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Abstract: Maritime operations rely heavily on surveillance and require reliable and timely data that
can inform decisions and planning. Critical information in such cases includes the exact location of
objects in the water, such as vessels, persons, and others. Due to the unique characteristics of the
maritime environment, the location of even inert objects changes through time, depending on the
weather conditions, water currents, etc. Unmanned aerial vehicles (UAVs) can be used to support
maritime operations by providing live video streams and images from the area of operations. Machine
learning algorithms can be developed, trained, and used to automatically detect and track objects of
specific types and characteristics. EFFECTOR is an EU-funded project, developing an Interoperability
Framework for maritime surveillance. Within the project, we developed an embedded system that
employs machine learning algorithms, allowing a UAV to autonomously detect objects in the water
and keep track of their changing position through time. Using the on-board computation unit of
the UAV, we ran and present the results of a series of comparative tests among possible architecture
sizes and training datasets for the detection and tracking of objects in the maritime environment. We
tested architectures based on their efficiency, accuracy, and speed. A combined solution for training
the datasets is suggested, providing optimal efficiency and accuracy.

Keywords: maritime; maritime environment; UAV; UxV; object detection; object tracking; machine
learning; situational awareness; computer vision

1. Introduction

Maritime operations cover a wide variety of scenarios, including search and rescue
missions and shipping management. With the increase in marine traffic and evolving
maritime climate, shipping management and maritime travel safety have become high-
priority issues [1]. The distinct characteristics and ever-changing nature of the maritime
environment present unique challenges in surveillance. These include objects drifting and
changing location due to the effects of wind and water currents, their position and shape
altering due to rolling and pitching caused by waves and wind, while changing weather
conditions can radically affect the local situation and outlook [2].

In this elusive environment, timely and precise information is of utmost importance to
the success of any mission. Automatic tracking systems and computer vision have been
described and utilized in the detection and tracking of several types of objects in the water,
from vessels to icebergs, from several platforms [3].

In the maritime field, computer vision and object detection are already being utilized
in security and rescue operations [4,5], mainly running on terrestrial modules or modules
carried on ships. These data can be incorporated into decision-making algorithms, which
can increase the efficiency of the utilized assets [6]. Such systems can be used in border
control, as well as search and rescue operations, especially since the two fields frequently
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overlap dynamically due to changing conditions in the maritime field. UAVs are being
utilized to gather intelligence in a timely manner [7,8]. UAV systems have started to be
used in terrestrial surveillance, where the video is streamed to a control station running
detection and tracking through computer vision [9].

EFFECTOR [10] is an EU-funded project, aiming to develop an Interoperability Frame-
work and associated data fusion and analytics services for maritime surveillance. The aim
of the project is the faster detection of new events, the enhancement of decision-making,
and the achievement of a joint understanding and undertaking of a situation by supporting
a seamless cooperation between the operating authorities and on-site intervention forces,
through a secure and privacy-protected network.

In developing a UAV module for object detection and tracking in the maritime envi-
ronment, a wide variety of maritime stakeholders, including organizations and institutions
involved in all categories of maritime operations, were solicited during the early stages
of the project in an effort to identify the most important user requirements. The key
requirements identified were:

• Object detection: Once an incident has been reported, the UAV will be utilized to
rapidly and efficiently scan the area of interest and automatically detect any vessels or
humans in the water;

• Object tracking: When an object of interest has been detected, the UAV will continu-
ously track its position;

• Timeliness: As conditions at sea change rapidly, the system must be able to provide
continuous and live detection and tracking of objects;

• Fast deployment: The initial stages of a search and rescue are critical, and any system
used in this context must be able to be utilized with minimal delay;

• Interoperability: Given the abundance of legacy systems used in maritime operations
and communications, any new system needs to ensure seamless interoperability with
existing systems. Specifically in the EU space, the Common Information Sharing
Environment (CISE) [11] is used as the basis for information exchanged among public
authorities. Any messages or communications generated by the system should be
compatible with the CISE;

• Independent and self-sufficient operation: The system must be able to operate inde-
pendently and be self-sufficient for the duration of the operation;

• Cost effectiveness: An on-board UAV surveillance system is inherently cost effective
by replacing more expensive and critical airborne assets. By providing timely infor-
mation of an object’s location through a UAV using detection and tracking algorithms,
operators will be able to more efficiently utilize all assets involved in the operation
(including vessels).

Keeping the above in mind, we developed an autonomous object detection and track-
ing module based on a neural network trained on specific datasets. A main advantage of
our system is that all computation takes place on the on-board AI unit carried by the UAV.
The UAV system presented is meant to support two distinct types of maritime operations,
shipping management and search and rescue. In such operation, a UAV system would be
mainly utilized once an event has been detected to provide live information of the evolving
incident.

Deploying a neural network in any system is not a simple process. Multiple hyper-
parameters, such as the size of the training dataset, the type of architecture, the number
of network parameters, and many more, have a huge impact on the final system. Edge
devices, installed on UAVs, have limited capabilities in terms of running deep learning
models. The model that will be deployed on such a device is required to offer fast forward
propagation, with the highest possible precision in detecting and classifying objects inside
a given frame.

In the above context, we ran and present in this article a series of comparison tests,
using the on-board AI unit of a UAV. Testing focused on comparing different architecture
sizes, as well as training datasets for the detection and tracking of objects in the maritime
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environment. We compared the architectures based on their efficiency, accuracy, and speed.
The main aim was to determine the optimal setup for providing timely data through a live
video feed, by minimizing any processing delays, while maintaining low computational
demands in order to ensure effective operation using the on-board AI module.

2. System Specifications
2.1. UAV Platform

We ran all tests with the module attached to a specially built octocopter UAV (see
Figure 1). It is equipped with a pair of daylight and thermal cameras providing a video
stream for the UAV’s pilot, enabling extended visual line-of-sight (EVLOS) flight capability.
To provide extended capabilities of object detection and tracking, a three-axis stabilized
gimbal equipped with powerful RGB and thermal cameras was fit under the UAV and
connected to the processing unit for on-board processing. The results of the on-board
processing were overlaid on the full-HD video stream and transmitted to the Intelligence
Officer’s workstation via a high-bandwidth 2.4 GHz radio.

Figure 1. The specially designed octocopter UAV showing the processing module container at its
central unit, as well as the gimbal that carries the thermal and RGB cameras suspended underneath.

2.2. Main Computing Module

In our embedded architecture, we opted to run detection and tracking on an on-board
processing unit, instead of the Intelligence Officer’s ground station where the video feeds
are streamed. This was done in line with an edge processing approach to reduce the
required bandwidth, improve response time, and avoid delays caused by video encoding
and streaming, as well as inevitable interruptions and cuts in the video stream caused by
connection issues, obstacles, and weather conditions. Video streaming has high-bandwidth
requirements, making it more susceptible to connection problems. In our setup, the
UAV transmits detection messages and draws the bounding boxes on-board, removing
encoding/decoding and communication latency from the object tracking processing loop.
In addition, this approach reduces the load on the Intelligence Officer’s workstation,
delivering a more scalable solution.

The entire object detection and tracking stack that is described ran on a Jetson AGX
Xavier module (see Figure 2). This embedded processing unit is lightweight and has low
energy requirements. It compresses the video using dedicated hardware and performs all
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necessary computation. The complete technical specifications of the module are presented
in Table 1. The unit, due to its small size and power requirements, is limited in terms
of processing power (CPU, GPU). The aim was for the computing module to be carried
by the UAV and be directly connected to its camera feed, making the system completely
autonomous, hence the use of a lightweight, low-power unit. The main aim of the test
described was to select the optimal architecture and training set within our restrictions.
This module was used in all the comparative tests described below.

Figure 2. The Jetson AGX Xavier module.

Table 1. Technical specifications of the Jetson AGX Xavier module.

GPU 512-core Volta GPU with Tensor Cores
CPU 8-core ARM v8.2 64 bit CPU, 8MB L2 + 4MB L3
Memory 32 GB 256 bit LPDDR4x | 137 GB/s
Storage 32 GB eMMC 5.1
DL accelerator (2×) NVDLA Engines
Vision accelerator 7-way VLIW Vision Processor
Encoder/decoder (2×) 4Kp60 | HEVC/(2×) 4Kp60 | 12 bit Support
Size 105 mm × 105 mm × 65 mm
Deployment Module (Jetson AGX Xavier)

3. System Architecture

The purpose of our implemented architecture was to detect an object in the camera
feed, assign it an ID, and then, keep track of its trajectory without altering the ID. Our
detection and tracking architecture was composed of two main tools. The stack utilizes
YOLOv5 [12], a state-of-the-art object detector. When YOLOv4 was published, it outper-
formed EfficientDet, the state-of-the-art object detection model up to that time [13]. The
comparison described in [13], applied on a V100 GPU, showed that YOLOv4 achieved the
same accuracy with EfficientDet at almost double the frames per second (FPS). YOLOv5
performs similarly to YOLOv4. However, YOLOv4 utilizes Darknet, while YOLOv5 utilizes
PyTorch, making the latter much easier for training, testing, and deployment [14].

The output of the detector is passed to the DeepSORT tracker. This tracking algorithm’s
runtime complexity is not perceivably affected by the number of objects tracked since it only
processes the position and velocity of tracked objects, while the output of the neural network
is independent of the number of objects, greatly reducing the number of parameters that
need to be processed. The overall architecture is shown in Figure 3.
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Figure 3. The general architecture showing the distinct components of the system. An image is fed to
YOLOv5, and detections are passed to the DeepSORT tracking algorithm. IDs and bounding boxes
are retained as the object is tracked.

3.1. Object Detection

YOLOv5 is a high-precision, fast-inference convolutional neural network (CNN) from
the YOLO family of object detectors. Its performance is mostly related to its residual
connections. It comprises two main components, the backbone and the head, as shown in
Figure 4.

Figure 4. YOLOv5 architecture.

The backbone works as a feature extractor. Starting with simple convolutional layers,
the network also uses cross-stage partial [15] layers to further improve efficiency at the
intermediate levels. Finally, the spatial pyramid pooling layer (SPP) enhances the receptive
field [16]. In other words, the feature produced at the end of this layer contains more
information from the input.

The head was also created from convolutional layers and C3 modules, while using
features from different stages of the backbone. Other residual connections end up at the
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last detection layer, mixing up information from different scales, enabling the network to
more easily detect objects of various sizes. The final bounding boxes and their correspond-
ing classes are computed by the non-maximum suppression (NMS), a post-processing
algorithm responsible for merging all detections that belong to the same object [17].

The advantage of this architecture over the previous generations is its variation in size.
The depth of the network, as well as the width are configurable in tandem. Four options
are available: small, medium, large, and extra large. Each size refers to the scale of the
model. “Bigger” sizes increase the parameters of the network, leading to longer inference
times, but better accuracy. In the context of our use case of an embedded detection unit, we
compared the speed of the small and medium versions for use with the Jetson AGX.

3.2. Object Tracking

Multiple object tracking is the problem of keeping track of all objects of interest existing
inside a frame. Each object is assigned an ID used to identify each object in the next frames.
In our case, within the EFFECTOR project, the user (Intelligence Officer) is able to select
which specific detected object the UAV will keep track of among the objects detected. The
aim of the tracker in this context is to keep track of objects within a given frame, until
the user selects a specific target of interest for the UAV’s camera to follow. The difference
between detection and tracking is that tracking stores the information of the previous time
step and uses it for the current time step.

Simple online and real-time tracking (SORT) is a tracking-by-detection algorithm.
It combines Kalman filtering with the Hungarian method [18]. DeepSORT refers to the
addition of appearance information to the existing SORT algorithm. To achieve online
tracking, detection from the current and the previous frame is presented to the tracker. For
every target detected, the tracker keeps a state, comprising its position and velocity.

In this setup, the performance of the tracker is directly improved by the performance of
the detector [18]. The runtime of the tracker is highly dependent on the CNN architecture.

4. Experiment Results
4.1. Datasets
4.1.1. SEAGULL Dataset

The SEAGULL dataset [19,20] contains surveillance imagery over the sea. All the
content is recorded by a small-sized UAV. Moving cargo ships, small boats, and life rafts
are included in the videos, which were captured from different heights and different
perspectives. Different cameras were also used, but for the purpose of this paper, we only
used videos from RGB cameras and excluded infrared recordings.

The scenarios in the dataset simulate surveillance missions. Thus, life rafts were
observed with a length of 3.7 m and a capacity of 20 people. Furthermore, a 27 m-long
patrol boat was captured that was either stopped or moving at a speed between 4 kn and
18 kn.

The UAV recording the videos flew between 150 m and 300 m above sea level. The
camera’s position was set at an angle between 0◦ and 90◦ relative to the plane defined by
the UAV, as shown in Figure 5.

Figure 5. UAV camera position on the UAV showing the angle of the optical axis (direction where the
camera is targeted) relative to the plane of the UAV. An angle of 90◦ between the two means that the
camera is pointing directly downwards. (Source: [20]).
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4.1.2. COCO Dataset

The COCO dataset [21,22] consists of photos of complex everyday scenes containing
objects of 91 different types. It is available under a Creative Commons Attribution 4.0
License. It comes in various versions, and for the purpose of this paper, we used the 2017
release. The training set is made up of 118,000 annotated images and a validation set of
5000 images.

The advantage of this dataset, besides the multiple object types and corresponding
instances, is the variation of bounding box sizes. In contrast to SEAGULL, COCO contains
objects of numerous scales, from a large airplane that covers almost the whole image, to
a tiny tie on a person’s suit. The section describing the experiments shows the necessity
of this property, in order to avoid outliers and unpredictable occasions where an object is
close to the point of recording.

4.1.3. Dataset Management

The reason for combining a general-use object detection dataset (COCO) with a
domain-specific dataset (SEAGULL) was to improve the performance of the deployed
model. SEAGULL contains a narrow spectrum of bounding box sizes. On the other hand,
COCO solves this problem by providing the whole range of bounding box sizes, from the
tiniest to one covering the whole image. In addition, the COCO dataset contains images
with “sky objects” such as birds.

The camera of the UAV points down from the octocopter at up to 300 m above sea
level. While the objects from that point of view will always appear small inside the frame of
the camera, there are birds that can fly close to the camera. The neural network will either
not detect these birds or will confuse the detection of vessels if those two kinds of “objects”
appear simultaneously, since the simple dataset does not contain such data. The necessity
of importing COCO to SEAGULL is obvious, considering the expensive equipment of the
UAV and the UAV itself, because this can alert its controller and dangerous cases will be
avoided in time. Selecting specific objects from COCO more related to a use case might
improve the performance even further, but this study is not within the scope of this paper.

The purpose of the experiments was to address two independent matters related to the
performance of the deployed model: first, the accuracy and, second, its speed. To achieve
this, we split the SEAGULL dataset into a training set and a testing set with the former
having 70% and the latter 30% of the dataset. From the COCO dataset, the validation set
consisting of 5000 images was used.

4.2. Accuracy
4.2.1. Description and Methodology

Object detection is a difficult task to face in a maritime environment. Sunlight, fog, sea
currents, occlusions, etc., are the usual obstacles that lower the performance of detection
models. Depending on the use case, an adjustment of the dataset is a prerequisite. In
addition, applying supervised learning on a neural network means its predictions will be
accurate to similar occasions on which the data have been trained. For example, YOLOv5
will detect only small objects if it is trained on small objects. Small objects can mean either
that an object is actually small or that the object is far from the camera’s position. If the
neural network is trained to detect boats that are away from the camera, it will ignore
the boats that are close to the camera, which appear large. To test this hypothesis, three
experiments were set up.

Two versions of trained “small” YOLOv5 were exported. The first was trained on the
SEAGULL dataset, while the second on a new dataset of COCO and SEAGULL combined.
They were both compared to a model pretrained on COCO, to test their performance. We
validated all three using a SEAGULL validation set and a combined COCO and SEAGULL
dataset, as shown in Figure 6.
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Figure 6. Tested combinations between algorithms and datasets.

All models, except for the pretrained model, were trained for 100 epochs with the basic
hyperparameters shown in Table 2. In our hardware described above, the small version
of YOLOv5 required 24 h to be trained for 100 epochs with the SEAGULL+COCO dataset.
In addition, we noticed when training using the SEAGULL dataset that the mean average
precision converged at the 20th epoch, which means that the model will overfit. Thus, we
chose to train the models for all experiments for 100 epochs. We opted to train both training
experiments for the same amount of time, in order to be able to compare them and derive
accurate conclusions.

Table 2. Basic training hyperparameters.

Epochs 100
Batch size 32
Image size 448
Optimizer SGD
Learning rate 0.01
Momentum 0.937

4.2.2. Metrics

Before demonstrating the results, it is necessary to give a brief explanation of the
metrics used to define the performance of the models:

1. Box loss measures the difference of the predicted bounding boxes with the ground
truth bounding boxes;

2. Obj loss measures the difference of the predicted “objectness” with the ground truth
“objectness”. Objectness is defined as the existence of an object or not in an image;

3. Cls loss or Class loss measures the error between the predicted class for a detected
object and its ground truth class (if class loss is absolute zero, it means the model is
trained to detect the objects only and not classify them);

4. Precision is the fraction of relevant instances among the retrieved instances;
5. Recall is the fraction of relevant instances that were retrieved;
6. mAP_0.5 is the mean average precision as defined by the VOC dataset [23,24];
7. mAP_0.5:0.95 is the mean average precision as defined by the COCO dataset.

4.2.3. Experiment A Results—Pretrained Model

We began with a pretrained YOLOv5 that was validated on the SEAGULL dataset and
a combination of the SEAGULL and COCO datasets. Since the model was pretrained on
the general-purpose COCO dataset, we decided to use its results as a basis for comparison
with models trained using the maritime-dedicated SEAGULL dataset and the SEAGULL
and COCO combination. It is very important to note that this model was trained with
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input image resizing to 640, while our models were trained with input image resizing to
448. This was done in order to increase the detection speed in the UAV’s on-board AI unit
with its limited processing power.

When validating using the SEAGULL dataset, the values of the metrics appear in
Table 3, while a sample of annotated images from the test set are presented in Figure 7 along
with the ground truth bounding boxes. Figure 8 shows the lack of predicted bounding
boxes on the same images by the trained algorithm. It is evident that the algorithm failed
to successfully detect any of the objects.

Table 3. Validation on SEAGULL—values of metrics.

mAP_0.5 0.00002
mAP_0.5:0.95e 0.000005
Box loss 0.16
obj loss 0.013

Figure 7. Examples of annotated images in the test set from SEAGULL—ground truth bounding
boxes visible.

Figure 8. Examples of annotated images in the test set from SEAGULL—the pretrained algorithm
failed to predict bounding boxes in all test images.
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When using the combined SEAGULL and COCO dataset for validation, the values
of the metrics appear in Table 4, while the ground truth bounding boxes on a sample of
annotated images from the test set are presented in Figure 9. Once more, no prediction
bounded boxes were drawn by the trained algorithm (Figure 10).

Table 4. Validation on SEAGULL and COCO combination—values of metrics.

mAP_0.5 0.0015
mAP_0.5:0.95e 0.0003
Box loss 0.20
obj loss 0.018

Figure 9. Examples of annotated images in the test set from the COCO and SEAGULL combination—
ground truth bounding boxes visible.

Figure 10. Examples of annotated images in the test set from the COCO and SEAGULL combination—
the pretrained algorithm failed to predict bounding boxes in all test images.

Result: It is obvious that the pretrained model did not perform the task of object
detection at all. This was mainly due to the input image resizing to 448. Due to our
processing power and time limitations, this resizing was a necessary process.
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4.2.4. Experiment B Results—Training on the SEAGULL Dataset

This model, as mentioned, was trained on the maritime-surveillance-specific SEAG-
ULL dataset and validated on the SEAGULL dataset and a combination of the SEAGULL
and COCO datasets.

Some examples of the frames extracted from videos of SEAGULL are shown in
Figures 11 and 12. Both groups of frames display the same frames. Figure 11 shows
the ground truth bounding boxes that SEAGULL provides and Figure 12 the predicted
bounding boxes by the trained algorithm with the corresponding confidence. These figures
present difficulties, such as boats at long distances and very small objects floating on sun
glares. In calm waters, the very small objects were detected, which demonstrates the
success of the model. The other cases, where the objects were not detected, were predictable
because of two main reasons. The first was the low resolution of the input image and the
second the very small objects that reside in areas of the frame where the object was not
distinguishable from the sun glares, waves, or surrounding environment.

Figure 11. Examples of annotated images from the SEAGULL test set—ground truth bounding boxes
visible.

Figure 12. Examples of annotated images from the SEAGULL test set—predicted bounding boxes
with the confidence visible as drawn by the algorithm trained on SEAGULL alone.
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The progress of training during the 100 epochs is shown in Figures 13 and 14. In
Figure 13, in the training losses (first row), class loss was zero since we did not apply object
classification. The progress of objectness loss showed that the model detected objects from
the start of training, reached a peak for the first epochs, and converged at the 100th epoch.
The box loss progression implies that as more epochs passed, the model performed well on
the training dataset. In the validation losses (second row), class loss was zero as well. In
contrast with the training objectness loss, the validation objectness loss fell very quickly
during the first few epochs. However, there was no significant improvement during the
next epochs. On the other hand, the more epochs the model was trained for, the worse
it performed on the SEAGULL validation dataset. The same applied for the validation
box loss.

Figure 13. Training on the SEAGULL—progress of metrics during the 100 epochs.

In Figure 14, during the first 15 epochs, all metrics converged on a constant value.
What can be derived from the precision and recall graphs is that false positive and false
negative detections did not decrease and oscillated around 0.85 and 0.6, respectively, after
the 15th epoch. Furthermore, the mean average precisions implied the same conclusion, as
well as that the overall performance did not improve.

It is noted that after the 20th epoch, there was no significant progress to the model’s
performance. The training losses decreased with progressive epochs; however, what
matters is the validation losses and most of all the mean average precisions, since the data
used in the validation set were data the neural network had not seen.

The optimal values reached for the metrics of interest when validating with the training
dataset (SEAGULL) are shown in Table 5.

Table 5. Validation on SEAGULL—optimal values of metrics.

mAP_0.5 0.67
mAP_0.5:0.95e 0.357
Box loss 0.057
obj loss 0.0045
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Figure 14. Training on the SEAGULL—progress of metrics during the 100 epochs.

Then, the model was validated on the SEAGULL and COCO combination. The
resulting metrics are shown in Table 6.

Table 6. Validation on SEAGULL and COCO combination—values of metrics.

mAP_0.5 0.31471
mAP_0.5:0.95e 0.12733
Box loss 0.055589
obj loss 0.0093003

Result: Comparing the two runs, we see that when validated using the mixed dataset,
the mean average precisions were significantly lower, while the validation losses were not
affected considerably.

4.2.5. Experiment C Results—Training on the Combined Dataset

The final experiment consisted of a model trained on the mixed SEAGULL and COCO
datasets. We validated this using the combined dataset and then the SEAGULL dataset
alone as with the previous models.

Some examples of the images included in COCO are displayed in Figures 15 and 16.
Both figures display the same group of samples. Figure 15 shows the ground truth bound-
ing boxes with corresponding classes of the objects, and Figure 16 shows the predicted
bounding boxes with their classes and the level of confidence. Almost all objects were
detected within an image, despite their compact density and the complexity of the image,
with minor false negatives and false positives. The confidence of detection was higher
when objects were not occluded and distinct.
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Figure 15. Examples of annotated images from the COCO test set—ground truth bounding boxes
and classes visible.

Figure 16. Examples of annotated images in the test set from the COCO and SEAGULL combination—
bounding boxes and classes with confidence shown as predicted by the algorithm trained on the
combined dataset.

The progress during the 100 epochs of training is shown in Figures 17 and 18. In
Figure 17, in the training losses (first row), class loss decreased more as more epochs passed
and converged at 0.021. The progress of objectness loss decreased and showed potential
for even further reduction beyond the 100th epoch training. The same applied for the box
loss. In the validation losses (second row), class loss stabilized around 0.012 after 50 epochs.
Objectness loss showed potential for further reduction if we trained the model even more.
This was in contrast to the first experiment. From this metric alone, it can be concluded that
the model’s performance in accuracy can be improved even more. The same applied for the
box loss. Neither converged on a value after 100 epochs and had a descending trajectory.
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Figure 17. Training on the SEAGULL and COCO combination—progress of metrics during the
100 epochs.

Figure 18. Training on the SEAGULL and COCO combination—progress of metrics during the
100 epochs.



Computation 2022, 10, 42 16 of 20

The same conclusion as Figure 17 can be derived after studying the metrics of Figure 18.
The ascending course of precision and recall, as well as the mean average precisions showed
the setup’s potential for a better final model with more epochs of training. None converged
on a single value.

The initial value of precision, which was 0.9, is rational considering recall, which had a
value of zero at the first epoch. A precision of 0.9 means that the model predicted/detected
with very few false positives, while a recall of zero means the model predicted/detected
with many false negatives.

The optimal values for the metrics of interest are shown in Table 7.

Table 7. Validation on SEAGULL and COCO combination—values of metrics.

mAP_0.5 0.50
mAP_0.5:0.95e 0.32
Box loss 0.037
obj loss 0.007

The model trained on the combined dataset was then validated on the SEAGULL
validation set alone. The resulting metrics are shown in Table 8.

Table 8. Validation on SEAGULL—values of metrics.

mAP_0.5 0.66
mAP_0.5:0.95e 0.337
Box loss 0.031
obj loss 0.0034

Result: It is obvious that further training would result in outperforming the model
from Experiment B (Section 4.2.4). The difference in the respective metrics were minuscule,
concluding the superiority of the second model trained on the combination dataset.

This model trained on SEAGULL and COCO was much more generalized than the
model trained on SEAGULL only (Section 4.2.4). The former was able to detect objects
close to the position of the camera that appeared larger inside the frame. The latter, on the
other hand, was unable to make the same predictions, since it was trained to detect objects
that appear at a certain distance from the camera. This means that a certain range of object
sizes only was detectable by the model.

Comparing the two models, in Figures 19 and 20, Graphs (a) represent the number
of training items in the dataset, Graphs (b) the anchor boxes used for the final bounding
boxes, i.e., the detections, Graphs (c) the frequency of the central positions of the objects of
the dataset, and Graph (d) the size of the bounding boxes as a percentage of the images’
width and height for the SEAGULL- and SEAGULL+COCO-trained models, respectively.

The SEAGULL dataset contains data with bounding boxes with a maximum height
of 10% and a maximum width of 15% of the respective dimensions of the image. On the
contrary, the SEAGULL+COCO dataset is uniform in relation to the anchor boxes, central
positions, and bounding box sizes. This means that the model was trained on a larger
variety of objects and sizes, respectively, allowing for detections on more unpredictable
cases where the object to be detected appears larger due to the proximity to the camera.
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Figure 19. Model trained on SEAGULL—(a) number of training items in the dataset, (b) anchor boxes
used for the final bounding boxes, i.e., the detections, (c) frequency of the central positions of the
objects of the dataset, (d) size of the bounding boxes as a percentage of the images’ width and height
for the SEAGULL- and SEAGULL+COCO-trained models, respectively.

4.3. Speed
4.3.1. Description and Methodology

All deep learning models may achieve the task at hand; however, some applications
require their output in real-time. In our case, the deployed hardware on the UAV, i.e.,
the Jetson AGX module, may be optimized for running deep learning models, but its
limitations are obvious.

The next experiments compare the trade-off between accuracy and speed. YOLOv5,
as stated, comes in various sizes. The small version’s weights take a space of 20 MB, while
the medium version’s require 70 MB. The difference in memory allocation is significant,
and we compared the accuracy and speed for each. For the purpose of this experiment, we
chose the best-performing dataset from the previous set of tests, i.e., the SEAGULL and
COCO combination.
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Figure 20. Model trained on SEAGULL and COCO—(a) number of training items in the dataset,
(b) anchor boxes used for the final bounding boxes, i.e., the detections, (c) frequency of the central
positions of the objects of the dataset, (d) size of the bounding boxes as a percentage of the images’
width and height for the SEAGULL- and SEAGULL+COCO-trained models, respectively.

4.3.2. Results

Using the small version of YOLOv5, the forward pass of one frame on the neural
networks lasted for around 70 ms. The medium version took around 120 ms to process one
frame. The performance regarding the accuracy for the two versions is shown in Table 9.

Table 9. Comparison of metrics between the small and medium versions of YOLOv5.

Metrics Small YOLOv5 Medium YOLOv5

mAP_0.5 0.50 0.57
mAP_0.5:0.95e 0.32 0.38
Box loss 0.037 0.034
obj loss 0.007 0.007

The difference in accuracy of each model was not minor; however, the difference in
inference time was significant. As our stack used DeepSORT for object tracking, which
requires the arrival of detections as quickly as possible, we opted for the small version of
YOLOv5 for deployment.
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5. Conclusions

Our sequential detection and tracking architecture consisted of the YOLOv5 object
detector and the DeepSORT object tracker. Our use case was based on an on-board,
autonomous AI unit, carried by a UAV and directly processing the live video stream from
the UAV’s cameras. The main advantage of this embedded architecture is that detection
and tracking do not depend on the quality of the video stream since all detection and
tracking happens on-board the UAV, while the reduced load on the ground units due to
edge processing offers a more scalable solution. Given the restrictions in computational
power of the on-board Jetson AGX Xavier unit, as well as the fact that DeepSORT utilizes
the result of object detection in tracking, speed is critical in the object detection stage, as
delays in detection will affect the efficiency of tracking. Comparing the accuracy of the
medium and small YOLOv5 versions, we opted for the small version, which enhanced the
speed without critically compromising accuracy.

In training the YOLOv5 detector, we used the maritime-surveillance-dedicated SEAG-
ULL and the COCO dataset. The model trained using SEAGULL performed well when
validated using images from the same dataset, but a model trained on a combination of
both datasets clearly outperformed it with further training. The model trained on the
combination dataset was thus superior for our purposes.

In terms of speed, the medium YOLOv5 architecture outperformed the small architec-
ture, as expected, but the small architecture was much faster, so much more appropriate for
our real-time detection and tracking setup.

Within the context of the EFFECTOR project, the system will be tested further, includ-
ing a series of thorough trials and validation of the on-board detection and tracking module
in field conditions.
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The following abbreviations are used in this manuscript:
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CNN Convolutional neural network
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SPP Spatial pyramid pooling
SORT Simple online and real-time tracking
CISE Common Information Sharing Environment
EVLOS Extended visual line-of-sight
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