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Abstract: In this paper, we consider the online matching problem with two heterogeneous sensors
s1 and s2 in a metric space (X, d). If a request r is assigned to sensor s1, the service cost of r is the
distance d(r, s1). Otherwise, r is assigned to sensor s2, and the service cost of r is d(r,s2)

w , where w ≥ 1
is the weight of sensor s2. The goal is to minimize the maximum matching cost, we design an optimal
online algorithm with a competitive ratio of 1 + w + 1

w for 1 ≤ w ≤ 1.839, and an optimal online

algorithm with a competitive ratio of w+1+
√

w2+6w+1
2 for w > 1.839.

Keywords: online algorithm; bottleneck matching; two heterogeneous sensors

1. Introduction

In a metric space (X, d), X is a set of points and d(·, ·) is a distance function. S =
{s1, s2, . . . , sn} ⊆ is a set of sensors, and R = {r1, r2, . . . , rn} ⊆ X is a set of requests. Each
request arrives one by one in an online fashion. When a request rj ∈ R arrives, it must be
immediately and irrevocably matched to some unmatched sensor si. The cost of matching
rj to si is the distance d(rj, si).

For a minimization problem and an input instance I, let CA(I) (CA for short) and
COPT(I) (COPT for short) be the costs of the feasible solution obtained by an online al-
gorithm A and an optimal off-line algorithm, respectively. An online algorithm A is
ρ-competitive (or the competitive ratio of A is at most ρ) if CA ≤ ρCOPT for any input instance
I. For an online problem, if there is no algorithm with competitive ratio less than r, then r
is a lower bound of the problem. If there is an algorithm whose competitive ratio matches
the lower bound, this algorithm is called an optimal online algorithm.

Online problem and algorithm can be abstracted as a request-answer game between the
algorithm designer and adversary. Each time the adversary gives a request, the algorithm
decides how to respond based on the previous responses of both parties and the current
request, and the adversary gives the next request based on the responses of both parties so
far. The goal of the algorithm is to make it perform as well as possible, while the goal of the
adversary is exactly the opposite.

Online-matching based models have many applications, e.g., when assigning cars
to parking spots, advertisers to ad slots, skis to skiers at a rental station, drivers and
riders in Uber. The classical Online Minimum Matching (OMM) is to find a matching
M such that the total cost of matching all requests is minimized. Kalyanasundaram
and Pruhs [1] and Khuller et al. [2] independently introduced the OMM problem and
proved that the PERMUTATION is an optimal online algorithm with a competitive ratio
of 2m − 1. Meanwhile, Kalyanasundaram and Pruhs [1] also proved that the greedy
algorithm is (2m − 1)-competitive, and this bound is tight. Meyerson et al. [3] presented
a randomized online algorithm with competitive ratio of O(log3 m). Bansal et al. [4]
proposed an O(log2 m)-competitive randomized algorithm.

If the metric space (X, d) is a line, Gupta and Lewi [5] gave an O(log n)-competitive
randomized algorithm for the OMM problem. Fuchs et al. [6] gave a lower bound 9.001 for
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the OMM problem. Antoniadis et al. [7] designed a deterministic online algorithm with
competitive ratio O(nlog(3+ε)−1/ε) for any ε > 0. Nayyar and Raghvendra [8] proved that
the competitive ratio of the deterministic online algorithm proposed in [9] is O(log2 n),
which is improved to O(log n) [10] for the OMM problem. Recently, Peserico and Scquiz-
zato [11] proved that the competitive ratio of any randomized online algorithm for the
OMM problem exceeds

√
log2(n + 1)/15.

The OMM problem is closely related to the Online Bottleneck Matching (OBM) prob-
lem which is to find a matching M such that the maximum cost is minimized. Kalyanasun-
daram and Pruhs [1] also introduced the OBM problem and proved that the PERMUTATION

algorithm is (2m− 1)-competitive, and gave a lower bound of m + 1. Idury and Schaf-
fer [12] gave a lower bound approximately 1.44m for the OBM problem even if the metric
space is a real line. Anthony and Chung [13] proved that the greedy algorithm achieves a
competitive ratio of m2m−1.

A generalized version of the OMM problem, which is called online b-matching [1],
online transportation [1], the fire station problem [14], the school assignment problem [14],
or online facility assignment [15], is also considered, where each sensor can be matched
multiple times. Recently, Itoh et al. [16] presented several lower bounds on the competitive
ratio for this problem with different number of sensors. Xiao and Li [17] considered
the semi-matching problem with two heterogeneous sensors, and proposed two optimal
online algorithms.

In this paper, we describe our problems and some preliminaries in Section 2. In
Section 3, we consider an OBM problem with two heterogeneous sensors. We gives two
optimal online algorithms, and the competitive ratios are shown in Figure 1. Finally, we
make a summary in Section 4.

w

Ratio

1
3

1.839

3.383

Figure 1. Two competitive ratios in this paper.

2. Preliminaries

Let (X, d) be a metric space, where X is a set of points and d(·, ·) is a distance function.
We are given a set of two heterogeneous sensors S = {s1, s2} and two requests r1, r2 in
X, where each sensor si is characterized by the position p(si) ∈ X and the weight wi > 0,
i = 1, 2. A request rj is also characterized by the position p(rj) ∈ X, j = 1, 2.

In the online fashion, the positions of the sensors are known in advance. The requests
arrive one-by-one and the request r1 must be assigned to some unmatched sensor before
the request r2 arrives. A sensor si is called available if the si is not matched by one request.
If rj is matched with the sensor si, the cost of pair (rj, si) is

c(rj, si) = d(rj, si)/wi

For convenience, let σ−1(i) be the request matched by sensor si for i = 1, 2. Without
loss of generality, we assume that w1 = 1 and w2 = w ≥ 1.
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The online bottleneck matching problem with two heterogeneous sensors (OBM(2))
is to find a matching σ such that the maximum cost

max{ max
j:rj=σ−1(1)

d(rj, s1), max
j:rj=σ−1(2)

d(rj, s2)/w}

is minimized. Clearly, if w = 1, this problem is exactly the problem considered in [18] and
has an optimal online algorithm with competitive ratio 3.

3. The OBM(2) Problem

In this section, for different ranges of w, we use the adversary approach to obtain the
worst case competitive ratios of the OBM(2) problem. Let β ≈ 1.839 be the real root of the
equation x3 − x2 − x− 1 = 0, implying that

β3 − β2 − β− 1 = 0.

We propose two optimal online algorithms for 1 < w ≤ β and w > β in next two
subsections respectively.

3.1. The Case 1 ≤ w ≤ β

Theorem 1. When 1 ≤ w ≤ β, any online algorithm A for OBM(2) has a competitive ratio at
least 1 + w + 1

w , even if (X, d) is a line.

Proof. As shown in Figure 2, let p(s1) = 0, p(s2) = 1, and x = 1
1+w . The first request

arrives at position p(r1) = p(s2)− x. If r1 is matched with sensor s2, the last request r2
arrives at position p(r2) = p(s2) + (1− x)w. Therefore, CA ≥ d(r2, s1) = 1+ (1− x)w, and
COPT = d(r1, s1) =

d(r2,s2)
w = (1− x), implying that

CA

COPT ≥
1 + (1− x)w

1− x
=

1
1− x

+ w = 1 + w +
1
w

.

If r1 is matched with sensor s1, the last request r2 arrives at position p(r2) = p(s1)− x
w .

Therefore, CA ≥ d(r2,s2)
w = 1

w + x
w2 , COPT = d(r1,s2)

w = d(r2, s1) =
x
w , implying that

CA

COPT ≥
1
w + x

w2
x
w

=
1
x
+

1
w

= 1 + w +
1
w

.

According to the above analysis, there is no online algorithm which competitive ratio
strict smaller than 1 + w + 1

w .

s1 s2r1

x = 1
1+w

Figure 2. The locations of sensors and requests.

When 1 ≤ w ≤ β, our Algorithm 1 is described as follows.
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Algorithm 1: A1

1 When a new request r arrives,
2 if d(r, s1) ≤ wd(r, s2), then
3 match r with the first available sensor in the sequence (s1, s2).

4 else
5 match r with the first available sensor in the sequence (s2, s1).

6 If there is a new request, go to line 2. Otherwise, stop.

Theorem 2. The competitive ratio of Algorithm 1 is at most 1 + w + 1
w .

Proof. Let σ∗ be the off-line optimal solution, and σ be the feasible solution produced by
the Algorithm 1. Let rj be the request attaching the maximum in the σ, and rk be the request
attaching the maximum in the σ∗, j, k ∈ {1, 2}. For j = 1, 2, if σ∗(rj) = σ(rj), implying that
Algorithm 1 produces an optimal solution. Otherwise,

σ∗(rj) 6= σ(rj), ∀j = 1, 2, (1)

we distinguish the following four cases.
Case 1. σ(rj) = s1 and σ∗(rk) = s1 (σ(rk) = s2 and σ∗(rj) = s2).
In this case, we have CA1 = d(rj, s1) and COPT = d(rk, s1). By (1), we have j 6= k. If

j < k, by the choice of Algorithm 1, we have d(rj, s1) ≤ wd(rj, s2). Since w ≤ β, we have

w2 ≤ 1 + w +
1
w

, (2)

implying that

CA1 = d(rj, s1) ≤ wd(rj, s2) = wd(rj, σ∗(rj)) ≤ w2COPT ≤ (1 + w +
1
w
)COPT .

If j > k, by the choice of Algorithm 1, we have d(rk, s1) > wd(rk, s2). Hence,

CA1 = d(rj, s1)

≤ d(rj, s2) + d(s1, s2)

≤ d(rj, s2) + d(rk, s1) + d(rk, s2)

≤ d(rj, σ∗(rj)) + (1 +
1
w
)d(rk, s1)

= d(rj, σ∗(rj)) + (1 +
1
w
)d(rk, σ∗(rk))

≤ wCOPT + (1 +
1
w
)COPT

= (1 + w +
1
w
)COPT .

Case 2. σ(rj) = s1 and σ∗(rk) = s2.

In this case, we have CA1 = d(rj, s1) and COPT = d(rk ,σ∗(rk))
w = d(rk ,s2)

w . By (1) and
j, k = 1, 2, we have j = k.

If j = 1, by the choice of Algorithm 1, we have d(r1, s1) ≤ wd(r1, s2). Therefore, by (2),

CA1 = d(rj, s1) ≤ wd(rj, s2) = w2COPT ≤ (1 + w +
1
w
)COPT .
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If j = 2, by the choice of Algorithm 1, we have d(r1, s1) > wd(r1, s2). Hence,

CA1 = d(r2, s1)

≤ d(r2, s2) + d(s1, s2)

≤ d(r2, s2) + d(r1, s1) + d(r1, s2)

≤ d(r2, σ∗(r2)) + (1 +
1
w
)d(r1, s1)

= d(r2, σ∗(r2)) + (1 +
1
w
)d(r1, σ∗(r1))

≤ wCOPT + (1 +
1
w
)COPT

= (1 + w +
1
w
)COPT .

Case 3. σ(rj) = s2 and σ∗(rk) = s2 (σ(rk) = s1 and σ∗(rj) = s1).

In this case, we have CA1 =
d(rj ,s2)

w and COPT = d(rk ,s2)
w = d(rk ,σ∗(rk))

w . By (1), we have
j 6= k. If j < k, by the choice of Algorithm 1, we have d(rj, s1) > wd(rj, s2). Hence,

CA1 =
d(rj, s2)

w
<

d(rj, s1)

w2 =
d(rj, σ∗(rj))

w2 ≤ 1
w2

d(rk, σ∗(rk))

w
≤ 1

w2 COPT ≤ COPT .

If j > k, by the choice of Algorithm 1, we have d(rk, s1) ≤ wd(rk, s2). Hence,

CA1 =
d(rj, s2)

w

≤ 1
w
(d(rj, s1) + d(s1, s2))

≤ 1
w
(d(rj, s1) + d(rk, s1) + d(rk, s2))

≤ 1
w
(d(rj, σ∗(rj)) + (1 + w)d(rk, s2))

=
1
w
(d(rj, σ∗(rj)) + (1 + w)d(rk, σ∗(rk)))

≤ 1
w
(COPT + (1 + w)wCOPT)

= (1 + w +
1
w
)COPT .

Case 4. σ(rj) = s2 and σ∗(rk) = s1.

In this case, we have CA1 =
d(rj ,s2)

w and COPT = d(rk, s1) = d(rk, σ∗(rk)). By (1), we
have j = k.

If j = 1, by the choice of Algorithm 1, we have d(rj, s1) > wd(rj, s2). Therefore,

CA1 =
d(rj, s2)

w
<

d(rj, s1)

w2 =
d(rj, σ∗(rj))

w2 ≤ 1
w2 COPT ≤ COPT .
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If j = 2, by the choice of Algorithm 1, we have d(r1, s1) ≤ wd(r1, s2). Hence,

CA1 =
d(rj, s2)

w

≤ 1
w
(d(rj, s1) + d(s1, s2))

≤ 1
w
(d(rj, s1) + d(r1, s1) + d(r1, s2))

≤ 1
w
(d(rj, s1) + (1 + w)d(r1, s2))

=
1
w
(d(rj, σ∗(rj)) + (1 + w)d(r1, σ∗(r1)))

≤ 1
w
(COPT + (1 + w)wCOPT)

= (1 + w +
1
w
)COPT .

Therefore, the theorem holds.

3.2. The Case w > β

Theorem 3. When w > β, any online algorithm A for OBM(2) has a competitive ratio at least
w+1+

√
w2+6w+1
2 , even if (X, d) is a line.

Proof. Let x = 3w+1−
√

w2+6w+1
4w . As shown in Figure 3, assume that p(s1) = 0 and p(s2) =

1. The first request arrives at position p(r1) = p(s2)− x. If r1 is matched with sensor s2,
the last request r2 arrives at position p(r2) = p(s2) + (1− x)w, implying CA ≥ d(r2, s1) =

1 + (1− x)w and COPT = d(r1, s1) =
d(r2,s2)

w = 1− x. Thus,

CA

COPT ≥
1 + (1− x)w

1− x
=

1
1− x

+ w =
w + 1 +

√
w2 + 6w + 1
2

.

If r1 is matched with sensor s1, the last request r2 arrives at position p(r2) = p(s1)− x
w ,

implying that CA ≥ d(r1, s1) = 1− x, and COPT = d(r1,s2)
w = d(r2, s1) =

x
w . Thus,

CA

COPT ≥
1− x

x
w

=
w + 1 +

√
w2 + 6w + 1
2

.

Therefore, the theorem holds.

s1 s2r1

x = 3w+1−
√

w2+6w+1
4w

Figure 3. The locations of sensors and requests.

When w > β, for convenience, let

w0 =
w + 1 +

√
w2 + 6w + 1
2w

.

Our Algorithm 2 is described as follows.
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Algorithm 2: A2

1 When a new request r arrives,
2 if d(r, s1) ≤ w0d(r, s2), then
3 match r with the first available sensor in the sequence (s1, s2).

4 else
5 match r with the first available sensor in the sequence (s2, s1).

6 If there is a new request, go to line 2. Otherwise, stop.

Theorem 4. The competitive ratio of Algorithm 2 is at most w+1+
√

w2+6w+1
2 .

Proof. As in the proof of Theorem 2, let rj be the request attaching the maximum in
the feasible solution σ produced by the Algorithm 2, and rk be the request attaching the
maximum in the optimal solution σ∗, j, k = 1, 2. We assume that

σ(rj) 6= σ∗(rj), ∀j = 1, 2, (3)

and distinguish the following four cases.
Case 1. σ(rj) = s1 and σ∗(rk) = s1 (σ(rk) = s2 and σ∗(rj) = s2).
In this case, we have CA2 = d(rj, s1) and COPT = d(rk, σ∗(rk)) = d(rk, s1). By (3), we

have j 6= k. If j < k, by the choice of Algorithm 2, we have d(rj, s1) ≤ w0d(rj, s2). Therefore,

CA2 = d(rj, s1) ≤ w0d(rj, s2) = w0d(rj, σ∗(rj)) ≤ w0wCOPT =
w + 1 +

√
w2 + 6w + 1
2

COPT .

If j > k, by the choice of Algorithm 2, we have d(rk, s1) > w0d(rk, s2). Hence,

CA2 = d(rj, s1)

≤ d(rj, s2) + d(s1, s2)

≤ d(rj, s2) + d(rk, s1) + d(rk, s2)

≤ d(rj, σ∗(rj)) + (1 +
1

w0
)d(rk, s1)

= d(rj, σ∗(rj)) + (1 +
1

w0
)d(rk, σ∗(rk))

≤ wCOPT + (1 +
1

w0
)COPT

= (1 + w +
1

w0
)COPT

=
w + 1 +

√
w2 + 6w + 1
2

COPT .

Case 2. σ(rj) = s1 and σ∗(rk) = s2.

In this case, we have CA2 = d(rj, s1) and COPT = d(rk ,σ∗(rk))
w = d(rk ,s2)

w . By (3) and j, k =
1, 2, we have j = k. If j = 1, by the choice of Algorithm 2, we have d(rj, s1) ≤ w0d(rj, s2).
Therefore,

CA2 = d(rj, s1) ≤ w0d(rj, s2) = w0wCOPT =
w + 1 +

√
w2 + 6w + 1
2

COPT .
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If j = 2, by the choice of Algorithm 2, we have d(r1, s1) > w0d(r1, s2). Hence,

CA2 = d(rj, s1)

≤ d(rj, s2) + d(s1, s2)

≤ d(rj, s2) + d(r1, s1) + d(r1, s2)

≤ d(rj, σ∗(rj)) + (1 +
1

w0
)d(r1, s1)

= d(rj, σ∗(rj)) + (1 +
1

w0
)d(r1, σ∗(r1))

≤ wCOPT + (1 +
1

w0
)COPT

= (1 + w +
1

w0
)COPT

=
w + 1 +

√
w2 + 6w + 1
2

COPT .

Case 3. σ(rj) = s2 and σ∗(rk) = s2 (σ(rk) = s1 and σ∗(rj) = s1).

In this case, we have CA2 =
d(rj ,s2)

w and COPT = d(rk ,s2)
w = d(rk ,σ∗(rk))

w . By (3), we have
j 6= k. If j < k, by the choice of Algorithm 2, we have d(rj, s1) > w0d(rj, s2). Hence,

CA2 =
d(rj, s2)

w
<

d(rj, s1)

ww0
=

d(rj, σ∗(rj))

ww0
≤ 1

ww0
COPT ≤ COPT .

If j > k, by the choice of Algorithm 2, we have d(rk, s1) ≤ w0d(rk, s2). Hence,

CA2 =
d(rj, s2)

w

≤ 1
w
(d(rj, s1) + d(s1, s2))

≤ 1
w
(d(rj, s1) + d(rk, s1) + d(rk, s2))

≤ 1
w
(d(rj, σ∗(rj) + (1 + w0)d(rk, s2)))

=
1
w
(d(rj, σ∗(rj)) + (1 + w0)d(rk, σ∗(rk)))

≤ 1
w
(COPT + (1 + w0)wCOPT)

= (1 + w0 +
1
w
)COPT

≤ w + 1 +
√

w2 + 6w + 1
2

COPT ,

where the last inequality follows from that w > β.
Case 4. σ(rj) = s2 and σ∗(rk) = s1.

In this case, we have CA2 =
d(rj ,s2)

w and COPT = d(rk, s1). By (3), we have j = k.
If j = 1, by the choice of Algorithm 2, we have d(rj, s1) > w0d(rj, s2). Therefore,

CA2 =
d(rj, s2)

w
<

d(rj, s1)

ww0
=

d(rj, σ∗(rj))

ww0
≤ 1

ww0
COPT ≤ COPT .
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If j = 2, by the choice of Algorithm 2, we have d(r1, s1) ≤ w0d(r1, s2). Hence,

CA2 =
d(rj, s2)

w

≤ 1
w
(d(rj, s1) + d(s1, s2))

≤ 1
w
(d(rj, s1) + d(r1, s1) + d(r1, s2))

≤ 1
w
(d(rj, s1) + (1 + w0)d(r1, s2))

=
1
w
(d(rj, σ∗(rj)) + (1 + w0)d(r1, σ∗(r1)))

≤ 1
w
(COPT + (1 + w0)wCOPT)

= (1 + w0 +
1
w
)COPT

≤ w + 1 +
√

w2 + 6w + 1
2

COPT ,

where the last inequality follows from w > β.
Therefore, the theorem holds.

4. Discussion

In this paper, we studied an online matching problem with two heterogeneous sensors
in a metric space. For the bottleneck objective, we proposed two optimal online algorithms
for different values of w. It is interesting to study the online matching problem with more
than three sensors.
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