0137-5
http://doi.org/10.1007/s00769-009-0533-8
http://doi.org/10.11648/j.ajtas.20130206.21
http://doi.org/10.1016/j.chemolab.2006.06.016
https://www.researchgate.net/publication/290293736_Comparison_of_different_statistical_approaches_used_to_evaluate_the_performance_of_participants_in_a_proficiency_testing_program
https://www.researchgate.net/publication/290293736_Comparison_of_different_statistical_approaches_used_to_evaluate_the_performance_of_participants_in_a_proficiency_testing_program
http://doi.org/10.2116/analsci.30.1165
http://www.ncbi.nlm.nih.gov/pubmed/25492466
https://link.springer.com/article/10.1007/s00769-006-0247-0
https://link.springer.com/article/10.1007/s00769-006-0247-0
http://doi.org/10.1007/s00769-006-0247-0
https://link.springer.com/article/10.1007/s00769-007-0309-y
http://doi.org/10.1007/s00769-007-0309-y
http://doi.org/10.1016/S0003-2670(00)01115-6


Computation 2022, 10, 44 21 of 21

33. CEN/TC 51. EN 197-1:2011, Cement. Part 1: Composition, Specifications and Conformity Criteria for Common Cements; Management
Centre: Brussels, Belgium, 2011.

34. Simpson, D.G.; Yohai, V.J. Functional stability of one-step GM-estimators in approximately linear regression. Ann. Statist. 1998,
26, 1147–1169. [CrossRef]

35. Cochran Variance Outlier Test. Available online: https://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/
cochvari.htm (accessed on 5 January 2022).

36. Grubbs’ Test for Outliers. Available online: https://www.itl.nist.gov/div898/handbook/eda/section3/eda35h1.htm
(accessed on 5 January 2022).

http://doi.org/10.1214/aos/1024691092
https://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/cochvari.htm
https://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/cochvari.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda35h1.htm

	Introduction 
	Model Development 
	Kernel Density Plots and Initial Simulations 
	Monte Carlo Simulations 

	Comparisons of Population Mean Values and Standard Deviations 
	Initial Implementation of Simulations 
	Determining the Best Estimators for a Small Number of Laboratories 

	Optimal Robust Estimators for a Limited Number of Participants 
	Use of a Normal Distribution Mix 
	Use of Kernel Density Plots 

	Conclusions 
	References

