
����������
�������

Citation: Bejarano, L.A.; Espitia, H.E.;

Montenegro, C.E. Clustering

Analysis for the Pareto Optimal Front

in Multi-Objective Optimization.

Computation 2022, 10, 37. https://

doi.org/10.3390/computation10030037

Received: 3 February 2022

Accepted: 28 February 2022

Published: 3 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

Clustering Analysis for the Pareto Optimal Front in
Multi-Objective Optimization
Lilian Astrid Bejarano , Helbert Eduardo Espitia * and Carlos Enrique Montenegro

Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogota 110231, Colombia;
lbejarano@udistrital.edu.co (L.A.B.); cemontenegrom@udistrital.edu.co (C.E.M.)
* Correspondence: heespitiac@udistrital.edu.co

Abstract: Bio-inspired algorithms are a suitable alternative for solving multi-objective optimization
problems. Among different proposals, a widely used approach is based on the Pareto front. In this
document, a proposal is made for the analysis of the optimal front for multi-objective optimization
problems using clustering techniques. With this approach, an alternative is sought for further use and
improvement of multi-objective optimization algorithms considering solutions and clusters found.
To carry out the clustering, the methods k-means and fuzzy c-means are employed, in such a way
that there are two alternatives to generate the possible clusters. Regarding the results, it is observed
that both clustering algorithms perform an adequate separation of the optimal Pareto continuous
fronts; for discontinuous fronts, k-means and fuzzy c-means obtain results that complement each
other (there is no superior algorithm). In terms of processing time, k-means presents less execution
time than fuzzy c-means.

Keywords: clustering; c-means; fuzzy; Pareto front; multi-objective; optimization; k-means

1. Introduction

Many multi-objective optimization algorithms are the bio-inspired type; in the same
way, a wide number of these are based on the Pareto optimal front (POF). The main difficulty
of these approaches is presented with discontinuous Pareto optimal fronts; therefore, the
optimization algorithm can remain performing the search process in a single sector of the
Pareto front. Considering the above, in this document, a proposal is made for clustering
analysis of the Pareto front solutions in such a way that it can be taken as a reference to
improve multi-objective optimization algorithms.

In order to contextualize the proposal made in this document, the following subsec-
tions review the related topics seen in Figure 1, presenting the most well-known multi-
objective optimization algorithms, and the approaches that can be taken using clustering to
improve algorithms.

Bio-inspired
Multi-objective Optimization

GA

MOGA, NSGA, NPGA, NPGA-II, SPEA

PAES, PESA, NSGA-II, SPEA-II, APA

NSGA-III, SDNSGA-III...

PSO

DSMOPSO, CMPSO, CICMOPSO

MOWOATS, MOEA/D, MOVPSO...

Others

Alternatives for improve performance
using clustering

Mutiple swarm, niches initialization, search guidance
decomposition, Pareto regions, vortex selection

Figure 1. Related topics in this work.

Computation 2022, 10, 37. https://doi.org/10.3390/computation10030037 https://www.mdpi.com/journal/computation

https://doi.org/10.3390/computation10030037
https://doi.org/10.3390/computation10030037
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0000-0002-1381-6522
https://orcid.org/0000-0002-0742-6069
https://orcid.org/0000-0002-3608-7158
https://doi.org/10.3390/computation10030037
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation10030037?type=check_update&version=2

Computation 2022, 10, 37 2 of 21

1.1. Multi-Objective Optimization

Bio-inspired multi-objective optimization algorithms have proven to be a suitable tool
for solving problems with different objective functions [1]. Among the most representative
algorithms, there are those based on evolution and also on swarms of particles. In relation
to the characteristics of the evolutionary strategy, a suitable approach to obtain the entire
Pareto front is achieved but requires many generations; on the other hand, algorithms
based on swarms of particles present a high rate of convergence; however, their main
disadvantage is to achieve an adequate diversity management [1,2].

According to [3], the optimal solutions of a multi-objective optimization problem
correspond to a non-dominated front that is characterized by a compromise solution
between the objectives. A “knee” region on this Pareto front, which visually is a convex
bulge at the front, is important for decision-making, and it often constitutes the optimum
in equilibrium.

As a first approximation of genetic algorithms, the following approaches are presented:
Multi-Objective Genetic Algorithm (MOGA), Non-Dominated Sorting Genetic Algorithm
(NSGA), Niched Pareto Genetic Algorithm (NPGA), Niched Pareto Genetic Algorithm II
(NPGA-II). A second group of representative algorithms are: Strength Pareto Evolutionary
Algorithm (SPEA) [4,5], Pareto Archived Evolution Strategy (PAES) [6], Envelope-Based
Selection Algorithm (PESA) [7], Non-Dominated Sorting Genetic Algorithm II (NSGA-II) [8]
and SPEA-II [9], Pareto Adaptive Algorithm (APA) [10].

Regarding recent developments, in [11], there is a proposal combining the Whale
Optimization Algorithm (WOA) with Tabu Search (TS) for multi-objective problems called
MOWOATS. This algorithm uses TS to store in elite lists the non-dominated solutions
to drive the swarm. The crossover is used in MOWOATS during intensification and
diversification phases to enhance the population diversity. An improvement of the SPEA-
II algorithm applied to the multi-objective decision-making of investment is presented
in [12]. In this case, an external archive is employed separately for local search after the
genetic operation to achieve global and local ability. In addition, a crossover operator
and individual update strategy are used to enhance the convergence, maintaining the
population diversity. Meanwhile, in [13], the authors presented a development based on
Chaotic Search (CS), where different Tchebychev scalarization strategies are considered.

According to [14], GA implementations must find a compromise to prevent being
trapped into local minima and to avoid a poor approximation to the optimal solution.
Commonly, GA algorithms use elitism to preserve some of the current best solutions. When
the initial population is randomly selected, as in many GA implementations, the elite can
be concentrated in a limited sector in the Pareto front. The authors in [14] show that a full
view of the Pareto front is possible by solving the single-objective problems (associated
with the extremes of the Pareto boundary), and then employing these solutions as the elite
members for the initial population.

A proposal of the Harmony Search (HS) algorithm with pitch adjustment using geno-
type is described in [15]. The approach consists of adjusting the pitch and employing the
crowding distance (in the search space). This adjustment regulates the exploration and
exploitation process, considering the distribution of the harmonies in the search space
during the calculation of Pareto front. In this way, the algorithm avoids the use of dynamic
parameters or a static bandwidth, since, for its operation, it only requires presetting the
pitch adjustment rate and the harmony memory accepting rate.

Meanwhile, in [16], a random strategy and second-order difference strategy were used
in the NSGA-III, given the algorithm SDNSGA-III. In cases when the environment changes
in SDNSGA-III, the aforementioned strategies are used to improve the individuals in the
next generation. Tests were performed using the metric values: Mean Generational Distance
(MGD), Mean Inverted Generational Distance (MIGD), and Mean Hyper Volume (MHV).

According to [17], the Lebesgue measure is one of the most relevant indicators in
evolutionary algorithms given the Pareto compliance characteristic. However, the main
deficiency in using the Lebesgue measure is the computational cost, which increases with

Computation 2022, 10, 37 3 of 21

the number of objective functions associated with the problem. In this regard, in [17], to deal
with box-constrained continuous multi-objective optimization problems, an evolutionary
algorithm based on the Lebesgue measure is introduced. This algorithm includes a survival
selection mechanism that considers the local property of the Lebesgue measure to reduce
the computational time.

1.2. Multi-Objective Particle Swarm Optimization

In this regard, Ref. [2] proposed the Multi-Objective Particle Swarm Optimization
(MOPSO), one of the first Pareto-based PSO approaches, where the non-dominated solu-
tions detected by the particles are stored in a repository. This approach uses the Pareto
dominance concept to determine the best positions (particle leaders) that will guide the
swarm in the search process. The search space is divided into hypercubes, and for each
hypercube is assigned a fitness value inversely proportional to the number of particles that
it contains. The algorithm employs a classic roulette wheel to select a hypercube and a
leader. The best position is updated at each iteration, based on the dominance relationship
between the particle’s best existing position and its new position. The record is limited
in size and new positions are inserted based on retention criteria that prioritize solutions
located in the less populated areas of the target space.

An alternative to achieve a better exploration of the entire Pareto front is to use multiple
populations. Regarding the development of algorithms that use several populations, in [18],
an algorithm is developed based on the concept of the coevolution of a family of preferences
together with a population of candidate solutions.

Meanwhile, in [19], a multi-objective evolutionary algorithm based on the parallel
evolution of multiple populations and a population from the Pareto file is proposed. For
each population, an evolutionary algorithm is used to separately optimize each of the
functions, where the individuals are generated by selection (tournament type) of the union
of a population associated with a goal and the population of the Pareto file. At each
iteration, a population of finite size from the Pareto file is iteratively updated and trimmed
using a comparison operation.

Regarding approaches that employ several groups of individuals, in [20], an algorithm
with multiple swarms called Distance Sorting Multi-Objective Particle Swarm Optimization
(DSMOPSO) is proposed, where the number of swarms is dynamically adjusted. The
authors propose a dynamic swarm strategy to assign an appropriate number of swarms,
as needed. A modified mechanism for PSO update is also employed to better manage
convergence and communication between and within swarms. The compression of the
target space and the expansion strategy are proposed progressively to exploit the target
space during the different stages of the search process.

Other related work can be seen in [21], where a multi-objective optimization algorithm
with multiple swarms is developed proposing that the number of swarms is adaptively
adjusted during the search process. The strategy assigns an appropriate number of swarms
to improve convergence and diversity among the swarms. A PSO update mechanism
is included to better manage intra-swarm and inter-swarm communication and space
compression. An expansion of the search space is also carried out for a progressive
exploration of it.

In [22], a coevolutionary technique is proposed using several populations for multiple
objectives. This approach provides a way to solve the multi-objective problem by letting
each population correspond to a single objective. In this way, the fitness assignment
problem can be addressed since the fitness of the individuals in each population can be
assigned by the corresponding objective. In this way, the Coevolutionary Multiswarm
Particle Swarm Optimization (CMPSO) algorithm is proposed, which uses an external
shared file for different populations to exchange the required information, incorporating
two mechanisms. The first consists of modifying the speed equation using the information
found by different populations. The other mechanism is the use of an elitist learning
strategy for shared file updating.

Computation 2022, 10, 37 4 of 21

According to [23], optimization problems with more than one objective, where at
least one objective changes in time, are defined as dynamic multi-objective optimization
problems. In the case when at least two objectives are in conflict, there is no single solution
and therefore the task of a dynamic multi-objective optimization algorithm is to follow the
set of optimal solutions through time. In addition, one of the main problems in solving
optimization problems is balancing exploitation and exploration during the search process.
In [23], the performance of the dynamic evaluated vector particle swarm optimization algo-
rithm is investigated using a heterogeneous swarm, where each particle exhibits a different
behavior; that is, there are specialized particles in separated exploration and exploitation.

In order to obtain the balance between convergence and diversity, in [24], the Clone
Immunity Chaotic Multi-Objective Particle Swarm Optimization (CICMOPSO) is proposed,
where the points in a non-dominated solution are mapped to a parallel-cell coordinate
system. In order to maintain and change the external archive, logistic mapping and a
neighboring immune operator are employed. In the CICMOPSO algorithm, the status of
the particles is evaluated using the Pareto entropy and difference entropy.

Meanwhile, in [25], the hybridization of two multi-objective derivative-free global
and local algorithms is presented. In this proposal, the global exploration capability of
the deterministic MPOS is enhanced via the local search accuracy of a derivative-free
line-search method (multi-objective). The algorithm develops the global and local searches
considering the hypervolume metric. In order to control the local search activation, the
hybridization scheme employs two parameters.

Additionally, in [26], the Quantum-Behaved Particle Swarm Optimization (QPSO)
algorithm is integrated with the Decomposition-Based Multi-Objective Evolutionary Al-
gorithm (MOEA/D) to allow the QPSO to solve multi-objective optimization problems
effectively. In this algorithm, to avoid premature convergence, a diversity controlling
mechanism is employed, and also nondominated solutions are used to generate the global
best for driving the swarm.

Finally, regarding previous works related to this paper, the Multi-Objective Vortex
Particle Swarm Optimization (MOVPSO) algorithm is presented in [27,28]. This algorithm
employs vortex behavior to enhance the exploratory process to find the optimal Pareto front.
The algorithm uses convergence and dispersion processes iteratively. In the convergence
phase, particles are grouped in the vortex. Then, in the next stage, the particles are dispersed
through the vorticity behavior characterized by circular movements.

1.3. Clustering Techniques and Multi-Objective Optimization

Clustering of numerical data is used for system modeling and classification. The goal
of clustering is to identify natural groups of data to produce a concise representation of
the behavior of a data system. Fuzzy logic (FL) provides some techniques to find clusters
for training data. In this way, it can use the cluster information to make a Sugeno fuzzy
inference system that models the data behavior using a minimal number of rules. The
partition rules are determined according to the fuzzy qualities associated with each of the
data groups [29,30]. A widely used clustering algorithm based on fuzzy logic corresponds
to c-means, which uses the membership values to generate the clusters.

Another useful clustering algorithm corresponds to k-means, which is an unsupervised
algorithm that determines clusters of objects into k groups based on the characteristics of
the data. The clusters are determined by minimizing the sum of the distances between each
object and the cluster centroid, where the quadratic distance is often used [31,32].

An attempt to enhance a multi-objective optimization algorithm using clustering is
presented in [33], developing a two-phase PSO strategy based on clustering. The initial
population is built according to the distribution of the particles. The subpopulations
representing the specialized niche clusters of particles are dynamically identified employing
density-based clustering algorithms. The evolution of the particles is restricted in each
niche; in the same way, information is not exchanged between the different niches.

Computation 2022, 10, 37 5 of 21

Regarding clustering proposals to improve the Pareto set in multi-objective optimiza-
tion problems, a development is presented in [34] applying clustering with a flexible
similarity metric. Meanwhile, in [35], a clustering strategy is employed to guide the search
in evolutionary multi-objective optimization.

On the other hand, considering applications of data clustering, in [36], a cluster-based
strategy is applied for solution selection in a multi-objective evolutionary algorithm based
on decomposition using particle swarm optimization. In this proposal, a clustering of the
Pareto solutions is performed for evaluating new candidates. In this way, a local search
strategy is introduced in the solution selection process. According to the authors, this
technique can be effective on datasets presenting highly overlapping clusters.

Regarding the clustering process for improving the optimization techniques, in [37],
the concept of the Pareto region is presented, which provides the points beyond the Pareto
front. The region is determined using a Fisher–Snedecor test over an augmented Lagrangian
function. In this way, a Constrained Sliding Particle Swarm Optimizer (CSPSO) is applied
to obtain the Pareto regions. Over these Pareto regions, a clustering strategy is applied to
define sub-regions to prioritize one of the objectives and an intermediary region that allows
one to establish a balance between objectives.

1.4. Article Approach and Document Organization

This article proposes a study based on clustering analysis using k-means and fuzzy
c-means with the purpose of identifying the characteristics to incorporate the clustering
process in a multi-objective optimization algorithm that allows us to improve the solutions
in the Pareto front. In particular, it is considered how the clustering process can be incor-
porated to improve the Multi-Objective Vortex Particle Swarm Optimization (MOVPSO)
algorithm described in [27,28]. Mainly, clustering can be used to determine the vortex used
to carry out the dispersion of the particles in the MOVPSO algorithm.

The originality is focused on observing the characteristics that clustering has to im-
prove in the multi-objective optimization algorithms, mainly observing the clusters formed
for continuous and discontinuous Pareto optimal fronts, and the processing time.

The article is organized as follows. In the first part, Section 2, the concepts associ-
ated with multi-objective optimization are reviewed, particularly describing the concept
associated with the Pareto optimal front, and then the clustering techniques of k-means
and fuzzy c-means are reviewed in Sections 3 and 4; later, the Pareto fronts and associated
multi-objective functions are described in Section 5. With the data of the Pareto fronts,
the clustering process and analysis are carried out considering different cases in Section 6.
Finally, in Sections 7 and 8, the discussion and conclusions of the work are established.

2. Multi-Objective Optimization

Multi-objective optimization is relevant in engineering when there must be a balance
in various objective functions associated with the design processes. Considering the
literature [1] the Multi-Objective Optimization Problem (MOP) corresponds to the following
task: Find a vector of decision variables that satisfies some constraints and optimizes a vector
function whose elements represent the objective functions.

The formulation of the multi-objective optimization problem implies determining a
vector of variables ~x∗ = [x∗1 , x∗2 , · · · , x∗n]T that optimizes the vector objective function given
by Equation (1), and satisfies the m inequality constraints given in Equation (2) and the p
equality constraints in Equation (3).

~f (~x) = [~f1(~x), ~f2(~x), · · · , ~fk(~x)]T (1)

gi(~x) ≤ 0 for i = 1, 2, · · · , m (2)

hi(~x) ≤ 0 for i = 1, 2, · · · , p (3)

A vector ~x∗ ∈ Ω corresponds to a feasible solution, and the set of constraints given
by Equations (2) and (3) defines the feasible region Ω. As shown in Figure 2, the vector of

Computation 2022, 10, 37 6 of 21

functions ~f (~x) maps the set Ω to the set Λ that contains the possible values of the objective
functions [1].

x1

x2

f1

f2

f3

Variables Domain Objective Functions Domain

Ω Λ

Figure 2. Domain of variables and objective functions.

Pareto Optimality

The multi-objective optimization seeks to determine the best value in the objective
functions; nevertheless, an increase in the performance of a function is not possible without
a decrease in the rest of the objective functions.

According to [1], Pareto dominance establishes that if one solution dominates over
another, this function needs to be necessarily better in at least one objective and never
show worse/lower performance than the others. In Figure 3, it is observed that solution P1
dominates solution P2 since it is better in both f1 and f2; however, it does not dominate P3
or P4 [38].

f2

f1

b

b

b

b

b b

b

b

P1

P3
P2

P4

Pareto Front

b

Utopia Point

Figure 3. Example of the Pareto optimal front and the utopia point.

A Pareto optimum means having a vector with independent variables ~x∗ ∈ Ω and
another ~x ∈ Ω in such a way that fi(~x∗) ≤ fi(~x) for all i = 1, ..., k and f j(~x∗) < f j(~x) for
at least one j; thus, the set of vectors ~x∗ linked to the solutions for the Pareto optimal are
non-dominating; moreover, the set of fi(~x∗) corresponds to the Pareto front [1].

In many cases, it is difficult to obtain an analytical expression for the Pareto front; then,
a set of feasible points in Ω to calculate the values of ~f (~x∗) for all ~x∗ ∈ Ω is considered as
the standard procedure in the generation of the Pareto front. In this way, the non-dominated
points in the Pareto front are achievable by having a sufficient number of points in Λ [1].

3. K-Means Clustering Algorithm

The k-means clustering algorithm is a method to carry out separations in data obser-
vations into K exclusive groups to establish vector indices to show the K cluster associated
with each observation [31,32].

Computation 2022, 10, 37 7 of 21

The k-means clustering algorithm takes each observation in the data as a point in a
Euclidean space. A partition is determined considering that the objects within each group
are close to each other, and far away from objects in other groups. Depending on the data
type to group, clustering employs various measures to minimize the sum of the distances.
In the partition, each cluster consists of the points and the center (centroid) [31,32].

Implementing the clustering includes the use of an iterative algorithm to reduce the
sum of distances from each object to its own centroid group, regarding all groups until no
further sums are possible to obtain the set of clusters [31,32].

Considering a set of observations (x1, x2, · · · , xn), where each observation corresponds
to a vector of d dimensions, the algorithm makes a partition of the observations into K sets
Ci = {C1, C2, · · · , CK}, where (K ≤ n). The steps of the k-means algorithm are as follows.

1. Establish a group of K centroids in the represented space.
2. Calculate the distance of each object with each of the centroids of K and assign it to

the centroid for which its distance is the smallest.
3. When all objects are assigned, recalculate the position of the centroids.
4. Terminate the algorithm if the stop criterion is met; otherwise, return to step 2.

Equation (4) shows a usual similarity measure based on the squared error, where x is
one of the elements and ri the midpoint of the cluster Ci.

JE =
K

∑
i=1

∑
x∈Ci

‖x− ri‖2 (4)

The first part of the algorithm includes using a statistical measure such as the mean or
median to determine the initial value of the centroids. During the second step, any distance
metric can be used, where each object is compared to all centroids, assigning the centroid
with the smallest distance. In the third instance, some heuristics are usually used to modify
the centroids; the mean or median position of the objects is usually employed to calculate
the position of the new centroids. Lastly, under some conditions, the algorithm stops in the
fourth step due to the number of iterations, or in cases when no variation is present in the
sum of the shortest distances; otherwise, the algorithm returns to step 2.

4. C-Means Clustering Algorithm

The fuzzy c-means algorithm is a data clustering technique where each data point
belongs to a group to a certain extent specified by a membership degree. This technique
offers a method to group larger sets of data in multidimensional space into a specific
number of distinct groups [39,40].

Using the groups generated by the fuzzy c-means algorithm, a fuzzy inference system
can be built by creating membership functions to represent the linguistic labels of each
group, employing the concept fuzzy partition.

A fuzzy partition characterizes the separation of each sample in all groups using
membership functions that take values between zero and one, where, for each sample, the
sum of the membership is one. In this way, it is possible to translate the fuzzy clustering
problem to meet an optimal fuzzy partition [29,30,40,41].

Given that c > 1 a positive integer, and a subset X = (x1, · · · , xn) of dimension d (in a
Euclidean space), then a fuzzy partition of X in c groups is a list of c membership functions
µ = (µ1, . . . , µc) that accomplish Equations (5)–(7).

c

∑
i=1

µi(xj) = 1, ∀j = 1, . . . , c (5)

0 ≤ µi(x) ≤ 1, ∀i = 1, . . . , c (6)

0 <
n

∑
j=1

µi(xj) < 1, ∀i = 1, . . . , c (7)

Computation 2022, 10, 37 8 of 21

In this way, the fuzzy partitions are represented as µik, where i corresponds to the
cluster and k the data. Fuzzy c-means algorithms employ a clustering criterion given by an
objective function that depends on the fuzzy partition. The procedure consists of iteratively
minimizing this function until obtaining an optimal fuzzy partition [29,30,40,41].

Different clustering criteria can be used to determine the optimal fuzzy partition
for X; the most widely used is associated with the least squares error function given in
Equation (8).

Jm =
n

∑
k=1

c

∑
i=1

(µik)
m‖xk − ri‖2

A (8)

The value ‖xk − ri‖2
A corresponds to the square distance between the elements of X

and the centers of the groups, given by Equation (9), where (x1, x2, . . . , xn) are the data,
ri = (ri1, ri2, . . . , ric) is the center vector of the group i, and finally ‖ · ‖A is the norm induced
by A that is a n× n positive definite weight matrix; when A is the identity matrix, the
square of the Euclidean distance is obtained.

‖xk − vi‖2
A = (xk − ri)

T A(xk − ri) (9)

Considering the k-th data in the i-th cluster, the factor (µik)
m corresponds to the

m-th power of the respective membership value, where m > 1 controls the fuzzy over-
lap corresponding to the amount of data having significant membership in different
clusters [29,30,40,41]. The general procedure of the fuzzy c-means algorithm is as follows.

1. Set c, m, A, ‖ · ‖A and determine an initial matrix of fuzzy partitions.
2. Calculate the centers of the groups.
3. Update the fuzzy partition matrix.
4. Finish if stop criterion is met; otherwise, return to step 2.

The first part of the process is to set the parameters of the algorithm. The second part
includes an approximation toward the center of the clusters to mark the average location
of each group. Then, the fuzzy c-means algorithm for each group and datum assigns an
associating degree of membership. Updating for each data point the cluster centers and
membership degrees, the algorithm iteratively adjusts the cluster centers. This process is
performed until a stop criterion is met [29,30,40].

5. Test Functions Employed

Ideally, the test functions chosen to evaluate an MOEA should contain characteristics
similar to the real-world problem to be solved [1]. The specialized literature proposes to
employ artificial functions to describe different levels of difficulty to test multi-objective
evolutionary algorithms [1].

Among different multi-objective test functions, the functions used were chosen consid-
ering the number of segments that compose the optimal Pareto front. In this way, different
cases that arise when executing multi-objective optimization algorithms are considered,
especially those functions that allow the observation of features to enhance the exploration
of the optimization algorithms via the clustering process. Figure 4 displays the Pareto
fronts for the test functions considered, which are described below.

F1: Binh1

• Number of variables: n = 2.
• Limits of the variables: [−5, 10].
• Objective functions:

f1 = x2
1 + x2

2

f2 = (x1 − 5)2 + (x2 − 5)2

Computation 2022, 10, 37 9 of 21

F2: Fonseca1

• Number of variables: n = 2.
• Limits of the variables: [−1, 1].
• Objective functions:

f1 = 1− exp
(
−(x1 − 1)2 − (x2 + 1)2

)
f2 = 1− exp

(
−(x1 + 1)2 − (x2 − 1)2

)
F3: Fonseca2

• Number of variables: n = 3.
• Limits of the variables: [−4, 4].
• Objective functions:

f1 = 1− exp

(
−

n

∑
i=1

(
xi −

1√
n

)2
)

f2 = 1− exp

(
−

n

∑
i=1

(
xi +

1√
n

)2
)

F4: Schaffer1

• Number of variables: n = 1.
• Limits of the variables: [0, 2].
• Objective functions:

f1 = x2

f2 = (x− 2)2

F5: Schaffer2

• Number of variables: n = 1.
• Limits of the variables: [−5, 10].
• Objective functions:

f1 =

−x, if x ≤ 1,
−2 + x, if 1 < x ≤ 3,
4− x, if 3 < x ≤ 4,
−4 + x, if x > 4,

f2 = (x− 5)2

F6: Deb2

• Number of variables: n = 2.
• Limits of the variables: [0, 1].
• Objective functions:

f1 = x1

f2 = g · h

g = 1 + 10x2

h = 1−
(

f1

g

)2
− f1

g
sin(12π f1)

Computation 2022, 10, 37 10 of 21

F7: Kursawe

• Number of variables: n = 3.
• Limits of the variables: [−5, 5].
• Objective functions:

f1 =
n−1

∑
i=1

(
−10 exp

(
−0.2

√
x2

i + x2
i+1

))

f2 =
n−1

∑
i=1

(
|xi|0.8 + 5 sin

(
x3

i

))
F8: Poloni

• Number of variables: n = 2.
• Limits of the variables: [−3, 3].
• Objective functions:

f1 = −[1 + (A1 − B1)
2 + (A2 − B2)

2]

f2 = −[(x1 + 3)2 + (x2 + 1)2]

A1 = 0.5 sin(1)− 2 cos(1) + sin(2)− 1.5 cos(2)

A2 = 1.5 sin(1)− cos(1) + 2 sin(2)− 0.5 cos(2)

B1 = 0.5 sin(x1)− 2 cos(x1) + sin(x2)− 1.5 cos(x2)

B2 = 1.5 sin(x1)− cos(x1) + 2 sin(x2)− 0.5 cos(x2)

Function selection is made to have different characteristics of the Pareto optimal fronts.
Functions F1, F2, F3, and F4 are characterized by presenting continuous POFs; it is expected
that clustering algorithms perform an equal division of these POFs. Meanwhile, functions
F5, F6, F7, and F8 have non-continuous POFs, for which it is expected the formation of
groups for each segment of the POF. As seen, there are 2, 3, and 6 segments.

With these test functions, the purpose is to observe if the clustering process allows
the establishment of mechanisms to improve the exploration process of multi-objective
optimization algorithms. Regarding some strategies, swarms can be formed considering
the identified clusters, or the center of the cluster can be used to carry out a dispersion
process that allows the determination of additional and more suitable solutions of the
Pareto optimal front.

In Figure 4, F1, F2, F3, and F4 show continuous POFs; that is, they are not divided
into segments, for which it is expected that the clustering algorithms perform a uniform
segmentation of POFs. Moreover, in this figure, it seems that F5, F6, F7, and F8 present
discontinuous POFs, where there are different segments that do not have the same amount
of data, for which it is expected that the algorithms will be able to make the groups for each
segment.

Computation 2022, 10, 37 11 of 21

0 10 20 30 40 50 60

0

10

20

30

40

50

60

f1

f 2

f3

(a) POF F1.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

f1

f 2

f3

(b) POF F2.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

f1

f 2

f3

(c) POF F3.

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

3

3.5

4

f1

f 2

f3

(d) POF F4.

-1 -0.5 0 0.5 1

0

2

4

6

8

10

12

14

16

f1

f 2

f3

(e) POF F5.

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

f1

f 2

f3

(f) POF F6.

-20 -19 -18 -17 -16 -15 -14

-12

-10

-8

-6

-4

-2

0

2

f1

f 2

f3

(g) POF F7.

0 5 10 15 20

0

5

10

15

20

25

f1

f 2

f3

(h) POF F8.

Figure 4. Pareto optimal fronts for the considered test functions F1 to F8.

Computation 2022, 10, 37 12 of 21

The number of data used for each Pareto front shown in Figure 4 is presented in
Table 1, where the largest amount of data is for F8 with 1100 points and the smallest for F2,
F4 and F5 with 200 points.

Table 1. Amount of data used for each Pareto optimal front.

Function Amount of Data Function Amount of Data

F1 670 F5 200
F2 200 F6 660
F3 435 F7 875
F4 200 F8 1100

It should be noted that, in this work, no multi-objective optimization algorithm
is employed to determine the Pareto front, for which Pareto front data reported in the
literature as in [42] are used.

6. Clustering Analysis

This section presents the results obtained first for the k-means algorithm and then for
fuzzy c-means. It is noticeable that the clusters obtained their centers and the separation
seeking to cover the data associated with the Pareto optimal front. Also presented is the
processing time used in the clustering process for each optimal Pareto front.

Regarding implementation, the experiments were carried out with PC Intel i5-3230M
2.60 GHz and RAM of 6.00 GB using software MATLAB 2017a for the implementation of
k-means [43,44] and fuzzy c-means [45,46].

The results using k-means can be seen in Figure 5; the groups obtained for each Pareto
front are shown taking K = 2, 3, 4, 5, 6 clusters. In the experiments, the maximum clusters
taken are 6 since it is the maximum number of segments in the POFs (case of F6).

Additionally, in Table 2, one can see the sum of the total distances obtained (L1
distance) given in Equation (10), where xj is the j-th data point (observation) and cj is the
j-th centroid (a row vector). Each centroid corresponds to the median of the points in the
respective cluster [44,47].

JE =
p

∑
j=1
‖xj − cj‖ (10)

In order to show the results graphically, an array is made in Figure 5, where the rows
correspond to the POFs (from F1 to F8), and the columns show the number of clusters used
(from K = 2 to K = 6). In this group of figures, the clusters are depicted using different
colors and the center of each cluster with the symbol ♦. It is noteworthy that the first four
rows correspond to continuous POFs while the last four rows to discontinuous POFs.

According to Figure 5, for the continuous POFs, an adequate clustering distribution
of the POF is observed, which can be used to improve the exploitation by improving each
segment separately using a multi-objective optimization algorithm. On the other hand, for
discontinuous POFs, it is sought that the number of segments be equal to the number of
clusters. In the case of two segments, there is a correct segmentation of the POF; for three
segments, it is not achieved correctly, and for six, it is achieved in most segments; however,
there are three segments that share a few data in the clusters.

Based on Table 2 for all cases, by increasing the number of clusters, an improvement in
the objective function is obtained; however, for the case when the POFs are discontinuous,
the best value is not obtained when the number of clusters coincides with the number of
segments. This feature must be considered when including the clustering process in the
optimization algorithm, since a procedure must be established to determine the appropriate
number of clusters.

Computation 2022, 10, 37 13 of 21

0 10 20 30 40 50 60

0

10

20

30

40

50

60

f1

f 2

F1, K = 2

0 10 20 30 40 50 60

0

10

20

30

40

50

60

f1

f 2

F1, K = 3

0 10 20 30 40 50 60

0

10

20

30

40

50

60

f1

f 2

F1, K = 4

0 10 20 30 40 50 60

0

10

20

30

40

50

60

f1

f 2

F1, K = 5

0 10 20 30 40 50 60

0

10

20

30

40

50

60

f1

f 2

F1, K = 6

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

f1

f 2

F2, K = 2

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

f1

f 2

F2, K = 3

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

f1

f 2

F2, K = 4

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

f1

f 2

F2, K = 5

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

f1

f 2

F2, K = 6

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

f1

f 2

F3, K = 2

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

f1

f 2

F3, K = 3

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

f1

f 2
F3, K = 4

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

f1

f 2

F3, K = 5

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

f1

f 2

F3, K = 6

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

3

3.5

4

f1

f 2

F4, K = 2

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

3

3.5

4

f1

f 2

F4, K = 3

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

3

3.5

4

f1

f 2

F4, K = 4

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

3

3.5

4

f1

f 2

F4, K = 5

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

3

3.5

4

f1

f 2

F4, K = 6

-1 -0.5 0 0.5 1

0

2

4

6

8

10

12

14

16

f1

f 2

5
6 F5, K = 2

-1 -0.5 0 0.5 1

0

2

4

6

8

10

12

14

16

f1

f 2

F5, K = 3

-1 -0.5 0 0.5 1

0

2

4

6

8

10

12

14

16

f1

f 2

F5, K = 4

-1 -0.5 0 0.5 1

0

2

4

6

8

10

12

14

16

f1

f 2

F5, K = 5

-1 -0.5 0 0.5 1

0

2

4

6

8

10

12

14

16

f1

f 2

F5, K = 6

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

eplacements

f1

f 2

F6, K = 2

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

f1

f 2

F6, K = 3

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

f1

f 2

F6, K = 4

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

f1

f 2

F6, K = 5

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

f1

f 2

F6, K = 6

-20 -19 -18 -17 -16 -15 -14

-12

-10

-8

-6

-4

-2

0

2

f1

f 2

F7, K = 2

-20 -19 -18 -17 -16 -15 -14

-12

-10

-8

-6

-4

-2

0

2

f1

f 2

F7, K = 3

-20 -19 -18 -17 -16 -15 -14

-12

-10

-8

-6

-4

-2

0

2

f1

f 2

F7, K = 4

-20 -19 -18 -17 -16 -15 -14

-12

-10

-8

-6

-4

-2

0

2

f1

f 2

F7, K = 5

-20 -19 -18 -17 -16 -15 -14

-12

-10

-8

-6

-4

-2

0

2

f1

f 2

F7, K = 6

0 5 10 15 20

0

5

10

15

20

25

f1

f 2

F8, K = 2

0 5 10 15 20

0

5

10

15

20

25

f1

f 2

F8, K = 3

0 5 10 15 20

0

5

10

15

20

25

f1

f 2

F8, K = 4

0 5 10 15 20

0

5

10

15

20

25

f1

f 2

F8, K = 5

0 5 10 15 20

0

5

10

15

20

25

f1

f 2

F8, K = 6

Figure 5. Results using k-means.

An interesting comparison can be made among test functions considering the perfor-
mance index; nevertheless, the POFs do not have the same range values and the amount of

Computation 2022, 10, 37 14 of 21

data; for example, the POF for F2 and F3 has the same range values; however, the amount
of data is different.

Observing Table 3, the processing time tends to increase when increasing the number of
clusters. However, there are a few cases where the processing time decreases. Considering
the functions with continuous POF, for F1, the shortest time is with K = 5, for F2 with K = 3,
for F3 and F4 with K = 2; meanwhile, taking the functions with continuous POFs, F5, F6, F7,
and F8, the shortest time is obtained with K = 2. It should also be noted that although the
POF of F8 is the one with the most data, the processing time is not the longest found in the
experiments carried out.

In addition, considering functions F2 and F3 with continuous POFs in the range [0, 1],
where F2 has 200 points and F3 435 points, in Table 3, it is observed that the shortest time is
obtained for F3 with K = 2.

Table 2. Performance index using k-means (best values in blue).

K = 2 K = 3 K = 4 K = 5 K = 6

F1 8391.7500 5594.5500 4196.1000 3357.9000 2798.5500
F2 56.9314 34.9253 25.6418 20.2137 16.6845
F3 112.4049 71.5409 52.4383 41.3160 34.2348
F4 198.0000 132.0400 99.0800 79.2400 66.0800
F5 251.2500 151.0000 117.6820 101.1522 75.2619
F6 207.9879 135.8786 100.9513 73.6020 67.0604
F7 1374.4139 1038.9623 843.0882 654.9459 516.1611
F8 3381.1151 1938.7807 1436.3547 1241.3337 877.1011

Table 3. Processing time in seconds using k-means (best values in blue).

K = 2 K = 3 K = 4 K = 5 K = 6

F1 0.2348700 0.0432130 0.0389430 0.0199730 0.0519910
F2 0.0055761 0.0047870 0.0063644 0.0054241 0.0056799
F3 0.0047795 0.0063817 0.0071171 0.0117810 0.0080207
F4 0.0040129 0.0060577 0.0056353 0.0056906 0.0068515
F5 0.0039584 0.0050692 0.0051604 0.0042107 0.0053566
F6 0.0040619 0.0047554 0.0052575 0.0054063 0.0054762
F7 0.0044325 0.0075443 0.0072893 0.0086594 0.0124490
F8 0.0034583 0.0048920 0.0051983 0.0052315 0.0087573

On the other hand, the results using fuzzy c-means are depicted in Figure 6; the groups
for each Pareto front are obtained taking C = 2, 3, 4, 5, 6 clusters. Furthermore, in Table 4,
one can see the performance index used by the fuzzy c-means algorithm to establish the
clusters. The objective function used is given by Equation (11), where xi represents the i-th
observation (data point), cj corresponds to the j-th cluster center, D is the total number
of data points, and N is the amount of clusters; meanwhile, m > 1 is the fuzzy partition
exponent employed for controlling the degree of fuzzy overlap; finally, µij corresponds to
the membership value of xi in the respective j-th cluster [46,48].

Jm =
D

∑
i=1

N

∑
j=1

(µij)
m‖xi − cj‖2 (11)

Figure 6 shows the clusters formed with the elements having the highest membership
value associated with each cluster. In this figure, the results are organized in an array where
functions F1 to F8 are found in the rows and number of clusters used from C = 2 to C = 6
in the columns. In these results, the symbol ♦ represents the center of each cluster depicted
using different colors.

Computation 2022, 10, 37 15 of 21

0 10 20 30 40 50 60

0

10

20

30

40

50

60

f1

f 2

F1, C = 2

0 10 20 30 40 50 60

0

10

20

30

40

50

60

f1

f 2

F1, C = 3

0 10 20 30 40 50 60

0

10

20

30

40

50

60

f1

f 2

F1, C = 4

0 10 20 30 40 50 60

0

10

20

30

40

50

60

f1

f 2

F1, C = 5

0 10 20 30 40 50 60

0

10

20

30

40

50

60

f1

f 2

F1, C = 6

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

f1

f 2

F2, C = 2

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

f1

f 2

F2, C = 3

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

f1

f 2

F2, C = 4

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

f1

f 2

F2, C = 5

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

f1

f 2

F2, C = 6

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

f1

f 2

F3, C = 2

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

f1

f 2

F3, C = 3

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

f1

f 2
F3, C = 4

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

f1

f 2

F3, C = 5

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

f1

f 2

F3, C = 6

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

3

3.5

4

f1

f 2

F4, C = 2

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

3

3.5

4

f1

f 2

F4, C = 3

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

3

3.5

4

f1

f 2

F4, C = 4

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

3

3.5

4

f1

f 2

F4, C = 5

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

3

3.5

4

f1

f 2

F4, C = 6

-1 -0.5 0 0.5 1

0

2

4

6

8

10

12

14

16

f1

f 2

5
6 F5, C = 2

-1 -0.5 0 0.5 1

0

2

4

6

8

10

12

14

16

f1

f 2

F5, C = 3

-1 -0.5 0 0.5 1

0

2

4

6

8

10

12

14

16

f1

f 2

F5, C = 4

-1 -0.5 0 0.5 1

0

2

4

6

8

10

12

14

16

f1

f 2

F5, C = 5

-1 -0.5 0 0.5 1

0

2

4

6

8

10

12

14

16

f1

f 2

F5, C = 6

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

eplacements

f1

f 2

F6, C = 2

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

f1

f 2

F6, C = 3

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

f1

f 2

F6, C = 4

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

f1

f 2

F6, C = 5

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

f1

f 2

F6, C = 6

-20 -19 -18 -17 -16 -15 -14

-12

-10

-8

-6

-4

-2

0

2

f1

f 2

F7, C = 2

-20 -19 -18 -17 -16 -15 -14

-12

-10

-8

-6

-4

-2

0

2

f1

f 2

F7, C = 3

-20 -19 -18 -17 -16 -15 -14

-12

-10

-8

-6

-4

-2

0

2

f1

f 2

F7, C = 4

-20 -19 -18 -17 -16 -15 -14

-12

-10

-8

-6

-4

-2

0

2

f1

f 2

F7, C = 5

-20 -19 -18 -17 -16 -15 -14

-12

-10

-8

-6

-4

-2

0

2

f1

f 2

F7, C = 6

0 5 10 15 20

0

5

10

15

20

25

f1

f 2

F8, C = 2

0 5 10 15 20

0

5

10

15

20

25

f1

f 2

F8, C = 3

0 5 10 15 20

0

5

10

15

20

25

f1

f 2

F8, C = 4

0 5 10 15 20

0

5

10

15

20

25

f1

f 2

F8, C = 5

0 5 10 15 20

0

5

10

15

20

25

f1

f 2

F8, C = 6

Figure 6. Results using fuzzy c-means.

From Figure 6, for the continuous POFs, an adequate distribution of the POF is
observed since it tends to generate equitable groups in the Pareto optimal front. On the
other hand, for discontinuous POFs, it is sought to have the number of POF segments equal

Computation 2022, 10, 37 16 of 21

to the number of clusters. For the case of two segments, there is a correct segmentation of
the POF; for six segments, it is not achieved correctly, and for three, it is achieved in most
segments.

Based on Table 4, for all cases, by increasing the number of clusters, an improvement
in the objective function is obtained; however, when the POFs are discontinuous, the best
value is not obtained when the number of clusters coincides with the number of segments.

Considering Table 5, it is observed that the processing time increases when increasing
the number of clusters; nonetheless, there are a few cases where the processing time
decreases. Considering the functions with continuous POF for F1, the shortest time is with
C = 3, and for F2, F3, and F4 with C = 2. Meanwhile, taking the functions with continuous
POFs, F5, F6, F7, and F8, the shortest time is with C = 2. It should also be noted that
although the POF of F8 is the one with the most data, the processing time is not the longest
obtained in the experiments carried out. In addition, considering F2, F4, and F5 that present
200 points in the POF, the shortest processing time is for F5.

Table 4. Performance index using fuzzy c-means (best values in blue).

C = 2 C = 3 C = 4 C = 5 C = 6

F1 72003.2367 30109.4874 16353.9897 10222.6895 6979.9672
F2 13.3770 4.5067 2.4794 1.4929 1.0136
F3 17.6615 6.7323 3.4962 2.1238 1.4304
F4 134.3028 56.1533 30.4953 19.0607 13.0137
F5 413.3438 101.7896 52.3381 38.2433 29.1930
F6 42.6418 17.1626 9.4975 5.5728 2.8960
F7 1875.8525 1027.1601 430.1388 272.0026 196.7863
F8 12851.3018 2986.7051 2350.5175 1178.4914 577.2411

Table 5. Processing time in seconds using fuzzy c-means (best values in blue).

C = 2 C = 3 C = 4 C = 5 C = 6

F1 0.0260160 0.0150030 0.0293120 0.0471320 0.062578
F2 0.0018817 0.0021549 0.0088161 0.0052173 0.014639
F3 0.0018079 0.0039356 0.0081450 0.0171960 0.021882
F4 0.0016741 0.0034390 0.0087518 0.0090822 0.018726
F5 0.0011365 0.0027533 0.0052488 0.0061023 0.013021
F6 0.0041349 0.0079623 0.0190770 0.0531580 0.010667
F7 0.0048490 0.0370210 0.0170500 0.0261660 0.044281
F8 0.0039849 0.0096585 0.0126120 0.0378470 0.043933

Regarding general observations of clustering analysis, as can be seen in Tables 2 and 4,
as the number of clusters increases, the performance index decreases for both k-means and
fuzzy c-means. For continuous POF, it is sought that the clusters are well distributed along
the POF, while, for discontinuous POFs, it is expected that the clusters will be generated for
each segment of the POF.

For functions F1, F2, F3, and F4, the clustering algorithms perform a balanced seg-
mentation of these POFs. Meanwhile, for discontinuous POFs using k-means and fuzzy
c-means, a correct clustering for F5 and F8 is achieved; meanwhile, a suitable clustering for
F6 is obtained using k-means, and for F7 using fuzzy c-means. Figures 5 and 6 allow us to
observe the cluster formation in a qualitative way.

Considering the above results, an important aspect when incorporating the clustering
process into the multi-objective optimization algorithm is the mechanism to determine the
appropriate number of clusters, which can be done iteratively; however, it also increases
the computational time.

In addition, a combination of k-means and c-means allows an appropriate clustering
of POFs; therefore, these clustering algorithms are suitable to use in the VMPSO algorithm.
The clusters can be calculated after obtaining a certain number of solutions of the Pareto

Computation 2022, 10, 37 17 of 21

front. Then, with the clusters, the vortices of the VMPSO algorithm can be established to
refine the solutions.

It should be noted that the performance index used for k-means is different from the
one used with fuzzy c-means; therefore, a comparison of Table 2 (for k-means) and Table 4
(for fuzzy c-means) is not possible directly. Considering the above, the performance index
JE is calculated using the results of fuzzy c-means, obtaining Table 6, observing that, in
most cases, a better value is obtained with k-means since JE is used as the performance
index in k-means; however, a better value was obtained using fuzzy c-means for the cases
of F7 with C = 4, and also for F5, F7, and F8 with C = 5, and finally for F6 with C = 6.

Table 6. Performance index JE using clusters obtained via fuzzy c-means (best values in blue).

C = 2 C = 3 C = 4 C = 5 C = 6

F1 8485.8217 5678.6370 4252.2398 3399.8150 2830.6087
F2 57.7005 35.7828 25.8042 20.4484 16.7659
F3 112.8745 71.7645 52.5503 41.3734 34.2655
F4 200.1859 133.9046 100.2882 80.2219 66.7837
F5 252.6031 152.0242 125.6948 92.1816 91.7635
F6 211.8209 145.6224 108.1482 78.8322 49.8207
F7 1433.0815 1175.4328 767.0160 613.8347 534.0547
F8 3416.8323 1961.6507 1590.9511 1082.4891 978.9860

Table 7 displays the difference in processing time between k-means and fuzzy c-means.
In these results, the higher difference is for k-means (case F1 with 2 clusters); it is also
observed that in 12 of the 40 implementations, the k-means algorithm required more time
than fuzzy c-means; meanwhile, 28 implementations using fuzzy c-means required more
time than k-means.

Table 7. Difference in processing time between k-means and fuzzy c-means.

2 Clusters 3 Clusters 4 Clusters 5 Clusters 6 Clusters

F1 0.2089 0.0282 0.0096 −0.0272 −0.0106
F2 0.0037 0.0026 −0.0025 0.0002 −0.0090
F3 0.0030 0.0024 −0.0010 −0.0054 −0.0139
F4 0.0023 0.0026 −0.0031 −0.0034 −0.0119
F5 0.0028 0.0023 −0.0001 −0.0019 −0.0077
F6 −0.0001 −0.0032 −0.0138 −0.0478 −0.0052
F7 −0.0004 −0.0295 −0.0098 −0.0175 −0.0318
F8 −0.0005 −0.0048 −0.0074 −0.0326 −0.0352

7. Discussion

The present work is of an exploratory type to observe the characteristics that can be
obtained with the clustering process to improve multi-objective optimization algorithms,
particularly MOVPSO. A comparison with other proposals is expected to be made when
the algorithm is implemented using clustering.

The originality is focused on establishing the characteristics that clustering has to
improve in the multi-objective optimization algorithms, mainly observing the clusters for
continuous and discontinuous Pareto optimal fronts. For continuous POFs, it is sought to
have a suitable distribution of clusters, while for discontinuous POFs, it is necessary that
the clusters coincide with the segments. As another important aspect, the processing time
is also considered.

In this document, we present a clustering analysis that can be used to formulate alter-
natives to better explore the solutions of a Pareto front; however, it should be considered
that this work presents the limitation of using the optimal points of the Pareto front. In
the first place, it must be borne in mind that a multi-objective optimization algorithm
constructs this front iteratively; therefore, it must be determined when to use the data

Computation 2022, 10, 37 18 of 21

obtained to establish the clusters. Second, from the perspective of the algorithm to improve
the solutions, it must be locked with the decision variables, which is why it must be possible
to establish the equivalent clusters in this domain.

For a multi-objective optimization algorithm that uses particle swarms, the found
centers of each cluster can be used to create individual swarms. In particular, for the Multi-
Objective Vortex Particle Swarm Optimization (MOVPSO) algorithm described in [27,28],
where it is required to establish the vortex over which the particles will move, the center
of each cluster can be used to determine the vortex point. In this way, it is sought to
improve the solutions close to the established vortices. Figure 7 displays the flow chart
for MOVPSO, including the clustering process; it is observed that clustering is used in an
iterative way after the algorithm performs a convergence or a dispersion process. In this
order, the clustering is used to determine the vortex point where the swarm congregates in
the convergence phase and then carries out the dispersion process.

Swarm initialization and
calculate non-dominated solutions

Clustering process

Determine the vortex point

Perform convergence or dispersion
process according to the stage

Calculate the non-dominated solutions

Convergence or dispersion

is finished?

No

Stopping criterion

is met?

Yes

No

Yes

Establish the final Pareto front

Figure 7. Proposal of MOVPSO using clustering.

Additionally, the computational complexity that the clustering technique adds to the
optimization algorithm must be considered; for example, if the clustering technique is used
in each iteration, it may increase the computation time. For the MOVPSO algorithm, the
clustering process can be used when determining a set of solutions; then, the calculation
required for the clustering technique is not extensive. When the total computational com-
plexity of both the clustering and optimization processes is included together, the validity
of the approach becomes meaningful in the context of performance and computational time.
It is expected to evaluate this aspect when the optimization algorithm and the clustering
processes will be implemented.

Moreover, when including clustering techniques in the multi-objective optimization
algorithms, the mechanism to obtain the number of suitable clusters must be considered,
which can influence the performance and computational complexity of the algorithm.

Computation 2022, 10, 37 19 of 21

8. Conclusions

The k-means and fuzzy c-means algorithms achieve an adequate segmentation of the
continuous POFs. In the case of discontinuous POFs, these algorithms can be complemen-
tary to find the appropriate groups for each POF segment.

Regarding the processing time, it is observed that the k-means algorithm has a lower
processing time than fuzzy c-means. Time is a critical factor when using clustering algo-
rithms in each iteration of the optimization algorithms; however, clustering algorithms can
be used after having defined several solutions of the Pareto front.

The clustering analysis of the solutions from the Pareto optimal front presented in this
paper can be used for the formulation of strategies to improve the quality of the solutions
found. In this way, it is important to establish a mechanism to determine the suitable
number of clusters.

A possible strategy to carry out considering the cluster analysis consists of the forma-
tion of multiple populations that improve the solutions associated with each group found.
For MOVPSO, the clustering can be used for determining the vortex used in this algorithm.

The main disadvantage of including a clustering analysis in a multi-objective opti-
mization algorithm is the additional calculations associated with the clustering algorithm
used. Therefore, a strategy must also be implemented to determine the appropriate time to
perform a clustering analysis during the execution of the multi-objective algorithm.

Including the clustering process in the multi-objective optimization algorithm can
improve its performance; however, it can also significantly increase the computation time,
which becomes relevant when researching the appropriate strategy to incorporate the
clustering process.

Once the implementation of the clustering process is carried out in the optimization
algorithm, it is expected to perform the comparison of results with other algorithms in
further works.

Author Contributions: Conceptualization, L.A.B., H.E.E. and C.E.M.; Methodology, L.A.B., H.E.E.
and C.E.M.; Project administration, L.A.B., H.E.E. and C.E.M.; Supervision, H.E.E.; Validation, C.E.M.;
Writing—original draft, L.A.B., H.E.E. and C.E.M.; Writing—review and editing, L.A.B., H.E.E. and
C.E.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The original database is at [42].

Acknowledgments: The authors express their gratitude to the Universidad Distrital Francisco José
de Caldas. We also give special recognition to Joaquín Javier Meza Álvarez.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Coello, C.; Van Veldhuizen, D.; Lamont, G. Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd ed.; Springer:

New York, NY, USA, 2007.
2. Coello, C.; Salazar, M. MOPSO: A proposal for multiple objective particle swarm optimization. IEEE Congr. Evol. Comput. 2002, 2,

1051–1056.
3. Rachmawati, L.; Srinivasan, D. Multiobjective Evolutionary Algorithm with Controllable Focus on the Knees of the Pareto Front.

IEEE Trans. Evol. Comput. 2009, 13, 810–824. [CrossRef]
4. Zitzler, E.; Thiele, L. An evolutionary algorithm for multiobjective optimization: The strength Pareto approach. In Computer Engi-

neering and Networks Laboratory (TIK); Technical Report 43; Swiss Federal Institute of Technology (ETH): Zurich, Switzerland, 1999.
5. Zitzler, E.; Thiele, L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE

Trans. Evol. Comput. 1999, 3, 257–271. [CrossRef]
6. Knowles, J.; Corne, D. The Pareto archived evolution strategy: A new baseline algorithm for Pareto multiobjective optimization.

In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Washington, DC, USA, 6–9 July 1999.
7. Corne, D.; Knowles, J.; Oates, M. The Pareto envelope—Based selection algorithm for multiobjective optimization. In Parallel

Problem Solving from Nature—PPSN VI; Springer: Berlin/Heidelberg, Germany, 2000; pp. 839–848.
8. Deb, K.; Agrawal, S.; Pratap, A.; Meyarivan, T. A fast elitist non-dominated sorting genetic algorithm for multi-objective opti-

mization: NSGA II. In Parallel Problem Solving From Nature—PPSN VI; Springer: Berlin/Heidelberg, Germany, 2000; pp. 849–858.

http://doi.org/10.1109/TEVC.2009.2017515
http://dx.doi.org/10.1109/4235.797969

Computation 2022, 10, 37 20 of 21

9. Zitzler, E.; Laumanns, M.; Thiele, L. SPEA 2: Improving the Strength Pareto Evolutionary algorithm. In Computer Engineering and
Networks Laboratory (TIK); Technical Report 103; Swiss Federal Institute of Technology (ETH): Zurich, Switzerland, 2001.

10. Dumitrescu, D.; Grosan, C.; Oltean, M. A new evolutionary adaptive representation paradigm. Stud. Univ. Babes-Bolyai Ser.
Inform. 2001, 46, 19–28.

11. AbdelAziz, A.M.; Soliman, T.H.A.; Ghany, K.K.A.; Sewisy, A.A.E.-M. A Pareto-Based Hybrid Whale Optimization Algorithm
with Tabu Search for Multi-Objective Optimization. Algorithms 2019, 12, 261. [CrossRef]

12. Liu, X.; Zhang, D. An Improved SPEA2 Algorithm with Local Search for Multi-Objective Investment Decision-Making. Appl. Sci.
2019, 9, 1675. [CrossRef]

13. Aslimani, N.; El-ghazali, T.; Ellaia, R. A New Chaotic-Based Approach for Multi-Objective Optimization. Algorithms 2020, 13, 204.
[CrossRef]

14. Guariso, G.; Sangiorgio, M. Improving the Performance of Multiobjective Genetic Algorithms: An Elitism-Based Approach.
Information 2020, 11, 587. [CrossRef]

15. Molina-Pérez, D.; Portilla-Flores, E.A.; Vega-Alvarado, E.; Calva-Yañez, M.B.; Sepúlveda-Cervantes, G. A Novel Multi-Objective
Harmony Search Algorithm with Pitch Adjustment by Genotype. Appl. Sci. 2021, 11, 8931. [CrossRef]

16. Zhang, H.; Wang, G.-G.; Dong, J.; Gandomi, A.H. Improved NSGA-III with Second-Order Difference Random Strategy for
Dynamic Multi-Objective Optimization. Processes 2021, 9, 911. [CrossRef]

17. Zapotecas-Martínez, S.; García-Nájera, A.; Menchaca-Méndez, A. Improved Lebesgue Indicator-Based Evolutionary Algorithm:
Reducing Hypervolume Computations. Mathematics 2022, 10, 19. [CrossRef]

18. Rui, W.; Purshouse, R.; Fleming, P. Preference-Inspired Coevolutionary Algorithms for Many-Objective Optimization. IEEE Trans.
Evol. Comput. 2013, 17, 474–494.

19. Rongbin, Q.; Wenli, D.; Zhenlei, W.; Feng, Q. Multiobjective evolutionary algorithm based on the Pareto Archive and individual
migration. In Proceedings of the 7th World Congress on Intelligent Control and Automation (WCICA), Chongqing, China, 25–27
June 2008.

20. Wen-Fung, L.; Yen, G. Dynamic swarms in PSO-based multiobjective optimization. In Proceedings of the IEEE Congress on
Evolutionary Computation (CEC), Singapore, 25–28 September 2007.

21. Yen, G.; Wen, L. Dynamic Multiple Swarms in Multiobjective Particle Swarm Optimization. IEEE Trans. Syst. Man Cybern. Part A
Syst. Hum. 2009, 39, 890–911. [CrossRef]

22. Zhi-Hui, Z.; Jingjing, L.; Jiannong, C.; Jun, Z. Multiple Populations for Multiple Objectives: A Coevolutionary Technique for
Solving Multiobjective Optimization Problems. IEEE Trans. Cybern. 2013, 43, 445–463. [CrossRef]

23. Helbig, M.; Engelbrecht, A. Heterogeneous dynamic vector evaluated particle swarm optimisation for dynamic multi-objective
optimisation. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Beijing, China, 6–11 July 2014.

24. Sun, Y.; Gao, Y.; Shi, X. Chaotic Multi-Objective Particle Swarm Optimization Algorithm Incorporating Clone Immunity.
Mathematics 2019, 7, 146. [CrossRef]

25. Pellegrini, R.; Serani, A.; Liuzzi, G.; Rinaldi, F.; Lucidi, S.; Diez, M. Hybridization of Multi-Objective Deterministic Particle Swarm
with Derivative-Free Local Searches. Mathematics 2020, 8, 546. [CrossRef]

26. You, Q.; Sun, J.; Pan, F.; Palade, V.; Ahmad, B. DMO-QPSO: A Multi-Objective Quantum-Behaved Particle Swarm Optimization
Algorithm Based on Decomposition with Diversity Control. Mathematics 2021, 9, 1959. [CrossRef]

27. Meza, J.; Espitia, H.; Montenegro, C.; González, R. Statistical analysis of a multi-objective optimization algorithm based on a
model of particles with vorticity behavior. Soft Comput. 2016, 20, 3521–3536. [CrossRef]

28. Meza, J.; Espitia, H.; Montenegro, C.; Giménez, E.; González, R. MOVPSO: Vortex Multi-Objective Particle Swarm Optimization.
Appl. Soft Comput. 2017, 52, 1042–1057. [CrossRef]

29. de Oliveira, J.V.; Pedrycz, W. Advances in Fuzzy Clustering and Its Applications; John Wiley & Sons: Chichester, UK, 2007.
30. Ramamoorthy, V. Fuzzy C-Mean Clustering Using Data Mining; BookRix: Munich, Germany, 2019.
31. Wu, J. Advances in K-Means Clustering: A Data Mining Thinking; Springer Science & Business Media: Berlin, Germany, 2012.
32. Aggarwal, C.C.; Reddy, C.K. Data Clustering: Algorithms and Applications; CRC Press: Boca Raton, FL, USA, 2014.
33. Haichang, G.; Weizhou, Z. Multiobjective Optimization Using Clustering Based Two Phase PSO. In Proceedings of the Fourth

International Conference on Natural Computation (ICNC): Jinan, China, 18–20 October 2008; Volume 6.
34. Liu, S.; Zheng, J.; Lin, Q.; Tan, K.C. Evolutionary multi and many-objective optimization via clustering for environmental selection.

Inf. Sci. 2021, 578, 930–949. [CrossRef]
35. Denysiuk, R.; Costa, L.; Santo, I.E. Clustering-based selection for evolutionary many-objective optimization. In Proceedings of

the International Conference on Parallel Problem Solving from Nature, Ljubljana, Slovenia, 13–17 September 2014; Springer:
Berlin/Heidelberg, Germany, 2014; pp. 538–547.

36. Lai, D.T.C.; Sato, Y. An Empirical Study of Cluster-Based MOEA/D Bare Bones PSO for Data Clustering. Algorithms 2021, 14, 338.
[CrossRef]

37. Rebello, C.M.; Martins, M.A.F.; Santana, D.D.; Rodrigues, A.E.; Loureiro, J.M.; Ribeiro, A.M.; Nogueira, I.B.R. From a Pareto Front
to Pareto Regions: A Novel Standpoint for Multiobjective Optimization. Mathematics 2021, 9, 3152. [CrossRef]

38. Hussain, A.; Kim, H.-M. Evaluation of Multi-Objective Optimization Techniques for Resilience Enhancement of Electric Vehicles.
Electronics 2021, 10, 3030. [CrossRef]

39. Bezdek, J. Pattern Recognition with Fuzzy Objective Function Algorithms; Springer: Boston, MA, USA, 1981.

http://dx.doi.org/10.3390/a12120261
http://dx.doi.org/10.3390/app9081675
http://dx.doi.org/10.3390/a13090204
http://dx.doi.org/10.3390/info11120587
http://dx.doi.org/10.3390/app11198931
http://dx.doi.org/10.3390/pr9060911
http://dx.doi.org/10.3390/math10010019
http://dx.doi.org/10.1109/TSMCA.2009.2013915
http://dx.doi.org/10.1109/TSMCB.2012.2209115
http://dx.doi.org/10.3390/math7020146
http://dx.doi.org/10.3390/math8040546
http://dx.doi.org/10.3390/math9161959
http://dx.doi.org/10.1007/s00500-015-1972-2
http://dx.doi.org/10.1016/j.asoc.2016.09.026
http://dx.doi.org/10.1016/j.ins.2021.08.054
http://dx.doi.org/10.3390/a14110338
http://dx.doi.org/10.3390/math9243152
http://dx.doi.org/10.3390/electronics10233030

Computation 2022, 10, 37 21 of 21

40. Höppner, F.; Klawonn, F.; Kruse, R.; Runkler, T. Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition;
Wiley IBM PC Series; Wiley: Hoboken, NJ, USA, 1999.

41. Novák, V.; Perfilieva, I.; Dvorák, A. Insight into Fuzzy Modeling; John Wiley & Sons: Hoboken, NJ, USA, 2016.
42. jMetal. Welcome to the jMetal Web Site. 2021. Available online: http://jmetal.sourceforge.net/ (accessed on 10 August 2021).
43. Ciaburro, G. MATLAB for Machine Learning; Packt Publishing: Birmingham, UK, 2017.
44. Matlab, MathWorks: User’s Guide (R2017a). 2017. Available online: https://la.mathworks.com/help/stats/kmeans.html

(accessed on 10 August 2021).
45. Marsili-Libelli, S. Environmental Systems Analysis with MATLABr; CRC Press: New York, NY, USA, 2016.
46. Matlab, MathWorks: User’s Guide (R2017a). 2017. Available online: https://la.mathworks.com/help/fuzzy/fcm.html (accessed

on 10 August 2021).
47. Tang, R.; Fong, S.; Yang, X.-S.; Deb, S. Integrating nature-inspired optimization algorithms to K-means clustering. In Proceedings

of the Seventh International Conference on Digital Information Management (ICDIM 2012), Macau, China, 22–24 August 2012;
pp. 116–123. [CrossRef]

48. Meniailov, I.; Chumachenko, D.; Bazilevych, K. Determination of Heart Disease Based on Analysis of Patient Statistics using
the Fuzzy C-means Clustering Algorithm. In Proceedings of the IEEE Third International Conference on Data Stream Mining &
Processing (DSMP), Lviv, Ukraine, 21–25 August 2020; pp. 333–336. [CrossRef]

http://jmetal.sourceforge.net/
https://la.mathworks.com/help/stats/kmeans.html
https://la.mathworks.com/help/fuzzy/fcm.html
http://dx.doi.org/10.1109/ICDIM.2012.6360145
http://dx.doi.org/10.1109/DSMP47368.2020.9204276

	Introduction
	Multi-Objective Optimization
	Multi-Objective Particle Swarm Optimization
	Clustering Techniques and Multi-Objective Optimization
	Article Approach and Document Organization

	Multi-Objective Optimization
	K-Means Clustering Algorithm
	C-Means Clustering Algorithm
	Test Functions Employed
	Clustering Analysis
	Discussion
	Conclusions
	References

