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Abstract: The work is devoted to solving current scientific and applied problems of the development
of radar imaging methods. These developments are based on statistical theory of optimal signal
processing. These developments allow researchers to create coherent high-resolution information-
enriched images as well as incoherent images. These methods can be practically applied in multichan-
nel aerospace radars through the proposed programs and algorithms. Firstly, the following models
of stochastic signals at the output of multichannel registration regions of scattered electro-magnetic
fields, internal noise, and observation equations are developed and their statistical characteristics
investigated. For the considered models of observation equations, the likelihood functional is de-
fined. This definition is an important stage in optimizing spatial and temporal signal processing.
These signals are distorted by internal receiver noises in radar systems. Secondly, by synthesising
and analysing methods of measuring a radar cross section, the problem of incoherent imaging by
aerospace radars with planar antenna array is solved. Thirdly, the obtained optimal mathematical
operations are physically interpreted. The proposed interpretation helps to implement a quasi-
optimal algorithm of radar cross section estimation in aerospace radar systems. Finally, to verify
the proposed theory, a semi-natural experiment of real radio holograms processing was performed.
These radio holograms are digital recordings of spatial and temporal signals by an airborne synthetic
aperture radar (SAR) system. The results of the semi-natural experiment are presented and analysed
in the paper. All the calculations, developments and results in this paper can be applied to new
developments in areas such as remote sensing or non-destructive testing.

Keywords: multi-channel and multi-view radio engineering systems; radar cross section; optimal
methods; spatio-temporal signal processing

1. Introduction

The use of spatio-temporal signal processing methods in radar systems located on
mobile platforms makes it possible to form high-precision and highly informative radar
images in any weather conditions or time of day. Due to its advantages radar images are
used for nondestructive testing of various objects, aerospace research of the Earth’s surface,
ship tracking and illegal vessel detection, surface digital elevation model reconstruction
and geohazards monitoring.

Radar imaging methods have been used for more than 70 years. Radar imaging
developments, in both theory and practice, can be divided into three periods. The first
period was associated with the search for heuristic solutions for the construction of airborne
radars. It also was devoted to the accumulation of basic knowledge in the field of theory and
practice of high-precision radar imaging. The second is a period of rapid implementation
of methods for optimizing signal processing algorithms and of synthesis of optimal and
quasi-optimal radio engineering systems. Most of the methods and algorithms of this
second period were based on mathematical statistics, statistical decision theory and optimal
estimates of the parameters of probability distributions. The third period is associated
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with the rapid development of a high-precision and small-sized element base of radio
measuring devices and with improvements in such elements as phased antenna arrays,
low-noise amplifiers, power amplifiers, DSPs and FPGAs, all of which are necessary to
implement the optimal algorithms synthesized in the second period. These developments
in the manufacturing of radio-electronic assemblies and blocks have rapidly increased
in the last decade so there is now a lag in the theoretical development of methods and
algorithms. These modern methods do not use the full potential of the existing radio
engineering equipment, therefore, they need further optimization and development which
takes into account the technical capabilities of advanced radio electronics.

The development of the theory must be based on the works of V. A. Kotel’nikov [1], D.
Midlton [2], F. Woodward [3], P. A. Bakut [4], I. A. Bol’shakov [4], S. Ye. Fal’kovich [5–7],
V. K Volosyuk [8], L. Gutkin [9], B. R. Levin [10], Ya. D. Shirman [11], A. A. Kuriksha [4],
G. P. Tartakovskiy [4], V. Repin [4], I. Ya. Kremer [12], R.L. Stratonovich [13–15], V.I.
Tikhonov [16,17]. In the most of these works, the research was performed in the context of
fixed ground spatially distributed systems and antenna arrays, however, the methodology
of their optimization can also be applied to mobile airborne radars with aerospace-based
antenna array. It should also be noted that the methods for synthesizing radar apertures in
mobile airborne systems obtained in mentioned works are considered to a greater extent in
relation to signals that can be described by a functionally deterministic model. At the same
time, it was proved [18–21] that the roughness of the investigated surfaces, the random
placement of scattering elements in space and the inhomogeneity of the electro-physical
composition of objects lead to stochastic scattering of signals with a random distribution
of phases and amplitudes. The result of the coherent processing of such electro-magnetic
fields leads to the appearance of speckle noise and requires secondary processing and
filtration. The secondary processing result is proportional to the radar cross section of
surfaces and objects. Such approaches to processing stochastic signals and radar cross
section estimation in aerospace radars are not optimal.

From the analysis of onboard radar systems and the achievements of the statistical
theory of optimization of signal processing the following contradiction follows: on the one
hand, today there are all the necessary technical solutions and element basis for creating
combined high-precision and information-enriched radar images in multichannel multi-
glide radio systems. On the other hand, there is no statistical theory of optimal stochastic
signals processing in multichannel aerospace imaging radar systems which would make
it possible to overcome the existing limits of accuracy and achieve potential qualitative
characteristics of the functioning of multichannel onboard radar. This work reveals results
from research that allow this contradiction to be overcome.

2. Materials and Methods
2.1. Models of Signals, Noises and Observation Equation

The determination of signal and noise models is one of the key issues in the devel-
opment of the theory. For further conclusions, it is advisable to consider the generalized
geometry of surface and object imaging in multichannel aerospace radars in Figure 1.

In Figure 1D is the surface on which the boundary conditions are phenomenologically
stated in the form of the scattering coefficient

.
F(
→
r , λ). λ is the possible parameter that is

interesting to estimate. There are a lot of electrodynamic models of the surface that describe
the relations between surface parameters λ and scattering coefficient

.
F(
→
r , λ). The most

interesting parameters, λ, in remote sensing are real and imaginary parts of the complex
permittivity, slopes and heights of the relief, soil density, and soil moisture.
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Figure 1. Generalized geometry of surfaces and objects imaging in multichannel aerospace radars.

D′ is the area of observation, and the primary (before processing) description of the
field in a coherent form taking into account its amplitude and phase dependences. Within
region D′ there is a physical rectangular region, D′p, of registration of scattered signals,
which in general may have an arbitrary shape. The coordinates of D include a coherent
image that takes the influence of various inhomogeneities, such as inhomogeneities of
chemical composition, inhomogeneities of the refractive index gradient and irregularities
of the real surface, into account in its amplitude-phase structure. The region emitting
the probing signal may be outside of D′ or may be aligned with the origin of region
D′. The only limitation is the wide emission angle of the probing signal, particularly
omnidirectional radiation.

The model of the probing signal has the following form:

.
sp(t) =

.
A(t)ejω0t, (1)

where .
A(t) = ∑

i

.
Si(t− iTn), (2)

is the complex envelope in the form of periodic serial of pulses
.
Si(t) (simple rectangular,

chirp, phase–code manipulation, etc.) with pulse repetition period Tn;
.
Si(t) is the complex

envelope of one pulse;ω0 = 2πf0, f0 is the carrier frequency.
The probing signal propagates and reaches the observation area with coordinates

→
r = (x, y) ∈ D, is reflected therefrom (scattered on its inhomogeneities), and is then
received by registration area D′. The received space–time signal should be described
using a phenomenological approach [22]. On the one hand, this approach is based on
the diffraction theory, Kirchhoff’s and Rayleigh-Sommerfeld theorems, and combines in
its structure already known, well-defined electrodynamic models of test surfaces [23–25];
on the other hand, it is based on the Huygens-Fresnel principle [26,27] which allows it to
describe underlying surfaces and objects of complex shape with an arbitrary distribution of
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electrophysical parameters and statistical characteristics. The model of the received signal
is as follows:

.
s(t,

→
r t,
→
r
′
,
→
λ (
→
r )) =

∫
D

.
F(
→
r ,
→
λ (
→
r ))

.
s0(t,

→
r ,
→
r t,
→
r
′
)d
→
r , (3)

where
.
F(
→
r ,
→
λ (
→
r )) is the specific complex scattering coefficient of some small element dr of

surface D;
→
λ (
→
r ) is the estimated parameter;

.
s0(t,

→
r ,
→
r t,
→
r
′
) = ε

.
I(
→
r
′
)

.
A(t− tdel(

→
r ,
→
r t,
→
r
′
)) exp

{
j2πf0(t− tdel(

→
r ,
→
r t,
→
r
′
))
}

(4)

is the unit signal scattered from element dr of surface D with specific complex scattering
.
F(
→
r ,
→
λ (
→
r )) = 1; ε is the attenuation of the field in the path of propagation;

.
I(
→
r
′
) is the

amplitude-phase distribution in the region of signal registration; tdel(
→
r ,
→
r t,
→
r
′
) is the delay

time of the field when it is distributed from point
→
r to point

→
r
′

taking into account the
shift of the registration area to the point

→
r t.

The received signals are always observed against the background of the internal

noise n(t,
→
r
′
) of the receiver, which is approximated by white Gaussian processes with a

correlation function:

Rn(t1, t2,
→
r
′
1,
→
r
′
2) =

〈
n(t1,

→
r
′
1)n(t2,

→
r
′
2)
〉
=

1
2

N0nδ(t1 − t2)δ(
→
r
′
1 −

→
r
′
2). (5)

We assume that the spectral noise density in each element of the registration area is
the same.

For coherent radio vision systems, the observation equation can be presented as an
additive mixture of useful signals and noise:

u(t,
→
r t,
→
r
′
) = Re

.
s(t,

→
r t,
→
r
′
,
→
λ (
→
r )) + n(t,

→
r
′
). (6)

When solving the optimization problem of processing the received oscillations accord-
ing to the model (6), several cases of determining the structure of the complex scattering

coefficient and parameters
→
λ (
→
r ) are considered. In one case,

.
F(
→
r ,
→
λ (
→
r )) is considered to

be a deterministic function, which is a complex coherent image of the surface and objects
of observation. Otherwise, it is a stochastic process, the correlation function of which is
related to the radar cross section (RCS) as follows:

σ0(
→
r ,
→
λ (
→
r )) =

∫
D

〈
.
F(
→
r ,
→
λ (
→
r ))

.
F
∗
(
→
r + ∆

→
r ,
→
λ (
→
r + ∆

→
r ))
〉

e−jq⊥∆
→
r d∆

→
r =

∫
D

.
R .

F
(
→
r , ∆

→
r ,
→
λ (
→
r ),
→
λ (
→
r + ∆

→
r ))e−jq⊥∆

→
r d∆

→
r , (7)

where
.
R .

F
(
→
r , ∆

→
r ,
→
λ (
→
r ),
→
λ (
→
r + ∆

→
r )) is the spatial correlation function; q⊥ is the scatter-

ing vector. For such problems, all of the necessary information about the observation

area is concentrated not in the coefficient
.
F(
→
r ,
→
λ (
→
r )) itself, but in the spectral statistical

characteristic σ0(
→
r ,
→
λ (
→
r )) (spectral power density) of a statistically inhomogeneous ran-

dom process. It is a parameter of the observation area to be evaluated. This parameter is
not in the observation equation, but in its statistical characteristics—the correlation func-

tion Ru(t1, t2,
→
r t1,

→
r t2,

→
r
′
1,
→
r
′
2) and the function Wu(t1, t2,

→
r t1,

→
r t2,

→
r
′
1,
→
r
′
2) inverse to the

correlation function.
The correlation function of Equation (6) is written as follows:

Ru(t1, t2,
→
r t1,

→
r t2,

→
r
′
1,
→
r
′
2) =

〈
u(t1,

→
r t1,

→
r
′
1)u(t2,

→
r t2,

→
r
′
2)
〉
= Rs(t1, t2,

→
r t1,

→
r t2,

→
r
′
1,
→
r
′
2) + Rn(t1, t2,

→
r
′
1,
→
r
′
2)

= 1
2 Re

∫
D
σ0(
→
r ,
→
λ (
→
r ))

.
s0(t1,

→
r ,
→
r t1,

→
r
′
1)

.
s∗0(t2,

→
r ,
→
r t2,

→
r
′
2)d
→
r + 1

2 N0nδ(t1 − t2)δ(
→
r
′
1 −

→
r
′
2).

(8)
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2.2. Bases of Statistical Theory

In this paper it is noted that both the received signals and noises are of a random
nature and are statistically similar. We will perform the optimal processing of such signals
using the modern achievements of the theory of statistical decisions and estimates of the
parameters of probability distributions, which will allow us not only to synthesize optimal
algorithms, but also to design the corresponding structural schemes. In this subsection we
will consider the bases of the theory of optimization of the stochastic space–time signals
processing in onboard radars, the features of constructing probability density functionals,
and methods for calculating the potential characteristics of algorithms and systems. In the
formulation of the optimization problem, the target direction of the work, the initial data
and a priori information are noted. An optimization criterion is selected from the analysis
of the problem statement. It is known [5,8,10] that in conditions of parametric a priori
uncertainty, a minimum of a priori information requires the maximum likelihood method.

The essence of the maximum likelihood functional method is to find an estimated

parameter λi that maximizes the likelihood function P[
→
u(t)

∣∣∣∣→λ ] . Function P[
→
u(t)

∣∣∣∣→λ ] is

a conditional probability density function of a vector random process
→
u(t) = ‖u1(t), u2(t), u3(t), . . . uM(t)‖ at a fixed value of the vector of parameters,

→
λ , which

can have both constant values and be a function of time
→
λ (t) or spatial

→
λ (
→
r ) (angular

→
λ (
→
ϑ )) coordinates. Instead of function P[

→
u(t)

∣∣∣∣→λ ] , its logarithm is more often maximized.

To find optimal estimates of the parameters
→
λ , the following system of equations is solved:

∂ ln P[
→
u(t)

∣∣∣∣→λ ]
∂λi

∣∣∣∣∣∣∣∣→
λ=
→
λ true

= 0 (9)

where ∂/∂λi is the partial derivative operator, and
→
λ true is the true value of the parameter

→
λ .

When solving problems of estimating parameters of spatially extended objects, the

parameters are functions of spatial coordinates
→
λ (
→
r ). Taking into account geometry in

Figure 1, the system of Equation (9) will have the following form:

δ ln P[
→
u(t,

→
r t,
→
r
′
)

∣∣∣∣→λ (→r )]
δλi(

→
r )

∣∣∣∣∣∣∣∣→
λ(
→
r )=

→
λ true(

→
r )

= 0, (10)

where δ/δλi(
→
r ) is the operator of the variational (functional) derivative. The method for

calculating the variational derivatives is considered in [28].
One of the most important stages in solving optimization problems is the construction

of a likelihood function. In [8] a technique for constructing a wide class of likelihood
functions is presented. The likelihood function for observation Equation (6) with statistical
characteristics (8) is written in the form:

P[u(t,
→
r t,
→
r
′
)

∣∣∣∣∣σ0(
→
r )] = k[σ0(

→
r )] exp

{
− 1

2

∫
T

∫
T

∫
Dt

∫
Dt

∫
D′

∫
D′

u(t1,
→
r t1,

→
r
′
1)

×W(t1, t2,
→
r t1,

→
r t2,

→
r
′
1,
→
r
′
2,σ0(

→
r ))u(t2,

→
r t2,

→
r
′
2)dt1dt2 d

→
r t1d

→
r t2 d

→
r
′
1d
→
r
′
2

}
,

(11)
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where k[σ0(
→
r )] is the coefficient that depends on the energy parameter σ0(

→
r ), and

W(t1, t2,
→
r t1,

→
r t2,

→
r
′
1,
→
r
′
2,σ0(

→
r )) is a function inverse to the correlation function

Ru(t1, t2,
→
r t1,

→
r t2,

→
r
′
1,
→
r
′
2) that can be found from the integral equation:

∫
T

∫
Dt

∫
D′

Ru(t1, t2,
→
r t1,

→
r t2,

→
r
′
1,
→
r
′
2,σ0(

→
r ))Wu(t2, t3,

→
r t2,

→
r t3,

→
r
′
2,
→
r
′
3,σ0(

→
r ))d

→
r
′
2d
→
r t2dt2

= δ(t1 − t3)δ(
→
r t1 −

→
r t3)δ(

→
r
′
1 −

→
r
′
3).

(12)

In order to estimate the limiting errors of the underlying surface parameters estimation,
it is necessary to calculate the trace of the operator which is inverse to the Fisher operator:

ρ =
∫
D

tr Φ−1
µν(

→
r ,
→
r 1)d

→
r

∣∣∣∣∣∣→
r 1=

→
r

, (13)

where tr(·) is the symbol of the trace,

Φ(
→
r ,
→
r 1) = −

〈 δ2 ln P[u(t,
→
r t,
→
r
′
)

∣∣∣∣→λ (→r )]
δλµ(

→
r )δλν(

→
r 1)

〉

is the Fisher operator.
In the case of estimating one parameter, Expression (13) has the following form:

σ2
λ =

∫
D

− 1〈
δ2

δλ2(
→
r )

ln P[u(t,
→
r t,
→
r
′
)

∣∣∣∣λ(→r )]〉 d
→
r

∣∣∣∣∣∣∣∣→
r 1=

→
r

, (14)

where 〈·〉 is the sign of statistical averaging.

3. Results

The proposed statistical theory can be applied to the problem of optimal radar cross
section estimation in onboard imaging radars with planar antenna arrays.

3.1. Geometry of the Surface Sensing

In Figure 2 the geometry of the surface sensing is shown from the aerospace carrier of
the radar system with a planar antenna array.

Using a small area around the phase center of the registration area (in the case of
discrete idealization, one element of the antenna array) the signal (1) is emitted in the
direction of the investigated surface in a wide sector of angles.

The received signals are stochastic and have the following form:

.
s(t,

→
r
′
) =

∫
D

.
F(
→
r )

.
s0(t,

→
r ,
→
r
′
)d
→
r , (15)

where
.
s0(t,

→
r ,
→
r
′
) =

.
S0(t,

→
r ,
→
r
′
) exp(j2πf0t), (16)

.
S0(t,

→
r ,
→
r
′
) = ε

.
I(
→
r
′
) exp

(
j2k
→
ϑ (
→
r , t)

→
r
′
)

.
A
(

t− 2R0(
→
r ,t)

c

)
× exp

(
−j2k

(
V2(t−t0)

2

2R0(
→
r ,t0)

sin2 θx(
→
r , t0)−V(t− t0) cos θx(

→
r , t0)

))
.

(17)
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Expression (15), taking into account (17), describes the reflected signal from each
point P(x, y) at each point of the registration area with coordinates (x′, y′) in the process of
rectilinear motion of the aircraft at a constant speed V.

For a statistical description of the received signals and noises, we will write down the
observation equation:

u(t,
→
r
′
) = Re

.
s(t,

→
r
′
) + n(t,

→
r
′
), (18)

where n(t,
→
r
′
) is a white Gaussian noise.

Correlation function of observation Equation (18):

Ru(t1, t2,
→
r
′
1,
→
r
′
2) =

〈
u(t1,

→
r
′
1)u(t2,

→
r
′
2)
〉
= Rs(t1, t2,

→
r
′
1,
→
r
′
2) + Rn(t1, t2,

→
r
′
1,
→
r
′
2)

= 1
2 Re

∫
D
σ0(
→
r ,
→
λ (
→
r ))

.
s0(t1,

→
r ,
→
r
′
1)

.
s∗0(t2,

→
r ,
→
r
′
2)d
→
r + 1

2 N0nδ(t1 − t2)δ(
→
r
′
1 −

→
r
′
2).

(19)

3.2. Problem Statement

According to the reception of stochastic reflected oscillations
.
s(t,

→
r
′
) of each element

of the antenna array D′ which are observed against the background of additive Gaussian

noise n(t,
→
r
′
), it is necessary to optimally estimate the radar cross section σ0(

→
r ) of the

underlying surface as a statistical characteristic of the complex scattering coefficient
.
F(
→
r ).

3.3. Solution of the Optimization Problem

We obtain the optimal estimation algorithm by the method of maximum likelihood
with the likelihood function

P[u(t,
→
r
′
)

∣∣∣∣∣∣σ0(
→
r )] = k[σ0(

→
r )] exp

{
−1

2

∫
T

∫
T

∫
D′

∫
D′

u(t1,
→
r
′
1) W(t1, t2,

→
r
′
1,
→
r
′
2,σ0(

→
r ))u(t2,

→
r
′
2)dt1dt2 d

→
r
′
1d
→
r
′
2

}
. (20)



Computation 2022, 10, 224 8 of 16

Since σ0(
→
r ) depends on the coordinates

→
r , the problem of finding the maximum of

Function (20) is solved by variational methods.
Since the exponent and its power are monotonically related to each other, instead of

the likelihood Function (20) derivation, it is possible to take the derivative of its logarithm
and equate the obtained result to zero:

δ ln P[
→
u(t,

→
r
′
)
∣∣∣σ0(

→
r )]

δσ0(
→
r )

∣∣∣∣∣∣∣
σ0(
→
r )=σ0

true(
→
r )

= 0. (21)

To obtain a variational derivative δ

δσ0(
→
r )

, the estimate σ0(
→
r ) can be represented as

a sum
σ̂0(
→
r ) = σ0

opt(
→
r ) + δσ0(

→
r ),

where σ0
opt(

→
r ) is the optimal value, and δσ0(

→
r ) is the variation of the estimate, which is

some of its arbitrary small deviation from the optimal value

δσ0(
→
r ) = αγ(

→
r ),

γ(
→
r ) is an arbitrary function describing the deviation of the desired estimate σ̂0(

→
r ) in

a short distance from a small parameter α from its optimal value σ0
opt(

→
r ). Instead of the

variational derivative with respect to the function σ0(
→
r ), we will find a partial derivative

with respect to the degree of deviation α.
As a result of taking the derivative, we obtain the following equation:

−
∫
T

∫
T

∫
D′

∫
D′

dRu(t1,t2,
→
r
′
1,
→
r
′
2,σ0

opt(
→
r )+αγ(

→
r ))

dα W(t1, t2,
→
r
′
1,
→
r
′
2,σ0

opt(
→
r ) + αγ(

→
r ))d

→
r
′
1d
→
r
′
2dt1dt2

=
∫
T

∫
T

∫
D′

∫
D′

u(t1,
→
r 1
′)

dW(t1,t2,
→
r
′
1,
→
r
′
2,σ0

opt(
→
r )+αγ(

→
r ))

dα u(t2,
→
r
′
2)d
→
r
′
1d
→
r
′
2dt1dt2.

(22)

This equation is called the likelihood equation. Its exact definition was obtained in [8].
It should be noted that in this equation does not use an equal sign, but rather a sign equating
the left part to the right part. The right part is the main algorithm that corresponds to the

result of processing the received signal u(t,
→
r
′
). Observation equations have a random

nature because of internal noise. The result of u(t,
→
r
′
) will be random too. The left part is a

deterministic process. It can be shown that the left-hand side of this likelihood equation is
the average result (mathematical expectation) of the right-hand side.

We write the inverse correlation function as follows:

W(t1, t2,
→
r
′
1,
→
r
′
2,σ0(

→
r )) =

∫
T

∫
D′

∫
T

∫
D′

W(t1, t3,
→
r
′
1,
→
r
′
3,σ0(

→
r ))

×
(

1
2 Re

∫
D
σ0(
→
r )

.
s0(t3,

→
r ,
→
r 3
′)

.
s∗0(t4,

→
r ,
→
r 4
′)d
→
r + N0n

2 δ(t3 − t4)

)
W(t4, t2,

→
r
′
4,
→
r
′
2,σ0(

→
r ))d

→
r
′
3dt3d

→
r
′
4dt4

= 1
2 Re

∫
D
σ0(
→
r )
∫
T

∫
D′

∫
T

∫
D′

W(t1, t3,
→
r
′
1,
→
r
′
3,σ0(

→
r ))

.
s0(t3,

→
r ,
→
r 3
′)

.
s∗0(t4,

→
r ,
→
r 4
′)W(t4, t2,

→
r
′
4,
→
r
′
2,σ0(

→
r ))d

→
r
′
3dt3d

→
r
′
4dt4 d

→
r

+
∫
T

∫
D′

∫
T

∫
D′

W(t1, t3,
→
r
′
1,
→
r
′
3,σ0(

→
r ))N0n

2 δ(t3 − t4)δ(
→
r 3
′ −→r 4

′)W(t4, t2,
→
r
′
4,
→
r
′
2,σ0(

→
r ))d

→
r
′
3dt3d

→
r
′
4dt4.

(23)

The derivative of the inverse correlation function has the following form:

dW(t1,t2,
→
r
′
1,
→
r
′
2,σ0

opt(
→
r )+αγ(

→
r ))

dα = −
∫
T

∫
D′

∫
T

∫
D′

W(t1, t3,
→
r
′
1,
→
r
′
3,σ0(

→
r ))

×dRu(t3,t4,
→
r
′
3,
→
r
′
4,σ0

opt(
→
r )+αγ(

→
r ))

dα W(t4, t2,
→
r
′
4,
→
r
′
2,σ0(

→
r ))d

→
r
′
3dt3d

→
r
′
4dt4.

(24)
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Derived from the direct correlation function:

dRu(t3,t4,
→
r
′
3,
→
r
′
4,σ0

opt(
→
r )+αγ(

→
r ))

dα = d
dα

{
1
2 Re

∫
D

[
σ0

opt(
→
r ) + αγ(

→
r )
] .
s0(t3,

→
r ,
→
r 3
′)

.
s∗0(t4,

→
r ,
→
r 4
′)d
→
r

}
= 1

2 Re
∫
D
γ(
→
r )

.
s0(t3,

→
r ,
→
r 3
′)

.
s∗0(t4,

→
r ,
→
r 4
′)d
→
r .

(25)

Substituting (25) into (24), we obtain:

dW(t1, t2,
→
r
′
1,
→
r
′
2,σ0

opt(
→
r ) + αγ(

→
r ))

dα
= −1

2
Re
∫
D

γ(
→
r )

.
s0W(t1,

→
r 1
′,σ0(

→
r ))

.
s∗0W(t2,

→
r 2
′,σ0(

→
r ))d

→
r , (26)

where
.
s0W(t1,

→
r 1
′,σ0(

→
r )) =

∫
T

∫
D′

W(t1, t3,
→
r
′
1,
→
r
′
3,σ0(

→
r ))

.
s0(t3,

→
r ,
→
r 3
′)d
→
r
′
3dt3 is the ref-

erence signal in the synthesized optimal method of recovery of radar cross section. The
presence of an inverse correlation function under the sign of the integral indicates that the
introduction of this signal into the processing algorithm involves inverse filtering of the
received oscillations, i.e., their decorrelation or bleaching (approaching white noise).

Substituting the obtained expressions (26) and (25) into the likelihood Equation (20),
we obtain:

Re
∫
D

γ(
→
r )

1
4

∫
D

σ0(
→
r 1)
∣∣∣ .
ΨW(

→
r ,
→
r 1)
∣∣∣2d
→
r 1 +

N0n

2
EW(

→
r )− 1

2

∣∣∣ .
Y(
→
r )
∣∣∣2
d
→
r = 0, (27)

where
.

ΨW(
→
r ,
→
r 1) =

∫
T

∫
D′

.
s0(t1,

→
r ,
→
r
′
1)

.
s∗0W(t1,

→
r 1,
→
r
′
1)d
→
r
′
1dt1 (28)

is the uncertainty function (hardware function) of scatterometric SAR and planar antenna
array, which determines its resolution. It is a spatial pulse characteristic of the radar system,
i.e., the reaction (result of processing) of the SAR to a point source d

→
r , which creates a

reflected single signal
.
s0(t1,

→
r ,
→
r
′
),

EW(
→
r ) =

1
2

∫
T

∫
D′

∣∣∣ .
s0W(t3,

→
r ,
→
r
′
3)
∣∣∣2d
→
r
′
3dt3 (29)

is the reference signal energy
.
s0W(t1,

→
r 1
′,σ0(

→
r )),

.
Y(
→
r ) =

∫
T

∫
D′

u(t1,
→
r
′
1)

.
s0W

[
t1,
→
r
′
1,σ0(

→
r )
]
d
→
r
′
1dt1 (30)

is the optimal output effect of modified scatterometric SAR.
Since the function γ(

→
r ) was defined as arbitrary, the zero equality of the integral (27)

is possible only when the expression under the integral is equal to zero, i.e.,

.
Y(
→
r ) =

∫
T

∫
D′

u(t1,
→
r
′
1)

.
s0W

[
t1,
→
r
′
1,σ0(

→
r )
]
d
→
r
′
1dt1. (31)

For simplification and more effective implementation of this algorithm, it is expedient
to pass in it to complex envelopes, therefore

.
Y(
→
r ) =

1
2

∫
T

∫
D′

.
U(t1,

→
r
′
1)

.
S
∗
0W

[
t1,
→
r
′
1,σ0(

→
r )
]
d
→
r
′
1dt1. (32)
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From the obtained expressions it follows that the function
∣∣∣ .
Y(
→
r )
∣∣∣2 is a consistent and

biased estimate (the bias N0nEW(
→
r ) can be eliminated) of the radar cross section. It does

not strive for true value with increasing observation time, even when the process
.
F(
→
r ) is

statistically homogeneous and the radar cross section is the constant σ0(
→
r ) = σ0 = const.

Note that the estimation of the radar cross section as a component of the energy spectrum
.
F(
→
r ) is a spectral estimation. Its consistency can be ensured by further averaging.

Expression (32) is the basis of a modified algorithm for synthesizing apertures in
onboard radars with planar antenna array. In contrast to the classical algorithm for
synthesizing the aperture, which integrates the product of the received signal and the
reference equal to a single signal, the modified algorithm additionally performs decorre-
lation of signals reflected from Earth’s surface, which consists of their integration with

W(t1, t3,
→
r
′
1,
→
r
′
3,σ0(

→
r )). As a result, the characteristic speckle intervals will be much

smaller than in the classical aperture synthesis. The decorrelation procedure provides a
certain subdivision and can be performed using an inverse filter with a pulse response

W(t1, t3,
→
r
′
1,
→
r
′
3,σ0(

→
r )), which is usually used to solve incorrect inverse problems of

recovery of various functions and, in particular, images [29].
For further analysis (32) rewrite the unit signal

.
S0(t,

→
r ,
→
r
′
) = ε

.
I(
→
r
′
) exp(j2k

→
ϑ (
→
r , t)

→
r
′
)

.
A
(

t− 2R0(
→
r ,t)

c

)
× exp

(
−j2k

(
V2(t−t0)

2

2R0(
→
r ,t0)

sin2 θx(
→
r , t0)−V(t− t0) cos θx(

→
r , t0)

))
=

.
S0(t,

→
r )

.
I(
→
r
′
) exp

(
j2k
→
ϑ (r, t)

→
r
′
)

,

(33)

where

.
S0(t,

→
r ) = ε

.
A

(
t− 2R0(

→
r , t)

c

)
exp

(
−j2k

(
V2(t− t0)

2

2R0(
→
r , t0)

sin2 θx(
→
r , t0)−V(t− t0) cos θx(

→
r , t0)

))
. (34)

Taking into account the presented single signal, we will rewrite the optimal output
effect as follows:

.
Y(
→
r ) = 0, 5

∫
T

∫
T

.
S
∗
0(t3,

→
r )
∫
D′

∫
D′

.
U(t1,

→
r
′
1)

.
I
∗
(
→
r
′
3)W(t1, t3,

→
r
′
1,
→
r
′
3,σ0(

→
r )) exp

(
−j2k

→
ϑ (
→
r , t3)

→
r
′
3

)
d
→
r
′
3d
→
r
′
1dt1dt3, (35)

where

.
S0(t,

→
r ) = ε

.
A(t− 2R0(

→
r , t)/c) exp

{
−j2k

(
V2(t− t0)

2

2R0(
→
r , t0)

)
sin2 θx(

→
r , t0)−V(t− t0) cos θx(

→
r , t0)

}
(36)

is the complex envelope of the unit signal,
.

U(t1,
→
r
′
1) is the complex envelope of the obser-

vation equation,
→
ϑ (
→
r , t) is the vector of directing cosines that change in time proportionally

to the motion of the aircraft.
The obtained method of processing space–time signals (35) is general and fair for

solving many problems of estimating the parameters of useful signals. However, the
general expression in solving partial problems acquires a number of new properties that
characterize the features of the construction of algorithms for a particular geometry of
problems. Assume that the area of the registration of the reflected signals is discrete,
consisting of a set of elementary antennas, which together form the antenna array. The
model of the observation equation for such a discrete disclosure has the form:

u(t,
→
r
′
m) = Re

.
s(t,

→
r
′
m) + n(t,

→
r
′
m), m = 1, M. (37)
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In this case the algorithm (35) is written in matrix form

.
Y(
→
r ) = 0, 5

∫
T

.
S
∗
0(t3,

→
r )
∫
T

W(t1, t3,σ0(
→
r ))

(→.
U

T

(t1)W[t1,σ0(
→
r )]
→.
E(
→
r , t1)

)
dt1dt3, (38)

where
→.
U(t1) is the vector-column of the received signals (dimension m× 1), (·)T is the

transposition sign, W[t1,σ0(
→
r )] is the matrix of spatial matching filter with dimension

m × n,
→.
E(
→
r , t1) =

.
I
∗
n exp

(
−j2k

→
ϑ (
→
r , t1)

→
r
′
n

)
is the vector-column of amplitude phase

distribution with dimension n× 1.

The essence of processing the received space–time signals
→.
Umn(t) according to (38) is

as follows. Initially, the received oscillations from the output of each element of the antenna

array are processed in a spatial filter with a pulse response
.
I
∗
mn. Then the space–time

signals are bleached in the space filter Wmn(t1,σ0(
→
r )). The resulting signals are processed

in a beam synthesizer, which performs a spatial discrete Fourier transform and forms a
beam fan in all directions. As the aircraft moves, each individual beam at each time moves
in space so that its maximum is always directed to a selected point on the surface. The
next stage of processing is the decorrelation of signals over time in a filter with a pulse
response W(t1, t3,σ0(

→
r )). The coordinated filtering unit performs coherent detection of the

amplitudes of the received and decorrelated signals from the directions
→
ϑ (
→
r ) and coherent

accumulation of the reflected signals along the flight path of the aircraft. Coherent phase
shift in the reference signal leads to the formation of an artificial aperture, the length of
which is equal to the product of the speed of the aircraft and the synthesis time. In this case,
the synthesis time is determined by the focusing time on the selected point on the surface.

4. Discussion

To discuss effectiveness of the optimal method of incoherent imaging in radars with
planar antenna array and processing of stochastic space–time signals a semi-natural ex-
periment was performed on digital records of real radio-holograms of aircraft synthetic
aperture radar. Such data (raw radar images) were obtained according to the program of
cooperation with 14 research institutes in China, which specializes in the development of
radars. In Figure 3 it is shown the whole “raw images” obtained from the side view radar
and in the Figure 4 it is shown part of the radio hologram of the mirror point on the surface.
In the digital radio hologram, the pixel number is plotted on the abscissa and ordinate axes.

All of the images in Figure 6 were not filtered; only the signal processing algorithm
was implemented. In the image processed by the new method, the level of speckle noise is
lower, the boundaries of objects are more clearly observed, and objects are detected (two
bright points in Figure 6b and two extended objects in Figure 6d, which are the most likely
to be cars moving on the road), which are hidden by noise in Figure 6a,b.

The reference quality metrics were used in order to quantify the quality of processing
of received space–time signals in radars with planar antenna array on digital records of
real radio holograms. The result of averaging 1000 estimates is shown in Table 1.
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The radar image recovered by the proposed method is shown in Figure 5. In Figure 6
the results of comparative analyses are shown—the radar images obtained by the classical
method of signal processing (Figure 6a,c) and the new synthesized method (Figure 6b,d).
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Table 1. Quantitative assessments of the quality of coherent image recovery.

Metrics Coherent Processing without
Decorrelation

The Proposed Optimal Method of Stochastic
Signal Processing

MSE 4.1259 × 103 4.0514 × 103

PSNR 11.9756 12.0547
SSIM 0.1245 0.1326

From the analysis of the results given in Table 1 it follows that the proposed method
has a higher quality and a smaller amount of speckle noise.

5. Conclusions

The article shows how to overcome the contradiction between existing high-tech
achievements of technical solutions of imaging radars and undeveloped statistical theory
of optimal stochastic signals processing in such airborne radars. The developed models
of signals, noises and observation equations allow researchers to describe geometries of
imaging by multichannel and multi-view aerospace radars. It is supposed that receiving
signals can be formed in any time, any point of receiving antenna and from any point of the
surface. The proposed statistical approach of new methods synthesis enables the potential
information to be calculated from observation equation. One of the main advantages of
this theory is the analytical expression for marginal errors estimation. The solution of the
particular problem of optimal radar cross section estimation in onboard imaging radars
gave several new results. In contrast to the known heuristic methods of incoherent imaging
it is proposed operation of whitening the received signals in the adaptive decorrelation filter.
The proposed decorrelation operation in proportion to the signal-to-noise ratio expands
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the range of received signals, bringing them closer to white noise, and, thus, provides
superresolution while coherent and incoherent imaging. These results were proved by a
semi-natural experiment. In sum a statistical theory of radar cross section estimation as
an incoherent image of the observation region in aerospace radars with antenna array has
been developed.
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