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Abstract: In the current study, we define a hierarchical epidemic model that helps to describe the
propagation of a pathogen in a clustered human population. The estimation of a novel coronavirus
spreading worldwide leads to the idea of the hierarchical structure of the epidemic process. Thus,
the propagation process is divided into three possible levels: a city, a country, and a worldwide. On
each level, the pathogen propagation process is based on the susceptible-exposed-infected-recovered
(SEIR) model. We thus formulate a modified transmission model of infected individuals between
levels. The control of the pathogen’s spread can be seen as an optimal control problem. A trade-
off exists between the cost of active virus propagation and the design of appropriate quarantine
measures. Each level of the hierarchy is defined by its network. A series of numerical experiments
was conducted to corroborate the obtained results.

Keywords: epidemic process; compartment epidemic models; SIR model; optimal control

1. Introduction

Infectious diseases still pose a serious medical challenge worldwide, with millions
of deaths per year estimated to be directly related to infectious diseases. The outbreak of
new diseases such as severe acute respiratory syndrome (SARS), Middle East respiratory
syndrome (MERS), the rise of Ebola, and, most recently, the COVID-19 pandemic represent
a few examples of significant problems that the public healthcare system and medical
science research need to address.

Although these sudden epidemics were considered a severe threat for centuries, now
there is an ability to control further epidemic outbreaks, which advances in modern science
have facilitated. Cures and vaccines for several dangerous pathogens are being developed
and manufactured faster than ever before. The vaccines against new influenza A (H1N1)
and the novel coronavirus were developed rapidly and made available only a few months
after the beginning of the epidemics.

However, one challenge in disease control is that one pathogen can generate many
strains with different spreading features. Hence, a detailed investigation of multi-strain
epidemic dynamics is of great relevance [1–3]. For instance, the influenza A (H1N1) virus
has the potential to develop into the first influenza pandemic of the twenty-first century [4],
accompanied by seasonal influenza accompanies [5]. Another important issue is the rate
of the pathogen’s spread and the network of contacts for each resident in the population.
These two facts have been investigated in many of the recent scientific projects [6–8].

Recent studies have seen a surge of interest in using optimal control and stability
equilibrium analysis to study epidemic protection in computer networks, social networks,
and human populations (see [9–16]). Moreover, dividing the entire population into clusters
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plays an important role. Researchers have considered the impact of epidemic outbreaks in
different areas [17–20]. One study has presented the optimal countermeasures to resist virus
attacks [21]. Previous studies have also shown the application of epidemic frameworks to
the models of network protection, as in [7,22–24].

Similarly to our study, researchers have also started incorporating economic trade-offs
and conducting optimal control policy analysis within the compartment epidemic model
framework, undertaking optimal control analysis in single- and multiple-group models
(starting with the early related contributions by [25,26] and recently [1,27–33]).

Although homogeneous population models are classic and have made a significant
contribution to understanding the spread of infection and counteracting it, researchers are
increasingly paying attention to the heterogeneous nature of the population undergoing
the emergence of a new infection. In real life, the interaction between people is of a network
nature, and groups of people can differ in terms of various demographic, social, economic,
and other factors. In our model, subpopulations are determined based on geographic
factors. Disease-related factors such as the average number of contacts, latent period,
and probability of an infectious individual recovering are independent and equal for all
layers. Such heterogeneity for populations has long been the subject of research; ref. [34]
can be considered the earliest review. The complete description of the specifics of such
models was considered in [35]. As far as we know, the control problem for a heterogeneous
population was first posed in [36–38], which can also be considered relevant to our work.
The difference between the proposed model and models as in [35] is the hierarchical nature
of the spread of infection. Initially, the infection exists only at the first, lower level of the
hierarchy and subsequently spreads among the population at all levels. The motivation
for this spatial model was the idea of studying the epidemic process at the initial stage.
According to the Pandemic Intervals Framework (PIF) proposed by the Centers for Disease
Control and Prevention [39], the process of infection spread can be divided into six stages
(Figure 1). The proposed model is designed to take a closer look at the third interval, which
retains the ability to stop the spread of infection at the local level, preventing further spread.

Figure 1. CDC pandemic intervals.

In this paper, we establish a hierarchical control-theoretic model to design disease
control strategies through quarantine measures to mitigate the impact of epidemics on
society. This approach has been motivated by the initial stage of the COVID-19 propagation
in China and Italy. The epidemic growth started in a small local village from single cases;
then, it propagated to the nearest regions and the whole country. Following this idea,
in the considered model and the standard formulation of an epidemic model, the whole
population is split into three clusters (levels). Additionally, it is also assumed that migration
between the levels is permitted. The presence of migration leads to the epidemic that starts
in cluster one, taking over all others. Depending on the migration and infection rates,
specific restrictions can be applied to protect the population from epidemics. In analyzing
different scenarios of protective measures, the control model is formulated subject to several
types of control strategies, such as quarantine in the initial cluster and treatment for all
clusters. This approach allows one to estimate the effectiveness of quarantine as a protection
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measure for the entire population and to compare a trade-off solution between quarantine
and treatment costs. The recent spread of SARS-CoV-19 has occurred due to the wide range
of connections between people in modern society in metropolises and large cities.

In the initial period of the COVID-19 pandemic, strict lockdowns and personal re-
strictions were the only effective measures to decelerate the speed of virus propagation
throughout the population. At the same time, the propagation of information about the
risk of infection and the presentation of adequate protection measures leads to a decrease
in the number of infected residents in the future. In the current study, we model the spread
of the virus through susceptible-exposed-infected-recovered (SEIR) dynamics, in which
the population is grouped into several subpopulations, i.e., the susceptible (S), the exposed
(E), the infected (I), and recovered (R) people on each level. The SEIR dynamics describe
the population size evolution, which can be controlled using special quarantine measures
and recovery. Recent studies [40–42] have shown the importance of including the exposed
subgroup in the model because of the numbers of asymptomatic carriers of the virus who
were able to infect other residents of the population.

The objective of this work is to study the epidemics distributed over several clusters
and analyze the efficiency of the lockdown on the first level to stop the propagation of
the virus among the entire population. We formulate a generalized hierarchical SEIR
model, which combines the SEIR model of each level. In the paper, we present a controlled
hierarchical SEIR model and show the structure of the optimal policies of quarantine
measures on the first level and optimal treatment on all levels of hierarchy. The series of
the numerical simulation was run to corroborate the theoretical statements.

The rest of the paper is organized as follows. Section 2 presents the controlled hierar-
chical SEIR mathematical model. Section 4 describes the optimal control problem. Section 5
presents the series of numerical experiments. Section 6 concludes the paper.

2. Deterministic Epidemic Model

In contrast to classical SIRS models [43,44], where populations are divided into three
groups, in this section, we formulate a three-level modified SEIR model (Susceptible-
Infected-Recovered-Susceptible) with one virus circulated in a population of size N. This
auxiliary partitioning allows us to capture three epidemic processes that occur in different
population clusters. Individual regions, villages, cities within a country, and different
countries can be considered clusters. According to this assumption, we can say that if the
epidemic has been initiated in the small village (first cluster), then it might be extended to
the city and region or country. Formally, this epidemic situation can be formulated as the
framework. The virus propagation starts at the first level of hierarchy and continues on the i-
th levels, i = 2, 3 according to the migration rates. We consider this spreading process as the
first level hierarchy in the susceptible-quarantined-exposed-infected-recovered-susceptible
(SQEIR) model. At the first level, we consider five subgroups: susceptible (S), quarantined
(Q), exposed (E), infected (I), and recovered (R). We suppose that susceptible people are
subject to the threat of the virus because recovered people are assumed to have developed
immunity, and quarantined people are those who are isolated and therefore cannot be in
touch with other people who are potentially infected (in the following, the susceptible
proportion of people will be our control variable on the first level). The pathogen infects
the exposed and the infected groups, and their contact with other people may infect the
susceptible group, but neither the recovered nor the quarantined people. It is also assumed
that a subgroup of the exposed group represents residents of the population who do not
develop the disease symptoms. The division of the entire population differs from the
first cluster in the second and the third clusters, where we have the following subgroups
susceptible (S), exposed (E), infected (I), and recovered (R). In all clusters, members of the
susceptible group become members of the exposed group at the rate of βi, i = 1, 3; exposed
people develop symptoms and become infected people at the rate ki, i = 1, 3. For all clusters
the self-recovery rates are defined as σi, i = 1, 3. The parameter δ1 shows the rate at which
susceptible people choose isolation and become quarantined. At the rate p1, residents
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from the quarantine group return to the susceptible group. Moreover, it is supposed that
migration occurs between clusters and that migration rates are ml

i , i = 1, 3, and l = 1, 2,
respectively. In the course of time, the protection level of recovered residents vanishes at
the rate of γi, i = 1, 3. The scheme of the transition is represented in Figure 2.
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Figure 2. The scheme of transition between groups S, Q, E, I, R, and hierarchical levels.

We model the epidemic process as a system of nonlinear differential equations, where
Ni(t) is size of the population on the level i at the time moment t. nSi (t) indicates the
number of susceptible individuals, nQ1(t) the number of quarantined individuals, nEi (t)
the number of exposed individuals, nIi (t) the number of infected individuals, and nRi (t) the
number of recovered individuals. The next conditions should be satisfied: nS1(t) + nQ1(t) +
nE1(t) + nI1(t) + nR1(t) = N1(t), nSj(t) + nEj(t) + nIj(t) + nRj(t) = Nj(t) for j = 2, 3.

According to previous definitions, the variables Si(t), Q1(t), Ei(t), Ii(t), Ri(t) represent
the proportions of susceptible, quarantined, exposed, infected, and recovered individuals
at time moment t ∈ [0, T], where

Si(t) =
nSi

(t)
Ni

, Q1(t) =
nQ1

(t)
N1

, Ei(t) =
nEi

(t)
Ni

, Ii(t) =
nIi

(t)
Ni

, Ri(t) =
nRi

(t)
Ni

.

At the beginning of the epidemic, at time t = 0, the majority of individuals belong
to the susceptible state, and a small fraction of individuals are infected. For all levels the
initial states are defined as:

1. S1(0) = S0 ∈ (0, 1), E1(0) = E0
1 ∈ (0, 1), I1(0) = I0

1 ∈ (0, 1), Q1(0) = R1(0) = 0,
2. S2(0) = 1, E2(0) = I2(0) = R2(0) = 0,
3. S3(0) = 1, E3(0) = I3(0) = R3(0) = 0.

Systems of nonlinear differential equations represent the propagation of the virus in
each cluster/level of the population.

On the first level:

Ṡ1 = −β1(E1 + I1)S1 − δ1S1 −m1
1S1;

Q̇1 = δ1S1 − p1Q1;
Ė1 = β1(E1 + I1)S1 + p1Q1 − k1E1 −m1

2E1;
İ1 = k1E1 − (σ1 + u1)I1;
Ṙ1 = (σ1 + u1)I1 −m1

3R1.

(1)
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On the second level:

Ṡ2 = −β2(E2 + I2)S2 + m1
1S1 −m2

1S2;
Ė2 = β2(E2 + I2)S2 − k2E2 + m1

2E1 −m2
2E2;

İ2 = k2E2 − (σ2 + u2)I1;
Ṙ2 = (σ2 + u2)I2 + m1

3R1 −m2
3R2.

(2)

On the third level:

Ṡ3 = −β3(E3 + I3)S3 + m2
1S2;

Ė3 = β3(E3 + I3)S3 − k3E3 + m2
2E2;

İ3 = k3E3 − (σ3 + u3)I3;
Ṙ3 = (σ3 + u3)I3 + m2

3R2.

(3)

3. Basic Reproduction Number R0

In this section, we use the next generation method (NGM) [45–47] to estimate the basic
reproduction number R0 in the model (1)–(3). This parameter shows the average number
of cases of an infectious disease arising via transmission from a single infected individual
and evaluates the asymptotic behavior of an epidemic process. It is known that the number
of infected agents asymptotically decreases if R0 > 1, and increases otherwise. According
to the NGM method, the original system is transformed as dxi

dt = Fi −Vi, where its matrix is
F = dFi

dxi
, V = dVi

dxi
. Here, i defines indexes of all infected state variables in the initial system

of differential equations.

F =



β1 β1 0 0 0 0
0 0 0 0 0 0
0 0 β2 β2 0 0
0 0 0 0 0 0
0 0 0 0 β3 β3
0 0 0 0 0 0

; V =



k1 + m1
2 0 0 0 0 0

−k1 σ1 − u1 0 0 0 0
−m1

2 0 k2 + m2
2 0 0 0

0 0 −k2 σ2 − u2 0 0
0 0 −m2

2 0 k3 0
0 0 0 0 −k3 σ1 − u1

;

Eigenvalues of matrix FV−1, which defines a non-negative vector giving the expected
number of new infections:(

0, 0, 0,
β1(k1 + σ1 + u1)

(k1 + m1
2)(σ1 + u1))

,
β2(k2 + σ2 + u2)

(k2 + m2
2)(σ2 + u2))

,
β3(k3 + σ3 + u3)

k3(σ3 + u3))

)

The method guarantees that a maximum of these values is R0.
Estimating the different combinations of the parameters, we realized the importance

of some mixtures of control parameters u1(t), u2(t), u3(t). For example, if the values of
parameters are fixed, and if the control rates u1(t), u2(t), u3(t) are constant and equal 0.3,
then the coefficient R0 = 0.857 < 1. However, using the same set of parameters and if the
controls u1(t), u2(t), u3(t) equal zero, then coefficient R0 = 4.2857 > 1. Figure 3 shows
regions of R0 < 1 for different combinations of βi = β, ui = u, and ki = k parameters,
i = 1, 3.

According to the left diagram in the Figure 3, if the control umax is 1 for the given
example, then the parameter β > 0.5 will cause epidemics to spread with R0 > 1, but if
β < 0.4, which is rather small, then there is always a control u(t) that eliminates epidemics.
The figure also confirms the intuitive reasoning that the larger the β, the more effort is
required to stop epidemics.

The diagram on the right in Figure 3 shows that for the given example, the larger the
k, the fewer efforts are required to eliminate epidemics, and for large enough k epidemics
will stop unless the control is too small.
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Figure 3. Investigation of R0(β, u) and R0(k, u) for ui(t) = u, βi = β, ki = k. R0 < 1 only in
blue regions.

4. Optimal Control Problem

The main issue of the current study is the formalization of the optimal control problem
to minimize the damage from virus attacks and to improve the protection of the popula-
tion. In the current model, it is supposed that quarantine and treatment can protect the
population from the spread of the virus. At all levels, treatment is used, represented as
control strategies u1(t), u2(t), u3(t) in the subpopulations of the infected nodes (I → R),
in the case in which the epidemic spreads over all levels of the hierarchy according to the
migration rates. Following [33,48,49] we can determine the cost of infection, which is a
direct loss of an infected person, such as personal treatment costs, a loss of productivity,
or inability to work. The external costs, which are the value that the government pays to
allow the health system to treat the infected and increase the probability of recovery for the
treated individuals, can be defined as the treatment cost.

Cost functions. At any given t, functions fi(Ii(t)) represent infection costs, and
functions hi(ui(t)), i = 1, 3 correspond to treatment costs. The next conditions should
be satisfied for the defined functions. Here functions fi(Ii) = f i Ii(t) are non-decreasing
and twice-differentiable convex functions, fi(0) = 0, fi(Ii) > 0 for Ii > 0, i = 1, 3,
and hi(ui(t)) = hiu2

i (t) is a twice-differentiable and increasing function in ui(t) such as
hi(0) = 0, hi(ui(t)) > 0, i = 1, 3, when ui(t) > 0.

The aggregated system costs on the time interval [0, T] are defined as the functional

J = J1 + J2 + J3,

where
J1 =

∫ T
0 f1(I1(t)) + h1(u1(t))dt,

J2 =
∫ T

0 f2(I2(t)) + h2(u2(t))dt,
J3 =

∫ T
0 f3(I3(t)) + h3(u3(t))dt.

(4)

The optimal control problem is to minimize these costs, i.e.,

min
u1,u2,u3

J.

Using Pontryagin’s maximum principle [50,51] we construct Hamiltonian and adjoint
functions as follows. Here, the generalized Hamiltonian of the system is H = H1 + H2 + H3.
Hamiltonian H1 of the first level:

H1 = − f1(I1)− h1(u1) + (λE1 − λS1)β1(E1 + I1)S1 + (λQ1 − λS1)δ1S1+
(λE1 − λQ1)p1Q1 + (λI1 − λE1)k1E1 + (λR1 − λI1)(σ1 + u1)I1+
(λS2 − λS1)m

1
1S1 + (λE2 − λE1)m

1
2E1 + (λR2 − λR1)m

1
3R1.

(5)
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Hamiltonian H2 of the second level:

H2 = − f2(I2)− h2(u2) + (λE2 − λS2)β2(E2 + I2)S2 + (λI2 − λE2)k2E2+
(λR2 − λI2)(σ2 + u2)I2 + (λS3 − λS2)m

2
1S2 + (λE3 − λE2)m

2
2E2+

(λR3 − λR2)m
2
3R2.

(6)

Hamiltonian H3 of the third level:

H3 = − f3(I3)− h3(u3) + (λE3 − λS3)β3(E3 + I3)S3 + (λI3 − λE3)k3E3+
(λR3 − λI3)(σ3 + u3)I3.

(7)

Adjoint functions λS1(t), λQ1(t), λE1(t), λI1(t), and λR1(t) of the first level are defined
as follows:

λ̇S1(t) = (λS1 − λE1)β1(E1 + I1) + (λS1 − λQ1)δ1 + (λS1 − λS2)m
1
1;

λ̇Q1(t) = (λQ1 − λE1)p1;
λ̇E1(t) = (λE1 − λI1)k1 + (λS1 − λE1)β1S1 + (λE1 − λE2)m

1
2;

λ̇I1(t) = f ′1(I1) + (λS1 − λE1)β1S1 + (λI1 − λR1)(σ1 + u1);
λ̇R1(t) = (λR1 − λR2)m

1
3,

(8)

with the transversality conditions given by

λS1(T) = λQ1(T) = λE1(T) = λI1(T) = λR1(T) = 0. (9)

Analogously, adjoint functions λS2(t), λE2(t), λI2(t), and λR2(t) of the second level are:

λ̇S2(t) = (λS2 − λE2)β2(E2 + I2) + (λS2 − λS3)m
2
1;

λ̇E2(t) = (λE2 − λI2)k2 + (λS2 − λE2)β2S2 + (λE2 − λE3)m
2
2;

λ̇I2(t) = f ′2(I2) + (λS2 − λE2)β2S2 + (λI2 − λR2)(σ2 + u2);
λ̇R2(t) = (λR2 − λR3)m

2
3,

(10)

with the transversality conditions given by

λS2(T) = λE2(T) = λI2(T) = λR2(T) = 0. (11)

Adjoint functions λS3(t), λE3(t), λI3(t), and λR3(t) of the third level:

λ̇S3(t) = (λS3 − λE3)β3(E3 + I3);
λ̇E3(t) = (λE3 − λI3)k3 + (λS3 − λE3)β3S3;
λ̇I3(t) = f ′3(I3) + (λS3 − λE3)β3S3 + (λI3 − λR3)(σ3 + u3);
λ̇R3(t) = 0,

(12)

with the transversality conditions given by

λS3(T) = λE3(T) = λI3(T) = λR3(T) = 0. (13)

According to Pontryagin’s maximum principle, there exist continuous and piece-wise
continuously differentiable co-state functions

λr(t), r ∈ {S1, Q1, E1, . . . , I3, R3}

that satisfy (8)–(13) at every time t ∈ [0, T], together with continuous functions u∗1(t), u∗2(t),
and u∗3(t):

(u∗1 , u∗2 , u∗3) ∈ arg max
u1,u2,u3∈[0,umax ]

H(λ, S1, Q1, . . . , R3, u1, u2, u3). (14)
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Functions ϕi(t), i = 1, 3 are defined as follows:

ϕ1(t) = (λR1(t)− λI1(t))I1(t),
ϕ2(t) = (λR2(t)− λI2(t))I2(t),
ϕ3(t) = (λR3(t)− λI3(t))I3(t).

(15)

Following Pontryagin’s maximum principle, we construct the optimal treatment strategies.

Proposition 1. When hi(·) are concave functions, then the optimal control structure takes the
following form for any i = 1, 3:

u∗i (t) =
{

0, for ϕi(t) < hi(umax);
umax, for ϕi(t) ≥ hi(umax).

(16)

Proposition 2. When hi(·) are strictly convex functions, then the optimal control structure takes
the following form for any i = 1, 3:

u∗i (t) =


0, for ϕi(t) ≤ h′i(0);
h′−1(ϕi), for h′i(0) < ϕi(t) ≤ h′i(umax);
umax, for h′i(umax) < ϕi(t).

(17)

where value umax ∈ [0, 1].

To prove this propositions, we can rewrite the Hamiltonian in terms of the function
ϕi(t). After that, we obtain:

H = − f1(I1)− f2(I2)− f3(I3) + (λE1 − λS1)β1(E1 + I1)S1 + (λQ1 − λS1)δ1S1+
(λE1 − λQ1)p1Q1 + (λI1 − λE1)k1E1 + (λR1 − λI1)σ1 I1 + (λS2 − λS1)m

1
1S1+

(λE2 − λE1)m
1
2E1 + (λR2 − λR1)m

1
3R1 + (λE2 − λS2)β2(E2 + I2)S2+

(λI2 − λE2)k2E2 + (λR2 − λI2)σ2 I2 + (λS3 − λS2)m
2
1S2 + (λE3 − λE2)m

2
2E2+

(λR3 − λR2)m
2
3R2 + (λE3 − λS3)β3(E3 + I3)S3 + (λI3 − λE3)k3E3+

(λR3 − λI3)σ3 I3 + (ϕ1u1 − h1(u1)) + (ϕ2u2 − h2(u2)) + (ϕ3u3 − h3(u3)).

(18)

We can divide this maximization problem into three subproblems and find the optimal
controls u∗1(t), u∗2(t), and u∗3(t), separately:

max
u1

[−h1(u1) + ϕ1u1] + max
u2

[−h2(u2) + ϕ2u2] + max
u3

[−h3(u3) + ϕ3u3]. (19)

For any admissible control ui and according to (18) for all t ∈ [0, T] we arrive at

−hi(ui) + ui ϕi ≥ −hi(ui) + ui ϕi. (20)

Since ui = 0 is an admissible control, we obtain

−hi(ui) + ui ϕi ≥ −hi(0) + 0 · ϕi = 0. (21)

According to the algorithm of Pontryagin’s maximum principle to determine the
optimal control structure, we consider the next derivatives:

∂H
∂ui

= −ḣi(ui) + ϕi = 0, i = 1, 3. (22)

As hi(·) are increasing functions and Ii(·) ≥ 0, then the Hamiltonian reaches its
maximum if ϕi(t) = ḣi(ui(t)) ≥ 0, i = 1, 2, 3. According to (15), since Ii(t) ≥ 0 for all
t ∈ [0, T], this condition is satisfied if and only if λRi (t)−λIi (t) ≥ 0 for i = 1, 3. To complete
the proof of proposition, we consider the auxiliary lemma.
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Lemma 1. For all t ∈ [0, T], we have λRi (t)− λIi (t) ≥ 0, where i = 1, 3.

The Proof of Lemma 1 consists of two parts: firstly, we consider the case when
t = T and show that derivatives of the functions λRi (t)− λIi (t), i = 1, 3 are non-positive;
secondly, we prove by contradiction that on the whole interval [0, T] these functions are
non-negative. The complete proofs of Lemma 1 are presented in Appendix A and follow
the same technique as that in [48,52].

4.1. Functions hi(·) Are Concave

Let hi(·) be a concave function (h′′i (·) ≤ 0); then, according to (5)–(7) the Hamiltonian
is a convex function of ui(·), i = 1, 3. There are two different options for ui ∈ [0, umax] that
maximimize the Hamiltonian. Parameter umax ∈ [0, 1].

If −hi(0) + ϕi(t) · 0 > −hi(umax) + ϕi(t) · umax or hi(umax) > ϕi(t)umax, then the
optimal control is ui = 0 (see Figure 4 (left)); otherwise ui = umax (see Figure 4 (right)).

Figure 4. Hamiltonian function in a case in which functions hi(·) are concave.

For i = 1, 3, the optimal control parameters ui(t) are defined as follows:

u∗i (t) =
{

0, for ϕi(t)umax < hi(umax),
umax, for ϕi(t)umax ≥ hi(umax).

(23)

4.2. Functions hi(·) Are Strictly Convex

Let hi(·) be a strictly convex function (h′′i (·) > 0); then, the Hamiltonian is concave
function. Consider the following derivative:

∂

∂x
(−hi(x) + ϕi(t)x) |x=xi= 0, (24)

where x ∈ [0, umax], u∗i (t) = xi, and umax ∈ [0, 1]. There are three different types of points
at which the Hamiltonian reaches its maximum (Figure 5). To find them, we need to
consider the derivatives of the Hamiltonian at ui = 0 and ui = umax. If the derivatives
(24) at ui = 0 are non-increasing (−h′i(0) + ϕi(t) ≤ 0), then the value of the control that
maximizes the Hamiltonian is less than 0, and according to our restrictions (ui ∈ [0, umax])
the optimal control will be equal to 0 (Figure 5a). If the derivatives at ui = umax are
increasing (−h′i(umax) + ϕi(t) > 0), this means that the value of the control that maximizes
the Hamiltonian is greater than umax. Hence, the optimal control will be 1 (Figure 5c);
otherwise, we can find the value of u∗i ∈ (0, umax) (see Figure 5b):

u∗i (t) =


0, for ϕi(t) ≤ h′i(0),
h′−1(ϕi(t)), for h′i(0) < ϕi(t) ≤ h′i(umax),
umax, for h′i(umax) < ϕi(t), i = 1, 2, 3.

(25)
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Figure 5. Hamiltonian function in a case in which functions hi(·) are convex.

5. Numerical Simulation

In this section, we present several numerical experiments to corroborate our results.For
the experiments, we partially use modeled data and real data obtained during the COVID-
19 pandemic [33,40,41,53] for the following initial distribution between susceptible, exposed,
and infected groups: S0

1 = 0.7, E0
1 = 0.1, I0

1 = 0.2. The spreading and self-recovery rates
are defined as βi = 0.25, σi = 0.1 for i = 1, 3, incubation rates are ki = 0.15 for i = 1, 3. The
cost functions in infected group are fi(Ii(t)) = f i Ii(t), and the treatment cost functions
are defined as hi(ui(t)) = hiu2

i (t) for i = 1, 3. In the current model it is supposed that the
maximum value of the control umax = 0.2. More detailed explanation of the parameters
and initial data used in experiments can be found in Table 1.

Experiment 1. In the current experiment, we present the SQEIR model under the
assumption that quarantine is not possible for susceptible people. Applying the specially
designed procedure and considering the cluster structure of the population, we obtain
the result that the epidemic starts and reaches its maximum faster at the first stage than
at stages l = 2, 3. At the second and the third clusters, the epidemic starts with delays;
Figure 6 demonstrates this fact.

Figure 6. Experiment 1. Spread of the virus in three different clusters in an uncontrolled case.

The behaviour of the system in the controlled case is shown in Figure 7.

Figure 7. Experiment 1. Spread of the virus in three different clusters in a controlled case.

Figures 8 and 9 represents the structure of the optimal treatment policies ui(t), i = 1, 2, 3,
and summarizes the changes in all fractions of the population, respectively.
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Figure 8. Experiment 1. The structure of the optimal treatment policies ui(t), i = 1, 2, 3.

Table 1. Parameters used for simulations in experiments.

Parameters Used for Simulations

Parameter Name Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

Fraction of 0.7 0.7 0.7 0.7 0.7
susceptible people 1 1 1 1 1
at time t = 0 (S0

i ) 1 1 1 1 1

Fraction of 0.1 0.1 0.1 0.1 0.1
exposed people 0 0 0 0 0
at time t = 0 (E0

i ) 0 0 0 0 0

Fraction of 0.2 0.2 0.2 0.2 0.2
infected people 0 0 0 0 0
at time t = 0 (I0

i ) 0 0 0 0 0

Infection rate 0.25 0.25 0.25 0.25 0.25
from Si to Ei (βi)

Recovery rate (σi) 0.1 0.1 0.1 0.1 0.1

Asymptomatic to 0.15 0.15 0.15 0.15 0.15
Infected (ki)

Voluntary 0 0.4 0.6 0.3 0–1
self-isolation (δ)

Return from 0 0.05 0 0.2 0–0.5
self-isolation (p)

Migration rates 0.05 0.05 0.05 0.05 0–0.3
from Si to Si+1(mi

1)

Migration rates 0.05 0.05 0.05 0.05 0–0.3
from Ei to Ei+1(mi

2)

Migration rates 0.05 0.05 0.05 0.05 0–0.3
from Ri to Ri+1(mi

3)

Infection costs f i 1 1 1 1 1

Treatment costs hi 1 1 1 1 1

Maximum values 0.2 0.2 0.2 0.2 0.2
of control (umax)

Aggregated costs J 29.41 29.43 23.57 29.58 −
Uncontrolled case

Aggregated costs J 13.22 14.07 10.60 13.52 depend
Controlled case on the

parameters
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Figure 9. Experiment 1. Sum of the fractions of all levels: uncontrolled (left) and controlled cases
(right).

Aggregation system costs in the uncontrolled case are equal to 29.41 monetary units
(m.u.) and 13.22 m.u in the controlled case. A comparison of these costs is presented in
Figure 10.

Figure 10. Experiment 1. Aggregation costs in uncontrolled and controlled cases.

Experiment 2. In the current experiment, we consider the SQEIR model with quar-
antine (δ1 = 0.4, p1 = 0.05). We assume that the government has imposed quarantine
measures and that citizens should stay at home. This experiment shows the effects of
quarantine measures on the development of an epidemic situation. The behavior of the
system in the uncontrolled and controlled cases is shown in Figures 11 and 12.

Figure 11. Experiment 2. Spread of the virus in three different clusters in the uncontrolled case.
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Figure 12. Experiment 2. Spread of the virus in three different clusters in the controlled case.

Figure 13 represents the structure of the optimal treatment policies ui(t), i = 1, 2, 3.

Figure 13. Experiment 2. The structure of the optimal treatment policies ui(t), i = 1, 2, 3.

Aggregate changes in all fractions of the population are shown in Figure 14. The ag-
gregated system cost in the uncontrolled case is 29.43 million euros compared with
14.07 million euros in the controlled case (Figure 15).

Figure 14. Experiment 2. Sum of the fractions of all levels: uncontrolled (left) and controlled
cases (right).

Figure 15. Experiment 2. Aggregation costs in uncontrolled and controlled cases.

The presence of a quarantine slightly increases the aggregate cost, but the peak number
of infected individuals is much lower. Therefore, we can say that optimal controllers save
the health system’s resources (medical staff, equipment) and prevent its collapse.

Experiment 3. In this experiment, it is assumed that all individuals are responsible. We
suppose that resident responsibility positively reduces the overall spread of the epidemic
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and minimizes aggregate costs. Residents voluntarily remain in quarantine until the end
of the interval under consideration [0, 100]. This assumption leads to the transition from
the susceptible fraction to quarantine in cluster l = 1 (S1 → Q1), which occurs at the
rate of δ1 = 0.6. The value δ1 is higher than in experiment 1, but unlike the previous case,
the transition rate from quarantine to exposed (Q1 → E1) is p1 = 0 (lower than in the
previous experiment). The other parameters of the system remain the same.

Figures 16 and 17 represent the behavior of the system in uncontrolled and controlled
cases, respectively.

Figure 16. Experiment 3. Spread of the virus in the uncontrolled case (responsible individuals). (Left):
1 level, (middle): 2 level, (right): 3 level.

Figure 17. Experiment 3. Spread of the virus in the controlled case (responsible individuals). (Left):
1 level, (middle): 2 level, (right): 3 level.

As in the previous experiments, Figure 18 represents the structure of the optimal
treatment policy ui(t), i = 1, 2, 3 and provides a summary of changes in all fractions of the
population Figure 19. It can be seen that the number of infected people is lower than in the
case in which the residents leave quarantine independently without the government’s con-
sent.

Figure 18. Experiment 3. The structure of the optimal treatment policies ui(t), i = 1, 2, 3 (responsible
individuals).
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Figure 19. Experiment 3. Sum of the fractions of all levels: uncontrolled (left) and controlled cases
(right) with responsible individuals.

Aggregation system costs in the uncontrolled case are equal to 23.57 m.u. and
10.60 m.u in the controlled case (Figure 20).

Figure 20. Experiment 3. Aggregation costs in uncontrolled and controlled cases with responsible in-
dividuals.

Experiment 4. Here it is assumed that all individuals in the population are irre-
sponsible and prefer to violate the quarantine isolation rules. Under this assumption,
the transition rate from susceptible to quarantined subgroups (S1 → Q1) is chosen as
δ1 = 0.3, which is lower than in experiments 1 and 3. At the same time, quarantined
individuals become exposed at a higher rate of p1 = 0.2. All other parameters remain the
same. Figures 21 and 22 show the uncontrolled case and the controlled case, respectively.

Figure 21. Experiment 4. Spread of the virus in the uncontrolled case (irresponsible individuals).
(Left): 1 level, (middle): 2 level, (right): 3 level.
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Figure 22. Experiment 4. Spread of the virus in the controlled case (irresponsible residents). (Left):
1 level, (middle): 2 level, (right): 3 level.

Figure 23 represents the structure of the optimal treatment policies ui(t), i = 1, 2, 3
and summarizes changes in all fractions of the population Figure 24.

Figure 23. Experiment 4. The structure of the optimal treatment policies ui(t) irresponsible individuals.

Figure 24. Experiment 4. Sum of the fractions of all levels: uncontrolled (left) and controlled cases
(right) with irresponsible individuals.

Aggregate system costs in the uncontrolled case are equal to 29.58 m.u., compared
to 13.52 m.u in the controlled case (Figure 25). Comparing the costs with the previous
experiment, the hypothesis of the general responsibility of residents in the population is
confirmed. The more responsible the residents are in the country, the less the aggregated
costs from the epidemic will be.

Figure 25. Experiment 4. Aggregation costs in uncontrolled and controlled cases with irresponsi-
ble individuals.
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Experiment 5. In this experiment we show how the aggregated costs change in the
controlled cases for different parameter values δ1 and p1 (see Figure 26).

Figure 26. Experiment 5. Table of the dependence of aggregated costs on various values of the
parameters δ1 and p1 in the controlled case.

It can be noted that the presence of quarantine measures (δ1 > 0) brings about lower
costs than the absence of these measures (δ1 = 0) only when people stay in quarantine
without leaving it (p1 = 0).

6. Conclusions

This paper presents a multilevel modification of the susceptible-quarantine-exposed-
infected-recovered (SQEIR) model of the simultaneous spread of a virus over three clusters
in the entire population. We have obtained the optimal control structure and the restrictions
of feasible controls for a particular class of cost functions. Numerical simulations confirmed
the hypothesis that if population residents are compliant with quarantine rules on the first
level, then this produces a positive effect, reducing the overall spread of epidemics and the
aggregate system costs. We will further investigate specific cases of epidemic spreading in
different countries using appropriate statistic datasets. Other research directions include
applying the hierarchical SQEIR model to complex networks with different topologies and
using vaccination as a control strategy.
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Appendix A

The proof of Lemma 1. Proof of the Lemma 1 is based on the following properties.

Property A1. Let v(t) be a continuous and piecewise differential function of t. Let v(t1) = L and
v(t) > L for all t ∈ (t1, . . . , t0]. Then v̇(t+1 ) ≥ 0 where v(t+1 ) = lim

x→0
v(x).

Property A2. For any convex and differentiable function y(x), which is 0 at x = 0, y′(x)x −
y(x) ≥ 0 for all x ≥ 0.
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Let us split our proof into two parts. In the first part we will consider the case when
t = T and show that derivatives of the functions (λRi (t)− λIi (t)), i = 1, 3 are less than or
equal to zero to prove that they are non-increasing at t = T. In the second part, we will
use the method of proof by contradiction and show that on the whole interval [0, T], these
functions are also non-negative.

Part I. At time moment T, we have according to (9), (11) and (13):

(λR1(T)− λI1(T)) = 0;
(λR2(T)− λI2(T)) = 0;
(λR3(T)− λI3(T)) = 0.

(A1)

From (8), (10) and (12) we obtain

(λ̇R1(T)− λ̇I1(T)) = − ḟ1(I1(T)) ≤ 0;
(λ̇R2(T)− λ̇I2(T)) = − ḟ2(I2(T)) ≤ 0;
(λ̇R3(T)− λ̇I3(T)) = − ḟ3(I3(T)) ≤ 0.

(A2)

Now we can observe that at time moment T all functions are equal to zero and their
derivatives are less or equal to zero; then, we observe that (λRi (t)− λIi (t)), i = 1, 3 are
decreasing functions at t = T.

Part II. (Proof by contradiction)
Let 0 ≤ t∗ < T be the last instant moment at which one of these inequality constraints

for i = 1, 3 and p = 1, 2 is satisfied:

(λRi (t)− λIi (t)) ≥ 0, (λEi (t)− λSi (t)) ≥ 0, (λIi (t)− λEi (t)) ≥ 0,
(λQ1(t)− λS1(t)) ≥ 0, (λE1(t)− λQ1(t)) ≥ 0, (λSi+1(t)− λSi (t)) ≥ 0,
(λEi+1(t)− λEi (t)) ≥ 0, (λRi+1(t)− λRi (t)) ≥ 0.

(A3)

For the proof by contradiction we suppose that at the time moment t∗ one of the
inequalities is equal to zero, i.e., (λRi (t

∗)− λIi (t
∗)) = 0, and consider the derivative:

λ̇R1(t
∗)− λ̇I1(t

∗) = (λR1 − λR2)m
1
3 − f ′1(I1)− (λS1 − λE1)β1S1−

(λI1 − λR1)(σ1 + u1).
(A4)

Let us express this function by means of the Hamiltonian

λR1(t)− λI1(t) =
1

(σ1+u1)I1
[H + f1(I1) + f2(I2) + f3(I3) + h1(u1) + h2(u2)+

h3(u3)− (λE1 − λS1)β1(E1 + I1)S1 − (λQ1 − λS1)δ1S1 − (λE1 − λQ1)p1Q1−
(λI1 − λE1)k1E1 − (λS2 − λS1)m

1
1S1 − (λE2 − λE1)m

1
2E1 − (λR2 − λR1)m

1
3R1−

(λE2 − λS2)β2(E2 + I2)S2 − (λI2 − λE2)k2E2 − (λR2 − λI2)(σ2 + u2)I2−
(λS3 − λS2)m

2
1S2 − (λE3 − λE2)m

2
2E2 + (λR3 − λR2)m

2
3R2−

(λE3 − λS3)β3(E3 + I3)S3 − (λI3 − λE3)k3E3 − (λR3 − λI3)(σ3 + u3)I3].

(A5)

The system of ODE is autonomous, i.e., Hamiltonian, and the constraints on the
control do not have an explicit dependency on the independent variable t

H(λ, S1(t), Q1(t), . . . , R3(t), u1(t), u2(t), u3(t)) = const. (A6)

From (8)–(13), we obtain

H = H(T) = −( f1(I1(T)) + f2(I2(T)) + f3(I3(T))+
h1(u1(T)) + h2(u2(T)) + h3(u3(T))) ≤ 0.

(A7)
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Since (λR1(t)− λI1(t)) is a decreasing function on the interval [0; T]; then, according
to Property A1, we consider a time moment t∗+ such as:

λ̇R1(t
∗+)− λ̇I1(t

∗+) = (λR1 − λR2)m
1
3 − f ′1(I1)− (λS1 − λE1)β1S1−

(λI1 − λR1)(σ1 + u1).
(A8)

Substituting the function expressed from the Hamiltonian into this derivative, we get:

λ̇R1(t
∗+)− λ̇I1(t

∗+) = (λR1 − λR2)m
1
3 − f ′1(I1)− (λS1 − λE1)β1S1 +

1
I1
[H + f1(I1)+

f2(I2) + f3(I3) + h1(u1) + h2(u2) + h3(u3)− (λE1 − λS1)β1(E1 + I1)S1−
(λQ1 − λS1)δ1S1 − (λE1 − λQ1)p1Q1 − (λI1 − λE1)k1E1 − (λS2 − λS1)m

1
1S1−

(λE2 − λE1)m
1
2E1 − (λR2 − λR1)m

1
3R1 − (λE2 − λS2)β2(E2 + I2)S2−

(λI2 − λE2)k2E2 − (λR2 − λI2)(σ2 + u2)I2 − (λS3 − λS2)m
2
1S2−

(λE3 − λE2)m
2
2E2 + (λR3 − λR2)m

2
3R2 − (λE3 − λS3)β3(E3 + I3)S3−

(λI3 − λE3)k3E3 − (λR3 − λI3)(σ3 + u3)I3] =

1
I1
(− f ′1(I1)I1 + f1)− (λR2 − λR1)(1 +

R1
I1
) + 1

I1
[H + f2(I2) + f3(I3)+

h1(u1) + h2(u2) + h3(u3)− (λE1 − λS1)β1E1S1−
(λQ1 − λS1)δ1S1 − (λE1 − λQ1)p1Q1 − (λI1 − λE1)k1E1 − (λS2 − λS1)m

1
1S1−

(λE2 − λE1)m
1
2E1 − (λE2 − λS2)β2(E2 + I2)S2−

(λI2 − λE2)k2E2 − (λR2 − λI2)(σ2 + u2)I2 − (λS3 − λS2)m
2
1S2−

(λE3 − λE2)m
2
2E2 + (λR3 − λR2)m

2
3R2 − (λE3 − λS3)β3(E3 + I3)S3−

(λI3 − λE3)k3E3 − (λR3 − λI3)(σ3 + u3)I3]

(A9)

According to assumption (A3), Property A2, (21), and (A7), the difference (λ̇R1(t)−
λ̇I1(t)) is negative at the time moment t∗+, then function (λR1(t)− λI1(t)) decreases. This
contradicts Property A1 and proves that our function is not increasing on the interval
t ∈ [0; T]. We find that (λR1(t)− λI1(t)) ≥ 0 for t ∈ [0; T]. The proof for all other functions
from (A3) is similar to this.

The proof of Lemma 1 is completed.
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