
Citation: Nedzhibov, G. On

alternative Algorithms for

Computing Dynamic Mode

Decomposition. Computation 2022, 10,

210. https://doi.org/10.3390/

computation10120210

Academic Editor: Alexander

Pchelintsev

Received: 16 November 2022

Accepted: 28 November 2022

Published: 1 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

On Alternative Algorithms for Computing Dynamic
Mode Decomposition
Gyurhan Nedzhibov

Faculty of Mathematics and Informatics, Shumen University, 9700 Shumen, Bulgaria; g.nedzhibov@shu.bg

Abstract: Dynamic mode decomposition (DMD) is a data-driven, modal decomposition technique
that describes spatiotemporal features of high-dimensional dynamic data. The method is equation-
free in the sense that it does not require knowledge of the underlying governing equations. The
main purpose of this article is to introduce new alternatives to the currently accepted algorithm
for calculating the dynamic mode decomposition. We present two new algorithms which are more
economical from a computational point of view, which is an advantage when working with large data.
With a few illustrative examples, we demonstrate the applicability of the introduced algorithms.

Keywords: dynamic mode decomposition; Koopman operator; singular value decomposition;
equation-free; Frobenius companion matrix

1. Introduction

Dynamic mode decomposition (DMD) was first introduced by Schmid [1] as a method for
analyzing data from numerical simulations and laboratory experiments in fluid dynamics field.
The method constitutes a mathematical technique for identifying spatiotemporal coherent
structures from high-dimensional data. It can be considered to be a numerical approximation
to Koopman spectral analysis, and in this sense, it is applicable to nonlinear dynamical systems
(see [2–4]). The DMD method combines the favorable features from two of the most powerful
data analytic tools: proper orthogonal decomposition (POD) in space and Fourier transforms
in time. DMD has gained popularity and it has been applied for a variety of dynamic systems
in many different fields such as video processing [5], epidemiology [6], neuroscience [7],
financial trading [8–10], robotics [11], cavity flows [12,13] and various jets [2,14]. For a review
of the DMD literature, we refer the reader to [15–18]. Since its initial introduction, along with
its wide application in various fields, the DMD method has undergone various modifications
and improvements. For some recent results on the topics of DMD for non-uniformly sampled
data, higher order DMD method, parallel implementations of DMD and some derivative
DMD techniques, we recommend to the reader [19–26]; see also [27–33].

Our goal in the present work is to introduce alternative algorithms for calculating
DMD. The new approaches calculate the DMD modes of the Koopman operator using a
simpler formula compared to the standard DMD algorithm. The remainder of this work
is organized as follows: in the rest of Section 1, we briefly describe the DMD algorithm,
in Section 1, we propose and discuss the new approaches for DMD computation and in
Section 3, we present numerical results, and the conclusion is in Section 4.

1.1. Description of the Standard DMD Algorithm

Originally, the DMD technique was formulated in terms of a companion matrix [1,2],
emphasizing its connections to the Arnoldi algorithm and Koopman operator theory. Later,
an SVD-based algorithm was presented in [12]. This algorithm is more numerically stable
and is now a commonly accepted approach for performing DMD decomposition. We
describe this algorithm in the following. Throughout the paper, we use the following
notations: uppercase Latin letters for matrices, lowercase Latin or Greek letters for scalars,
and lowercase bold letters for vectors.

Computation 2022, 10, 210. https://doi.org/10.3390/computation10120210 https://www.mdpi.com/journal/computation

https://doi.org/10.3390/computation10120210
https://doi.org/10.3390/computation10120210
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://doi.org/10.3390/computation10120210
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation10120210?type=check_update&version=1

Computation 2022, 10, 210 2 of 16

Consider a sequential set of data arranged in n×m + 1 matrix

Z = [x0, . . . , xm] (1)

where n is the number of state variables and m + 1 is the number of observations (snapshots).
The data xi could be from measurements, experiments, or simulations collected at the time
ti from a given dynamical system and assume that the data are equispaced in time, with a
time, step4t. We assume that the data Z are generated by linear dynamics, i.e., assume
that there exists a linear operator A such that

xk+1 = Axk , for k = 0, . . . , m− 1. (2)

The goal of the DMD method is to find an eigendecomposition of the (unknown)
operator A. To proceed, we use an arrangement of the data set into two large data matrices

X = [x0, . . . , xm−1] and Y = [x1, . . . , xm]. (3)

Therefore, the xpression (2) is equivalent to

Y = AX. (4)

Then the DMD of the data matrix Z is given by the eigendecomposition of A. We
can approximate operator A by using singular value decomposition (SVD) of data matrix
X = UΣV∗, where U is an n× n unitary matrix, Σ is an n×m rectangular diagonal matrix
with non-negative real numbers on the diagonal, V is an m×m unitary matrix, and V∗ is
the conjugate transpose of V; see [34]. Then from (4), we obtain

A = YX† = YVΣ−1U∗ , (5)

where X† is the pseudoinverse of X; see [35]. It should be noted that calculating the
eigendecomposition of the n× n matrix A can be prohibitively expensive if n is large, i.e., if
n� m. As a result, the goal is to compute eigenvectors and eigenvalues without explicitly
representing or manipulating A. A low-rank approximation matrix Ã is constructed for
this purpose, and its eigendecomposition is calculated to obtain the DMD modes and
eigenvalues. The DMD modes and DMD eigenvalues are intended to approximate the
eigenvectors and eigenvalues of A.

A reduced SVD of X = UrΣrV∗r can be used to obtain the low-rank approximation
matrix Ã, where Ur is n× r, Σr is r× r diagonal, Vr is m× r, and r is the rank of X, (r ≤ m).
Then, using (5), we obtain the low-dimensional representation

Ã = U∗r AUr = U∗r YVrΣ−1
r . (6)

The following algorithm (Algorithm 1) provides a robust method for computing DMD
modes and eigenvalues.

In its original form [1], the algorithm of the DMD method differs slightly from the one
described above. The only difference is that the DMD modes (at step 5) are computed by
the formula

Φ = UW, (7)

where W is the eigenvector matrix of Ã. The DMD modes calculated by Algorithm 1 are
called exact DMD modes, because Tu et al. in [16] prove that these are exact eigenvectors of
matrix A. The modes computed by (7) are referred to as projected DMD modes. It is worth
noting that the DMD method is generalized and extended to a larger class of data sets
in [16], where the assumption of evenly spaced measurements was relaxed.

Computation 2022, 10, 210 3 of 16

Algorithm 1 Exact DMD
Input: Data matrices X and Y, and rank r.
Output: DMD modes Φ and eigenvalues Λ

1: Procedure DMD(X,Y,r).
2: [U, Σ, V] = SVD(X, r) (Reduced r-rank SVD of X)
3: Ã = U∗YVΣ−1 (Low-rank approximation of A)
4: [W, Λ] = EIG(Ã) (Eigen-decomposition of Ã)
5: Φ = YVΣ−1W (DMD modes of A)
6: End Procedure

Finally, knowing the DMD modes Φ and eigenvalues Λ = diag{λi}, we can recon-
struct the time series of data set Z in (1) by expression

x̂k = ΦΛkb , (8)

where b = Φ†x0 is the vector of the initial amplitudes of DMD modes.
The DMD discrete-time eigenvalues λj can also be converted to continuous time

eigenvalues (Fourier modes)

ωj =
ln(λj)

4t
, j = 1, . . . , r.

A continuous time dynamical system can be reconstructed as a function of time by the
expression

x̂(t) = Φ exp(Ωt)b , (9)

where Ω = diag{ω1, . . . , ωr}. A prediction of the future state of the system is obtained
from the expression (9) for any time t.

1.2. Matrix Similarity

Here, we will briefly describe an important matrix technique called similarity transfor-
mation, which we will use in the next section.

Definition 1. Let A and B be n× n matrices. If there is a non-singular n× n matrix P exists
such that

A = P−1BP

then we say that A and B are similar to each other.

We will state some well-known properties of similar matrices; see [36].

Lemma 1. If A and B are similar, then they have the same rank.

Lemma 2. If A and B are similar, then they have the same eigenvalues.

It is easy to show that if A and B are similar and x is an eigenvector of B, then P−1x is
an eigenvector of A = P−1BP.

2. New DMD Algorithms

In this section, we introduce two new alternatives to the standard DMD algorithm.

2.1. An Alternative of Exact DMD Algorithm

The DMD algorithms presented in the previous section use the advantage of low
dimensionality in the data to make a low-rank approximation of the operator A that best
approximates the nonlinear dynamics of the data set.

Computation 2022, 10, 210 4 of 16

We suggest that the modal structures can be extracted from the following matrix

Â = Σ−1
r U∗r YVr , (10)

rather than the matrix Ã defined by (6). The two matrices Ã and Â are similar, with
transformation matrix Σr

Â = Σ−1
r ÃΣr, (11)

they therefore have the same eigenvalues. As a result, the eigenvectors of the matrix Ã can
be expressed in terms of the eigenvectors of Â.

Let
ÂŴ = ŴΛ (12)

be eigendecomposition of matrix Â. Then, using relations (7), (11) and (12) we can easily
obtain the following expression:

ÃΣrŴ = ΣrŴΛ ,

which yields the formula
Φ = UrΣrŴ , (13)

for the DMD modes. Expression (13) corresponds to projected DMD modes defined by (7).
To be thorough, we will prove that matrix

Φ̂ = YVrŴ , (14)

corresponds to exact DMD modes Φ = YVWΣ−1 defined at Step 5 in Algorithm 1; see [37].

Theorem 1. Let (λ, w), with λ 6= 0, be an eigenpair of Â defined by (10), then the corresponding
eigenpair of A is (λ, ϕ), where

ϕ = YVrw.

Proof. By using reduced SVD X = UrΣrV∗r and the pseudoinverse of X

X† = VrΣ−1
r U∗r ,

we obtain the expression
A = YX† = YVrΣ−1

r U∗r .

Let us now express Aϕ
Aϕ = YVrΣ−1U∗r YVrw

which implies, by using (10)

Aϕ = YVr Âw = YVrwλ = λϕ.

In addition, ϕ 6= 0, since if YVrw = 0, then Σ−1
r U∗r YVrw = Âw = 0. This implies that

λ = 0. Hence, ϕ is an eigenvector of A with eigenvalue λ. The proof is completed.

Now, we are ready to formulate an alternative to the exact DMD method described
(Algorithm 1); see Algorithm 2 below.

According to Theorem 1, modes in (14) generated by Algorithm 2 are eigenvectors of
the matrix A. Although the matrices Â and Ã are computationally similar because they
have the same but permuted multipliers, the calculation of DMD modes Φ̂ in Algorithm 2
is more economical than the calculation of modes Φ in Algorithm 1.

Computation 2022, 10, 210 5 of 16

Algorithm 2 Alternative exact DMD
Input: Data matrices X and Y, and rank r.
Output: DMD modes Φ̂ and eigenvalues Λ

1: Procedure DMD(X,Y,r).
2: [U, Σ, V] = SVD(X, r) (Reduced r-rank SVD of X)
3: Â = Σ−1U∗YV (Low-rank approximation of A)
4: [Ŵ, Λ] = EIG(Ã) (Eigen-decomposition of Â)
5: Φ̂ = YVŴ (DMD modes of A)
6: End Procedure

2.2. A New DMD Algorithm for Full Rank Dataset

We will assume in this section that matrix X ∈ Rn×m is a full rank matrix, i.e., r = m,
where n > m and r = rank(X). Our goal is to obtain a more efficient algorithm for
calculating DMD modes and eigenvalues in this particular case.

We suggest that the modal structures can be extracted from the following matrix

Ā = Vr ÂV∗r , (15)

where Vr is the unitary matrix from the SVD of X = UrΣrV∗r . Matrices Â and Ā are
obviously similar. From (10) and (15), we obtain the expression

Ā = VrΣ−1
r U∗r Y , (16)

which yields
Ā = X†Y , (17)

where X† is the Moore–Penrose pseudoinverse of X. Denoting the eigen-decomposition of
Ā by

ĀW̄ = W̄Λ , (18)

where the columns of W̄ are eigenvectors and Λ is a diagonal matrix containing the
corresponding eigenvalues. From Definition of Â, and relations (15) and (18), we deduce

AUrΣrV∗r W̄ = UrΣrV∗r W̄Λ (19)

or equivalently
A(XW̄) = (XW̄)Λ . (20)

Thus, we show that
Φ = XW̄ (21)

is the matrix of DMD modes. These are the projected DMD modes (see Theorem 3 below).
We will express the exact DMD modes in the next Theorem.

Theorem 2. Let (λ, w̄), with λ 6= 0, be an eigenpair of Ā defined by (17). Then, the corresponding
eigenpair of A is (λ, ϕ̄), where

ϕ̄ = Yw̄. (22)

Proof. Let us express Aϕ by using (4)

Aϕ̄ = YVrΣ−1
r U∗r Yw̄ .

From the last relation and (16), we get

Aϕ̄ = YĀw̄ = λYw̄ = λϕ̄ .

Computation 2022, 10, 210 6 of 16

Furthermore, ϕ̄ 6= 0, because if Yw̄ = 0, then VrΣ−1
r U∗r Yw̄ = Āw̄ = 0, implying λ = 0.

Hence, ϕ̄ is an eigenvector of A with an eigenvalue λ.

Next, we resume the results from above in the form of an algorithm.
We intentionally omitted Step 1 of Algorithm 1 (or Algorithm 2) in Algorithm 3,

because the pseudo-inverse matrix of full-rank matrix X can be calculated not only by SVD
but also by formula

X† = (A∗A)−1 A∗ .

The presented Algorithm 3 has the greatest advantage among the described algorithms
from a computational point of view in the case of full-rank data. We will now prove that
modes in expression (21) are projected DMD modes.

Algorithm 3 DMD Algorithm for full rank dataset
Input: Data matrices X and Y.
Output: DMD modes Φ̄ and eigenvalues Λ

1: Procedure DMD(X,Y).
2: Ā = X†Y (Low-rank approximation of A)
3: [W̄, Λ] = EIG(Ā) (Eigen-decomposition of Ā)
4: Φ̄ = YW̄ (DMD modes of A)
5: End Procedure

Theorem 3. Let (λ, w̄), with λ 6= 0, be an eigenpair of Ā defined by (15), and let PX denotes the
orthogonal projection matrix onto the column space of X. Then, the vector

ϕ = Xw̄ (23)

is an eigenvector of PX A with an eigenvalue λ. Furthermore, if ϕ̄ = Yw̄ is given by (22), then
PX ϕ̄ = λϕ.

Proof. From the reduced SVD X = UrΣrV∗r , we obtain the orthogonal projection onto the
column space of X by PX = XX† = UrU∗r . From (17) and the relation Y = AX, we get

X† AX = Ā ,

which implies
PX Aϕ = XX† AXw̄ = XĀw̄ = λXw̄ = λϕ .

According to the previous expression, ϕ is an eigenvector of PX A with an eigenvalue
λ. Let us now express

PX ϕ̄ = XX†Yw̄ = UrΣr(Σ−1
r U∗r YVr)w̄ = XĀw̄ = λXw̄ = λϕ .

which proves the statement of the Theorem.

2.3. In Terms of Companion Matrix

Let us consider the case where the last snapshot xm in the data set (1) is in the column
space of X, i.e. xm is a linear combination of x0, . . . , xm−1. Therefore

Im(Y) ⊂ Im(X) .

In this case, matrix Ā defined by (16) is in type of the Frobenius companion matrix
and it relates the data sets exactly Y = XĀ, even if the data are generated by nonlinear
dynamics. Moreover, in this case, the projected DMD modes (23) and exact DMD modes (22)
are identical.

Computation 2022, 10, 210 7 of 16

Theorem 4. If the columns of Y are spanned by those of X the DMD modes (23) are eigenvectors
of Ā defined by (17).

Proof. From the statement of the Theorem, it follows

PXY = Y ,

where PX = XX† = UrU∗r is the orthogonal projection onto the image of X. We obtain from
the previous relation and the reduced SVD of X

PX A = PXYVrΣ−1
r U∗r = YVrΣ−1

r U∗r = A .

Finally, we can show that ϕ = Xw̄ defined by (23) is an eigenvector of A. The following
relations are fulfilled

Aϕ = AXw̄ = PX AXw̄ = XX† AXw̄ = XĀw̄ = λXw̄ = λϕ ,

which proves the Theorem.

In this case, a reconstruction of the data matrix Y, using relation Y = XĀ yields

Y = XW̄ΛW̄−1 ,

where Ā = W̄ΛW̄−1 is the eigendecomposition of Ā defined by (18). Using that Ā is a
Frobenius companion matrix, and notation (21), we obtain

Y = ΦΛV(λ) (24)

where V(λ) is a Vandermonde matrix, i.e.

Y =

 | |
φ1 φ2 . . .
| |

 λ1 0 . . .

0 λ2 . . .
...

...
. . .

 1 λ1 . . . λm−2

1
1 λ2 . . . λm−2

2
...

... . . .
...

 . (25)

where φi and λi are DMD modes and eigenvalues, respectively. In this formulation, each
mode φi is scaled with associated λi. The Vandermonde matrix captures the iterative
exponentiation of the DMD eigenvalues. The representation (24) and (25) gives us a
factorization of the data into spatial modes, amplitudes, and temporal dynamics. Moreover,
the amplitudes in this case coincide with the DMD eigenvalues and do not depend on the
initial condition.

2.4. Computational Cost and Memory Requirement

Table 1 gives a brief summary of the main matrices in the three algorithms considered.
The representations of the corresponding reduced order approximations of the Koopman
operator are shown, as well as the formulas for calculating the DMD modes in three cases.

Table 1. Reduced matrices and DMD modes.

Algorithm 1 Algorithm 2 Algorithm 3
(r ≤ m) (r < m) (r = m)

Reduced matrix Ã = U∗r YVrΣ−1
r Â = Σ−1

r U∗r YVr Ā = X†Y
DMD modes Φ = YVrΣ−1

r W Φ̂ = YVrŴ Φ̄ = YW̄

Although the structures of the three low-rank approximation matrices Ã, Â and Ā are
similar, the corresponding representations Φ̂ and Φ̄ have a simpler form when determining
the DMD modes than Φ. In Algorithm 2, three matrices need to be stored and two matrix

Computation 2022, 10, 210 8 of 16

multiplications performed, while in Algorithm 3, it is necessary to store only two matrices
and perform one matrix multiplication.

Since the reduced matrix Ã in Algorithm 1 is of the same size as the corresponding
matrices Â and Ā in the alternative algorithms, they therefore require the same resources
to compute their spectral decompositions. To estimate the computational cost for the three
algorithms considered, we will ignore the comparable computations and focus on the
different ones. While in Algorithms 1 and 2, the calculation of the corresponding reduced
matrices Ã and Â involves SVD of X and matrix multiplication, in Algorithm 3, matrix Ā
is calculated by the pseudo-inverse matrix of X. The DMD modes for the three algorithms
are calculated by the corresponding matrix multiplications, as indicated in Table 1. The
computational costs are shown in Table 2, see Golub and Van Loan [38].

Table 2. Computational costs.

Cost of Algorithm 1 Algorithm 2 Algorithm 3

SVD of X 6nm2 + 20m3 6nm2 + 20m3 −
Reduced matrix 2r3 + 2nr2 + r 2r3 + 2nr2 + r n2r + nr2

DMD modes Φ 2r3 + 2nr2 + r 2r3 + (2n− 2)r2 nr2

Total cost 6nm2 + 20m3 + 4r3 + 4nr2 6nm2 + 20m3 + 4r3 + (4n− 2)r2 n2r + 2nr2

From the memory point of view, the corresponding matrices that require the same
amount of memory for all three algorithms are: the data matrix Y, the reduced matrix (Ã, Â
or Ā), and the eigenvectors matrix (W, Ŵ or W̄). The number of floating point numbers to
be stored for the corresponding reduced-order matrix and eigenvector matrix is equal to r2

in all three algorithms. The difference in the required memory for the three algorithms is
determined by the matrices needed to calculate the DMD modes. The number of floating
point numbers that must be stored for the DMD calculations is shown in Table 3.

Table 3. Memory requirements for DMD mode matrices.

Matrix Algorithm 1 Algorithm 2 Algorithm 3

Y nm nm nm
Vr rm rm −

Σ−1
r r − −

Total memory (n + r)m + r (n + r)m nm

3. Numerical Illustrative Examples

In this section, we will compare the results obtained by the standard DMD algorithm
and the new algorithms (Algorithms 2 and 3) introduced in Section 2. All considered
examples are well known in the literature. All numerical experiments and simulations
were performed on Windows 7 with MATLAB release R2013a on Acer Aspire 571G laptop
with an Intel(R) Core(TM) i3-2328M CPU @2.2GHz processor and 4 GB RAM.

We should note that all three algorithms that we consider in the present work require
the use of some of the most expensive functions from a computational point of view: svd
and eig, respectively, for calculating SVD and spectral decomposition of matrices.

3.1. Example 1: Spatiotemporal Dynamics of Two Signals

We consider an illustrative example of two mixed spatiotemporal signals

f1(x, t) = sech(x + 6)ei3.8t and f2(x, t) = 2sech(x)tanh(x)ei2.2t

and the mixed signal
X(t) = f1(x, t) + f2(x, t). (26)

The two signals f1, f2 and mixed signal X are illustrated in Figure 1a–c.

Computation 2022, 10, 210 9 of 16

Figure 1. Spatiotemporal dynamics of two signals (a) f1(x, t), (b) f2(x, t), and mixed signal in
(c) x = f1 + f2. Singular values of X are shown in (d).

Figure 1d depicts the singular values of data matrix X, indicating that the data can be
adequately represented by the rank r = 2 approximation.

We perform a rank-2 DMD reconstruction of data by using standard DMD (Algorithm 1)
and Alternative DMD (Algorithm 2). These reconstructions are shown in Figure 2a,b.

Figure 2. Rank−2 reconstructions of the signal X by: standard DMD (a) and Alternative DMD (b).

The two reconstructions are nearly exact approximations, with the DMD modes and
eigenvalues matching those of the underlying signals f1 and f2 perfectly. Both algorithms
reproduce the same continuous-time DMD eigenvalues ω1 = 2.2i and ω2 = 3.8i. Their
imaginary components correspond to the frequencies of oscillation.

Figure 3 panels compare the first two DMD modes, with true modes plotted alongside
modes extracted by Standard DMD (Algorithm 1) and Alternative DMD (Algorithm 2). The
DMD modes produced by the two algorithms match exactly to nearly machine precision.

Computation 2022, 10, 210 10 of 16

−10 −8 −6 −4 −2 0 2 4 6 8 10
−1

−0.5

0

0.5

1

x

First DMD modes

DMD

True

DMD−alternative

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Second DMD modes

x

DMD

True

DMD−alternative

Figure 3. Firts two DMD modes: true modes, modes extracted by standard DMD and modes extracted
by Alternative DMD.

Table 4 compares the execution time results of simulations using Algorithms 1 and 2.

Table 4. Execution time (in sec.) by Algorithms 1 and 2.

Standard DMD Alternative DMD
Number of Cycles (k) (Algorithm 1) (Algorithm 2)

k = 1000 0.5407 0.4864
k = 10000 4.2264 4.2013

3.2. Example 2: Re = 100 Flow around a Cylinder Wake

We consider a time series of fluid vortex fields for the wake behind a round cylinder at
a Reynolds number Re = 100. The Reynolds number is defined as Re = DU∞/v, where D is
the cylinder diameter, U∞ is the free-stream velocity, and v is the kinematic fluid viscosity.
It quantifies the ratio of inertial to viscous forces.

This example is taken from [17], see also [39]. We use the same data set which is
publicly available at ‘www.siam.org/books/ot149/flowdata’. Collected data consists
m = 150 snapshots at regular intervals in time, 104t , sampling five periods of vortex
shedding. An example of a vorticity field is shown in Figure 4.

(a) x

y

−1 0 1 2 3 4 5 6 7 8

2

1

0

−1

−2

(b)
x

y

−1 0 1 2 3 4 5 6 7 8

2

1

0

−1

−2

(c) x

y

−1 0 1 2 3 4 5 6 7 8

2

1

0

−1

−2

Figure 4. Some vorticity field snapshots for the wake behind a cylinder at Re = 100 are shown
in (a–c).

We performed Algorithms 1 and 2 to obtain DMD decomposition and reconstruction
of the data. Two algorithms reproduce the same DMD eigenvalues and modes.

The quality of low-rank approximations is measured by the relative error eDMD

eDMD =
‖x− x̂‖2

‖x‖2
, (27)

Computation 2022, 10, 210 11 of 16

where x̂ is DMD reconstruction of data by using expression (9). Actually, both standard
DMD and alternative DMD reconstructions have the same error, see Table 5.

Table 5. Relative errors for DMD reconstructions by Algorithms 1 and 2.

Standard DMD Alternative DMD

Relative errors est.DMD = 5.3685× 10−4 ealt.DMD = 5.3685× 10−4

See Figure 5 for DMD eigenvalues and singular values of the data matrix X.

(a) First 20 singular values of X.

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

k

σ
k

(b) ’o’:by Algorithm 1; ’+’:by Algorithm 2.

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Re(ω)
Im

(ω
)

Figure 5. Singular values of X (a) and DMD eigenvalues computed by Algorithms 1 and 2 (b).

Figure 6 shows the first six DMD modes computed by Algorithms 1 and 2, respectively.
The only difference is in the visualization, with contour lines added to the DMD modes
obtained by Algorithm 2 (otherwise we obtain the same picture).

(a) x

y

−1 0 1 2 3 4 5 6 7 8

2

1

0

−1

−2

(b) x

y

−1 0 1 2 3 4 5 6 7 8

2

1

0

−1

−2

(c) x

y

−1 0 1 2 3 4 5 6 7 8

2

1

0

−1

−2

(d) x

y

−1 0 1 2 3 4 5 6 7 8

2

1

0

−1

−2

(e) x

y

−1 0 1 2 3 4 5 6 7 8

2

1

0

−1

−2

(f) x

y

−1 0 1 2 3 4 5 6 7 8

2

1

0

−1

−2

(g) x

y

−1 0 1 2 3 4 5 6 7 8

2

1

0

−1

−2

(h) x

y

−1 0 1 2 3 4 5 6 7 8

2

1

0

−1

−2

(i) x

y

−1 0 1 2 3 4 5 6 7 8

2

1

0

−1

−2

(j) x

y

−1 0 1 2 3 4 5 6 7 8

2

1

0

−1

−2

(k) x

y

−1 0 1 2 3 4 5 6 7 8

2

1

0

−1

−2

(l) x

y

−1 0 1 2 3 4 5 6 7 8

2

1

0

−1

−2

Figure 6. The first six DMD modes computed by Algorithm 1 are shown in (a–f). Corresponding
DMD modes computed by Algorithm 2 are in (g–l).

It can be seen from Figures 5 and 6 that the two algorithms produce the same DMD
eigenvalues and DMD modes.

Table 6 shows the execution time of this task by Algorithms 1 and 2.

Computation 2022, 10, 210 12 of 16

Table 6. Execution time (in sec.) by Algorithms 1 and 2.

Standard DMD Alternative DMD
Number of Cycles (k) (Algorithm 1) (Algorithm 2)

k = 100 15.6083 15.5615
k = 1000 156.3974 154.8962

3.3. Example 3: DMD with Different Koopman Observables

We consider the nonlinear Schrödinger (NLS) equation

i
∂q
∂t

+
1
2

∂2q
∂ξ2 + |q|2q = 0, (28)

where q(ξ, t) is a function of space and time. This equation can be rewritten in the
equivalent form

∂q
∂t

=
i
2

∂2q
∂ξ2 + i|q|2q = 0. (29)

Fourier transforming in ξ gives the differential equation in the Fourier domain vari-
ables q̂

∂q̂
∂t

=
ik2

2
q̂ + i|̂q|2q = 0. (30)

By discretizing in the spatial variable we can generate a numerical approximation to
the solution of (7); see [17].

The following parameters were used in the simulation: there is a total of 21 slices of
time data over the interval t ∈ [0, 2π), the state variables are an n-dimensional discretization
of q(ξ, t), so that q(ξ, tk) → ξk, where n = 400. The resulting ξk are the columns of the
generated data matrix. We analyze the two-soliton solution that has the initial condition
q(ξ, 0) = 2sech(ξ). The result of this simulation is shown in Figure 7a.

(a)
−20

0

20

0

1

2

3

0

0.5

1

1.5

2

2.5

3

3.5

 ξt

|q
|

(b)
−20

0

20

0

1

2

3

0

0.5

1

1.5

2

2.5

3

3.5

 ξt

|q
|

Figure 7. The full simulation of the NLS Equation (7) in (a) and DMD reconstruction (b) by standard
DMD algorithm, where the observable is given by gDMD(x) = x, where x = q(ξ, t), in panel (b).

We performed low-rank DMD approximation (r = 10) with standard DMD method
as shown in Figure 7b. In this case, by standard DMD approximation, it is meant that the
state vectors x coincide with the Koopman quantities

gDMD(x) = x = q(ξ, t).

The obtained approximation is not satisfactory.
To improve the approximation, we can use another Koopman observable

g1(x) =
(

x
|x|2x

)
, (31)

Computation 2022, 10, 210 13 of 16

which is based on the NLS nonlinearity; see also [17].
In this case, we define new input data matrices corresponding to X and Y defined

by (3), as follows

X1 =

(
X
|X|2X

)
and Y1 =

(
Y
|Y|2Y

)
,

respectively. Following that, the DMD approach is used in the usual way with matrices X1
and Y1 instead of X and Y. New approximation gives a superior reconstruction, which is
evident from Figure 8. We have performed DMD reconstructions using both algorithms
Algorithms 1 and 2.

It can be seen from Figure 9b that both algorithms reproduce the same DMD eigenval-
ues. To measure the quality of approximations, the relative error formula defined by (27)
is used. Both reconstructions, by standard DMD (Algorithm 1) and alternative DMD
(Algorithm 2), have the same error curve; see Figure 9a.

Algorithms 1 and 2 are compared in terms of execution times, the results are included
in Table 7.

(a)
−20

0

20

0

1

2

3

0

0.5

1

1.5

2

2.5

3

3.5

 ξt

|q
|

(b)
−20

0

20

0

1

2

3

0

0.5

1

1.5

2

2.5

3

3.5

 ξt

|q
|

Figure 8. DMD reconstructions, based on new observable g1 defined by (31). Reconstruction by
Algorithm 1 in (a) and by Algorithm 2 in (b).

(a) Error curves by Algorithms 1 and 2.

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time

E
rr

o
r

e
st.DMD

e
alt.DMD

(b) ’o’:by Algorithm 1; ’+’:by Algorithm 2.

−10 −8 −6 −4 −2 0 2
−20

−15

−10

−5

0

5

10

15

20

 Re(ω)

Im
(ω

)

Figure 9. Relative errors (a) and DMD eigenvalues (b).

Table 7. Execution time (in sec.) by Algorithms 1 and 2.

Standard DMD Alternative DMD
Number of Cycles (k) (Algorithm 1) (Algorithm 2)

k = 1000 0.5873 0.5295
k = 10000 5.5346 5.0998

Computation 2022, 10, 210 14 of 16

3.4. Example 4: Standing Wave

It is known that the standard DMD algorithm is not able to represent a standing wave
in the data [16]. For example, if measurements of a single sine wave are collected, DMD
fails to capture periodic oscillations in the data.

In this case, the data matrix X contains a single row

X =
[

x1 x2 . . . xm
]

, (32)

where each xi is a scalar and DMD fails to reconstruct the data. There is a simple solution
to this rank deficiency problem, which involves stacking multiple time-shifted copies of
the data into augmented data matrices

Xaug =

x1 x2 . . . xm−s
x2 x3
...

...
. . .

...
xs xs+1 . . . xm−1

; Yaug =

x2 x3 . . . xm−s+1
x3 x4
...

...
. . .

...
xs+1 xs+2 . . . xm

. (33)

Thus, using delay coordinates achieves an increase in the rank of the data matrix Xaug. In
fact, we can increase the number s of delay coordinates until the data matrix reaches full
rank numerically. Then, we perform the DMD technique on the augmented matrices Xaug
and Yaug.

We can demonstrate the rank mismatch issue with an example from finance by con-
sidering the evolution in the price of only one type of commodity. In fact, this problem is
quite similar to the standing wave problem. Let us consider the price evolution of the Brent
Crude Oil for the period 1 February 2022–28 February 2022, containing 20 trading days; see
Figure 10.

0 2 4 6 8 10 12 14 16 18 20
90

92

94

96

98

100

102

Time period: 1.2.2022 − 28.2.2022

P
ri
c
e
 i
n
 U

S
D

Real price

x
st.DMD

x
alt.DMD

Figure 10. Two approximations of Brent Crude Oil price for the period 1 February 2022–28 February
2022 by Standard DMD and Alternative DMD approaches.

The data matrix X is a single row as in (32) containing m = 20 elements, where each xi
is the closing price on the corresponding day. We construct the augmented matrices Xaug
and Yaug as in (33). In this case, we can choose s ∈ [10, 18], which ensures that matrices
Xaug and Yaug will have more rows than columns. For each s in this interval, we obtain a
full rank matrix Xaug.

Therefore, in this case, we can use the alternative DMD algorithm for full rank data
matrices, Algorithm 3. We performed Algorithms 1 and 3 on augmented data matrices Xaug
and Yaug for each s ∈ [10, 18]. The results show that the best approximation of the measured
data is obtained at the highest rank of Xaug, r = 10, with s = 10. In each case, the two
algorithms reproduce the same approximation. Figure 10 shows the two approximations

Computation 2022, 10, 210 15 of 16

for rank(Xaug) = 10, where it can be seen that both algorithms perfectly approximate the
actual price.

Execution times for Algorithms 1 and 3 are computed with the dataset of this example.
Table 8 presents a comparison between the two algorithms.

Table 8. Execution time (in sec.) by Algorithms 1 and 3.

Standard DMD Alternative DMD
Number of Cycles (k) (Algorithm 1) (Algorithm 3)

k = 1000 0.1933 0.1324
k = 10000 1.6319 0.9783

4. Conclusions

The purpose of this study was to introduce two new algorithms for computing approx-
imate DMD modes and eigenvalues. We proved that each generated pairs (ϕ̂, λ) and (ϕ̄, λ)
by Algorithms 2 and 3, respectively, is an eigenvector/eigenvalue pair of Koopman opera-
tor A (Theorems 1 and 2). The matrices of DMD modes Φ̂ and Φ̄ from Algorithms 2 and 3
have a simpler form than the DMD mode matrix Φ from Algorithm 1. They need less
memory and require fewer matrix multiplications.

We demonstrate the performance of the presented algorithms with numerical examples
from different fields of application. From the obtained results, we can conclude that the
introduced approaches give identical results to those of the exact DMD method. Comparison
of simulation times shows that better effectiveness is attained by new algorithms. The
presented results show that the introduced algorithms are alternatives to the standard
DMD algorithm and can be used in various fields of application.

This study motivates several further investigations. Future work on the use of the
proposed algorithms will consist of their application to a wider class of dynamical systems,
particularly those dealing with full-rank data. Applications to other known methods that
use approximate linear dynamics, such as embedding with Kalman filters, will be sought.It
may be possible to develop some alternatives to some known variants of the DMD method,
such as DMD with control and higher-order DMD.

An interesting direction for future work is the optimization of the introduced algo-
rithms in relation to the required computing resources. One line of work is to implement
these algorithms using parallel computing.

Funding: Paper written with financial support of Shumen University under Grant RD-08-144/01.03.2022.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Schmid, P.J.; Sesterhenn, J. Dynamic mode decomposition of numerical and experimental data. In Proceedings of the 61st Annual

Meeting of the APS Division of Fluid Dynamics, San Antonio, TX, USA, 23–25 November 2008; American Physical Society:
Washington, DC, USA, 2008.

2. Rowley, C.W.; Mezić, I.; Bagheri, S.; Schlatter, P.; Henningson, D.S. Spectral analysis of nonlinear flows. J. Fluid Mech. 2009, 641,
115–127. [CrossRef]

3. Mezić, I. Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 2005, 41, 309–325.
[CrossRef]

4. Chen, K.K.; Tu, J.H.; Rowley, C.W. Variants of dynamic mode decomposition: Boundary condition, Koopman, and Fourier
analyses. J. Nonlinear Sci. 2012, 22, 887–915. [CrossRef]

5. Grosek, J.; Nathan Kutz, J. Dynamic Mode Decomposition for Real-Time Background/Foreground Separation in Video. arXiv
2014, arXiv: 1404.7592.

6. Proctor, J.L.; Eckhoff, P.A. Discovering dynamic patterns from infectious disease data using dynamic mode decomposition. Int.
Health 2015, 7, 139–145. [CrossRef]

7. Brunton, B.W.; Johnson, L.A.; Ojemann, J.G.; Kutz, J.N. Extracting spatial–temporal coherent patterns in large-scale neural
recordings using dynamic mode decomposition. J. Neurosci. Methods 2016, 258, 1–15. [CrossRef]

8. Mann, J.; Kutz, J.N. Dynamic mode decomposition for financial trading strategies. Quant. Financ. 2016, 16, 1643–1655. [CrossRef]

http://doi.org/10.1017/S0022112009992059
http://dx.doi.org/10.1007/s11071-005-2824-x
http://dx.doi.org/10.1007/s00332-012-9130-9
http://dx.doi.org/10.1093/inthealth/ihv009
http://dx.doi.org/10.1016/j.jneumeth.2015.10.010
http://dx.doi.org/10.1080/14697688.2016.1170194

Computation 2022, 10, 210 16 of 16

9. Cui, L.X.; Long, W. Trading Strategy Based on Dynamic Mode Decomposition: Tested in Chinese Stock Market. Phys. A Stat.
Mech. Its Appl. 2016, 461, 498–508.

10. Kuttichira, D.P.; Gopalakrishnan, E.A.; Menon, V.K.; Soman, K.P. Stock price prediction using dynamic mode decomposition.
In Proceedings of the 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI),
Udupi, India, 13–16 September 2017; pp. 55–60. [CrossRef]

11. Berger, E.; Sastuba, M.; Vogt, D.; Jung, B.; Ben Amor, H. Estimation of perturbations in robotic behavior using dynamic mode
decomposition. J. Adv. Robot. 2015, 29, 331–343. [CrossRef]

12. Schmid, P.J. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 2010, 656, 5–28. [CrossRef]
13. Seena, A.; Sung, H.J. Dynamic mode decomposition of turbulent cavity flows for self-sustained oscillations. Int. J. Heat Fluid Flow

2011, 32, 1098–1110. [CrossRef]
14. Schmid, P.J. Application of the dynamic mode decomposition to experimental data. Exp. Fluids 2011, 50, 1123–1130. [CrossRef]
15. Mezić, I. Analysis of fluid flows via spectral properties of the Koopman operator. Annu. Rev. Fluid Mech. 2013, 45, 357–378.

[CrossRef]
16. Tu, J.H.; Rowley, C.W.; Luchtenburg, D.M.; Brunton, S.L.; Kutz, J.N. On dynamic mode decomposition: Theory and applications.

J. Comput. Dyn. 2014, 1, 391–421. [CrossRef]
17. Kutz, J.N.; Brunton, S.L.; Brunton, B.W.; Proctor, J.L. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems;

Society for Industrial and Applied Mathematics: Philadelphia, PL, USA, 2016; pp. 1–234, ISBN 978-1-611-97449-2.
18. Bai, Z.; Kaiser, E.; Proctor, J.L.; Kutz, J.N.; Brunton, S.L. Dynamic Mode Decomposition for CompressiveSystem Identification.

AIAA J. 2020, 58, 561–574. [CrossRef]
19. Le Clainche, S.; Vega, J.M.; Soria, J. Higher order dynamic mode decomposition of noisy experimental data: The flow structure of

a zero-net-mass-flux jet. Exp. Therm. Fluid Sci. 2017, 88, 336–353. [CrossRef]
20. Anantharamu, S.; Mahesh, K. A parallel and streaming Dynamic Mode Decomposition algorithm with finite precision error

analysis for large data. J. Comput. Phys. 2013, 380, 355–377. [CrossRef]
21. Sayadi, T.; Schmid, P.J. Parallel data-driven decomposition algorithm for large-scale datasets: With application to transitional

boundary layers. Theor. Comput. Fluid Dyn. 2016, 30, 415–428. [CrossRef]
22. Maryada, K.R.; Norris, S.E. Reduced-communication parallel dynamic mode decomposition. J. Comput. Sci. 2020, 61, 101599.

[CrossRef]
23. Li, B.; Garicano-Mena, J.; Valero, E. A dynamic mode decomposition technique for the analysis of non–uniformly sampled flow

data. J. Comput. Phys. 2022, 468, 111495. [CrossRef]
24. Smith, E.; Variansyah, I.; McClarren, R. Variable Dynamic Mode Decomposition for Estimating Time Eigenvalues in Nuclear

Systems. arXiv 2022, arXiv:2208.10942.
25. Jovanović, M.R.; Schmid, P.J.; Nichols, J.W. Sparsity-promoting dynamic mode decomposition. Phys. Fluids 2014, 26, 024103.

[CrossRef]
26. Guéniat, F.; Mathelin, L.; Pastur, L.R. A dynamic mode decomposition approach for large and arbitrarily sampled systems. Phys.

Fluids 2014, 27, 025113. [CrossRef]
27. Cassamo, N.; van Wingerden, J.W. On the Potential of Reduced Order Models for Wind Farm Control: A Koopman Dynamic

Mode Decomposition Approach. Energies 2020, 13, 6513. [CrossRef]
28. Ngo, T.T.; Nguyen, V.; Pham, X.Q.; Hossain, M.A.; Huh, E.N. Motion Saliency Detection for Surveillance Systems Using Streaming

Dynamic Mode Decomposition. Symmetry 2020, 12, 1397. [CrossRef]
29. Babalola, O.P.; Balyan, V. WiFi Fingerprinting Indoor Localization Based on Dynamic Mode Decomposition Feature Selection

with Hidden Markov Model. Sensors 2021, 21, 6778. [CrossRef]
30. Lopez-Martin, M.; Sanchez-Esguevillas, A.; Hernandez-Callejo, L.; Arribas, J.I.; Carro, B. Novel Data-Driven Models Applied to

Short-Term Electric Load Forecasting. Appl. Sci. 2021, 11, 5708. [CrossRef]
31. Surasinghe, S.; Bollt, E.M. Randomized Projection Learning Method for Dynamic Mode Decomposition. Mathematics 2021, 9, 2803.

[CrossRef]
32. Li, C.Y.; Chen, Z.; Tse, T.K.; Weerasuriya, A.U.; Zhang, X.; Fu, Y.; Lin, X. A parametric and feasibility study for data sampling of

the dynamic mode decomposition: Range, resolution, and universal convergence states. Nonlinear Dyn. 2022, 107, 3683–3707.
[CrossRef]

33. Mezic, I. On Numerical Approximations of the Koopman Operator. Mathematics 2022, 10, 1180. [CrossRef]
34. Trefethen, L.; Bau, D. Numerical Linear Algebra; Society for Industrial and Applied Mathematics: Philadelphia, PL, USA, 1997.
35. Golub, G.H.; Van Loan, C.F. Matrix Computations, 3rd ed.; The Johns Hopkins University Press: Baltimore, ML, USA, 1996.
36. Lancaster, P.; Tismenetsky, M. The Theory of Matrices; Academic Press Inc.: San Diego, CA, USA, 1985.
37. Nedzhibov, G. Dynamic Mode Decomposition: A new approach for computing the DMD modes and eigenvalues. Ann. Acad.

Rom. Sci. Ser. Math. Appl. 2022, 14, 5–16. [CrossRef]
38. Golub, G.H.; Van Loan, C.F. Matrix Computations; JHU Press: Baltimore, MD, USA, 2012; Volume 3.
39. Bagheri, S. Koopman-mode decomposition of the cylinder wake. J. Fluid Mech. 2013, 726, 596–623. [CrossRef]

http://dx.doi.org/10.1109/ICACCI.2017.8125816
http://dx.doi.org/10.1080/01691864.2014.981292
http://dx.doi.org/10.1017/S0022112010001217
http://dx.doi.org/10.1016/j.ijheatfluidflow.2011.09.008
http://dx.doi.org/10.1007/s00348-010-0911-3
http://dx.doi.org/10.1146/annurev-fluid-011212-140652
http://dx.doi.org/10.3934/jcd.2014.1.391
http://dx.doi.org/10.2514/1.J057870
http://dx.doi.org/10.1016/j.expthermflusci.2017.06.011
http://dx.doi.org/10.1016/j.jcp.2018.12.012
http://dx.doi.org/10.1007/s00162-016-0385-x
http://dx.doi.org/10.1016/j.jocs.2022.101599
http://dx.doi.org/10.1016/j.jcp.2022.111495
http://dx.doi.org/10.1063/1.4863670
http://dx.doi.org/10.1063/1.4908073
http://dx.doi.org/10.3390/en13246513
http://dx.doi.org/10.3390/sym12091397
http://dx.doi.org/10.3390/s21206778
http://dx.doi.org/10.3390/app11125708
http://dx.doi.org/10.3390/math9212803
http://dx.doi.org/10.1007/s11071-021-07167-8
http://dx.doi.org/10.3390/math10071180
http://dx.doi.org/10.56082/annalsarscimath.2022.1-2.5
http://dx.doi.org/10.1017/jfm.2013.249

	Introduction
	Description of the Standard DMD Algorithm
	Matrix Similarity

	New DMD Algorithms
	An Alternative of Exact DMD Algorithm
	A New DMD Algorithm for Full Rank Dataset
	In Terms of Companion Matrix
	Computational Cost and Memory Requirement

	Numerical Illustrative Examples
	Example 1: Spatiotemporal Dynamics of Two Signals
	Example 2: Re = 100 Flow around a Cylinder Wake
	Example 3: DMD with Different Koopman Observables
	Example 4: Standing Wave

	Conclusions
	References

