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Abstract: A new symmetric block cipher algorithm called AL02 has been developed. The algorithm
scheme provides five-round encryption of 128-bit blocks, while the data size at the input and output
of the S-box is 8 bits. The main transformation is the F transformation. The difference between the
proposed algorithm and the classical scheme is that the F transformation provides the maximum
possible dependence of the output vector bits on the input bits and is based on “modulo 2 addition”
and a substitution S-box. To assess the strength of the AL02 algorithm, it was programmatically
implemented in the C programming language. During the analysis, the cryptographic properties of
the developed encryption algorithm were tested. The algorithm was tested for statistical security. For
an experimental assessment, in order to ensure that the ciphertext is not inferior to a random sequence
in its properties, the well-known sets of statistical tests by NIST (National Institute of Standards and
Technology) and Donald Knuth were used. The property of the avalanche effect was also checked.
The strength was evaluated using the methods of differential and linear cryptanalysis.

Keywords: cryptanalysis; cryptography; encryption algorithm; information security; statistical tests

1. Introduction

The development of new information technologies is accompanied by negative phe-
nomena such as industrial espionage, computer crimes, and unauthorized access to confi-
dential information.

Due to humans’ growing dependence on information technology and the need to en-
sure information security, the protection of information, including the use of cryptographic
methods, has become important for society as a whole.

Modern cryptography is a specific research area at the intersection of mathematics and
computer science, which forms one of the main subsystems of any information security
system. Of the means of cryptographic protection, symmetric block ciphers have gained
widespread popularity due to their practicality.

A strong block cipher must satisfy certain conditions. These conditions are formulated
in [1], which is fundamental in the theory of encryption. A strong cipher must have
confusion and diffusion properties. Confusion hides the relationship between the ciphertext
and the key, while diffusion hides the relationship between the ciphertext and the plaintext.

To meet the requirements for block ciphers, modern encryption algorithms use various
cryptographic transformations. This also applies to linear transformations, including MDS
matrices over finite fields.

As a result of scientific developments, new-generation algorithms with the SP-network
structure have appeared. The general design of these algorithms is a variant of the
substitution–permutation network (SP network). This network uses an iterative trans-
formation consisting of a substitution layer (non-linear elements), a linear (mixing) layer,
and a key adding layer. By transforming the entire data block at each iteration, this design
provides much faster mixing of the input vector compared to the Feistel network. This
effect is enhanced by an MDS matrix (Maximal Distance Separable matrix) in the linear
layer. This matrix provides the maximum possible dependence of the bits of the output
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vector on the bits of the input, and it is used in linear transformations in many well-known
encryption algorithms [2].

In [3], a new method for estimating the integral property, truncated, and impossible
differentials for substitution–permutation network (SPN) block ciphers is proposed. This
method was tested only for truncated algorithms.

The paper [4] considers the structure and properties of a cryptographic information
protection algorithm model based on non-positional polynomial notations (NPNs) and
constructed on the basis of a SP network. Taking into account the properties of the NPN,
the speed of the algorithm in the case of its implementation was not considered.

In symmetric block algorithms, a well-tested MDS transform is used as a linear trans-
formation block. It gives the best diffusion properties. MDS codes (Maximum Distance
Separable codes) are mainly used to multiply an original text vector by some matrix of
constants, which is usually called an MDS matrix [5]. The scheme for generating subkeys
(round keys) of known algorithms has the following disadvantages:

– The ability to restore the master key using one subkey;
– Fairly simple dependencies between subkeys (vulnerability to attacks on related keys);
– The first of the subkeys is the master key;
– The weak influence of changes in the master key bits on the bits of the first subkeys;
– Use in the unfolding scheme of another design, different from the cyclic function;
– Different complexity of generating a sequence of subkeys for encryption and decryption.

When designing block algorithms, their structural components, such as S-boxes,
Boolean functions, and polynomials, play an important role. Depending on their char-
acteristics and properties, block algorithms provide a certain level of security. In [6], the
influence of the properties of S-boxes on the reliability of algorithms is considered.

The article [7] presents differential cryptanalysis of the Boron block cipher. The authors
use differentials consisting of several differential characteristics with the same input and
output differences. Each characteristic that corresponds to a given differential increases its
overall probability.

By evaluating the strength of round key algorithms, potential loopholes in the overall
encryption process can be anticipated. The paper [8] proposes a criterion for estimating the
cryptographic strength of round key algorithms. This criterion includes various methods
for generating data from subsections and a suitable set of statistical tests.

Quantum cryptography or quantum key distribution is considered one of the infor-
mation technologies capable of shaping the image of the telecommunications networks of
the future. It allows two parties connected over an open communication channel to create
a common random key known only to them and use it to encrypt and decrypt messages.
The authors of [9] were devoted to ensuring the security of quantum key distribution. The
article, which consists of ten chapters, describes almost all practical aspects of security in
creating and breaking quantum code. The conclusion includes a systematic and staged
presentation of the research results. Technical aspects related to phase synchronization,
which provides a high key transfer rate, are studied in [10]. When using single-photon
sources in the Z-basis, their protocol provides security up to a higher error rate by establish-
ing non-trivial mutual information between the bit-flip and phase error patterns, thereby
achieving a higher key rate. In the history of the development of quantum cryptography,
the quantum digital signature also plays an important role. Existing quantum digital sig-
nature schemes use non-orthogonal quantum states distributed as “quantum signatures”.
Modern schemes allow a message to be securely signed so that one or more recipients
can be sure of its authenticity. The use of quantum digital signatures and their exchange
protocols is described in more detail in [11,12].

Thus, when developing a symmetric block encryption algorithm, it is necessary to
take into account the features of the cryptographic procedures mentioned above. As a
rule, when creating a new algorithm or modifying an existing encryption algorithm, its
properties are first analyzed.
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2. Materials and Methods

When constructing ciphers, the main issue is to ensure their strength. So far, there
is no complete theory of block ciphers, which would allow the development of a full-
fledged method for evaluating strength. Only some general requirements for the quality of
encryption transformations are proposed. If the cipher satisfies such requirements, then we
speak of provable security (against known methods of cryptanalysis) or the achievement of
guaranteed properties of ciphering transformations.

The main methods for evaluating the strength of cryptographic algorithms include the
assessment of their statistical security. Statistical tests are used to experimentally evaluate
whether a ciphertext is as good as a random sequence in its properties.

The following test suites are known: NIST, CRYPT-X, DIEHARD, TESTU01, and test
sets by Donald Knuth and Ali Doganaksoy. They are used to study the statistical properties
of cryptographic primitives and make it possible to obtain a preliminary estimate of
cryptographic strength.

To analyze the reliability of block encryption algorithms, powerful attacks such as
linear and differential cryptanalysis have been developed [13,14]. Knowledge of these
methods of analysis makes it possible, even at the design stage of ciphers, to provide for
their excessive security and exclude the possibility of their breaking via these techniques.

The goal of linear cryptanalysis is to find the next “efficient” linear expression for a
given encryption algorithm:

Ai1 ⊕ Ai2 ⊕ . . .⊕ Aia ⊕ Cj1 ⊕ Cj2 ⊕ . . .⊕ Cjb = Kk1 ⊕ Kk2 ⊕ . . .⊕ Kkc , (1)

where i1, i2, . . . , ia, j1, j2, . . . , jb and k1, k2, . . . , kc denote fixed bit positions, and Equation (1)
is satisfied with probability p 6= 1

2 for an arbitrarily given plaintext A corresponding to
ciphertext C and key K.

Linear cryptanalysis is implemented in two steps. The first is to build relationships
between the plaintext, the ciphertext, and the key that are true, with high probability. The
second is to use these relationships, along with known plaintext–ciphertext pairs, to derive
the key bits. To estimate linear analysis, we use the following two lemmas [15].

Lemma 1. (Piling-up lemma). Let Xi(1 ≤ i ≤ n) be independent random variables whose
values are 0 with probability pi or 1 with probability 1 − pi . Then, the probability that

X1 ⊕ X2 ⊕ . . .⊕ Xn = 0 is 1
2 + 2n−1

n
∏
i=1

(
pi − 1

2

)
.

Lemma 2. Let N be the number of given random plaintexts and p be the probability that Equation (1)
is satisfied, and let

∣∣∣p− 1
2

∣∣∣ be sufficiently small. Then, the probability of success of Algorithm 1 is∫ ∞
−2
√

N|p− 1
2 |

e−
x2
2 dx.

If it is possible to obtain an effective linear expression, then based on the maximum
likelihood method, the following algorithm can determine one bit of the key K[k1, k2, . . . , kc]:

Algorithm 1: Steps to determine one bit of the key K[k1, k2, . . . , kc]

Step 1. Let T be the number of plaintexts, such that the left side of Equation (1) is equal to zero.
Step 2. If T > N/2 (N stands for the number of plaintexts),
then we set K[k1, k2, . . . , kc] = 0 (for p > 1/2) or 1 (for p < 1/2).
Otherwise, K[k1, k2, . . . , kc] = 1 (for p > 1/2) or 0 (for p < 1/2).

The probability of success of this method obviously increases with increasing N or
|p − 1

2 |. Now, consider the most efficient linear expression (i.e., |p − 1
2 | is the maximum)

as the best expression and the probability p as the best probability. Then, our main task is
the following:
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1. Methods for finding effective linear expressions.
2. An explicit description of the probability of success in terms of N and p.
3. Finding the best expression and calculating the best probability.

When designing an encryption algorithm, it is also necessary that the cipher satisfy
the avalanche criterion. The avalanche effect is an important cryptographic property for
encryption. It means that changing the value of a small number of bits in the input text
or the key leads to an avalanche change in the values of the output bits of the ciphertext.
To characterize the degree of the avalanche effect in a cryptographic transformation, an
avalanche parameter is determined and used: the numerical value of the deviation of the
probability of a bit change in the output sequence when a bit in the input sequence changes
from the required probability value equal to 0.5.

In this work, we will follow the methodology for analyzing statistical security indica-
tors, described in [16]. Here, we consider such indicators of statistical security as:

- Degree of completeness (dc);
- Degree of avalanche effect (da);
- Degree of strict avalanche criterion (dsa).

The verification of the statistical security indicators of the cipher begins with the
construction of the dependency matrix A and the distance matrix B of the cipher described
by the function f : (GF(2))n → (GF(2))m for a set of X inputs, where X is the set (GF(2))n

itself or a randomly chosen subset of the set (GF(2))n.
If such matrices are constructed, then the degree of completeness is defined as:

dc = 1−
#
{
(i, j)

∣∣aij = 0
}

nm
. (2)

The degree of the avalanche effect is defined as:

da = 1−
∑n

i=1

∣∣∣ 1
#X ∑m

j=1 2jbij −m
∣∣∣

nm
. (3)

The degree of the strict avalanche criterion is defined as:

dsa = 1−
∑n

i=1 ∑m
j=1

∣∣∣ 2aij
#X − 1

∣∣∣
nm

. (4)

For the avalanche criterion, the value of the avalanche parameter is determined by
the formula E = max{|2ki − 1|, 1 ≤ i ≤ n}, where i is the number of the changed bit in the
input sequence, ki is the probability of changing half of the bits in the output sequence
when the i-th bit at the input changes compared to the original (unchanged) input sequence.

3. Building the AL02 Encryption Algorithm

We have developed the AL02 encryption algorithm, which is new in its architecture
and meets modern requirements.

Algorithm parameters: the block length is 128 bits. The number of rounds is five.
The data size at the input and output of the S-box, which is used in the algorithm as a
non-linear function, is 8 bits. The main transformations used are “modulo 2 addition” and
S-box substitution, as well as the F transformation based on these two transformations.

The scheme of this algorithm is shown in Figure 1.
After the fifth round, the encryption result is passed through the S-box, and bitwise

addition with the key is performed.
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3.1. Encryption

A 128-bit block is an input as a sequence of 16 bytes:

A = (a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15).

This sequence can be represented as a 4 × 4 square matrix:

A =


a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3
a3,0 a3,1 a3,2 a3,3

 =


a0 a1 a2 a3
a4 a5 a6 a7
a8 a9 a10 a11
a12 a13 a14 a15

. (5)

The transformation F(S(X(Ki, I))), i = 0, 1, 2, 3, 4 is repeated five times. In the
sixth round, the transformation X(K5, S(I)) of the obtained values is performed to get an
encrypted block.

Thus, each block is encrypted according to the following scheme:

CX(K5, S(F(S(X(K4, F(S(X(K3, F(S(X(K2, F(S(X(K1, F(S(X(K0, A) . . .))). (6)

Here, A is the plain text, C is the ciphertext, X is the XOR operation, S is the S-box
transformation, F is a non-linear transformation, and I is an intermediate value.

F transformation of a block. Take four elements with intermediate values correspond-
ing to each row of the matrix and perform a bitwise addition using the following formula:

bi = ai,0 ⊕ S(ai,1)⊕ S(ai,2 ⊕ ai,3) = a4i ⊕ S(a4i+1)⊕ S(a4i+2 ⊕ a4i+3), (7)

that is, the value of the first element is summed modulo 2 with the value obtained by
applying the S-box to the second element and with the value obtained by applying the
S-box to the result of bitwise addition of the third and fourth elements.

The resulting four values are added modulo 2, and the sum is converted using the
S-box, which is taken as the first element of the first row of the matrix:

c0,0 = S(b0 ⊕ b1 ⊕ b2 ⊕ b3). (8)

The remaining elements of the new matrix are calculated as follows.
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The second, third, and fourth elements of each row are obtained by applying an S-box
to the result of the bitwise addition of the processed element of the transformed matrix
with the previous element of the same row of the transformed matrix:

ci,j+1 = S
(
ci,j ⊕ ai,j+1

)
,i = 0, 1, 2, 3;j = 0, 1, 2. (9)

To get the first element of a row, the S-box is applied to the result of the bitwise
addition of the processed element of the transformed matrix and the last element of the
previous row of the transformed matrix:

ci,0 = S(ci−1,3 ⊕ ai,0),i = 1, 2, 3. (10)

All elements of the transformed matrix are calculated in the same way.

3.2. Decryption

Text decryption is performed by the sequential processing of 16-byte blocks using
inverse transformation. Each block is represented as a 16-byte vector or 4× 4 square matrix:
C = (c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15), or

C =


c0,0 c0,1 c0,2 a0,3
c1,0 c1,1 c1,2 c1,3
c2,0 c2,1 c2,2 c2,3
c3,0 c3,1 c3,2 c3,3

 =


c0 c1 c2 c3
c4 c5 c6 c7
c8 c9 c10 c11
c12 c13 c14 c15

.

To obtain a plaintext block, it is necessary to repeat the inverse transformation
F−1(S−1(X(Ki, C))

)
, i = 1, 2, 3, 4, 5 five times and then perform the transformation

X
(
K0, S−1(I)

)
using the compositional method.

Each block is decrypted as per the following scheme:

A = X
(

K0, S−1
(

F−1
(

S−1(X(K1, . . . , F−1(S−1(X(K5, C) . . .
)))

, (11)

where A is the plain text, C is the ciphertext, X is the XOR operation, S−1 is the inverse
S-box, F−1 is the inverse non-linear transformation, and I is an intermediate value.

F−1 (reverse) block transformation: As a result of applying the inverse transformation
to the matrix of ciphertext elements, a new matrix is obtained. In reverse transformation,
calculations start from the second element of the first row. The inverse S-box is applied to
the second, third, and fourth elements of each row of the matrix to be transformed. After
that, bitwise addition is performed with the previous element of the same row, resulting in
an element of the transformed matrix located in the same position:

ai,j = S−1(ci,j
)
⊕ ci,j−1,i = 0, 1, 2, 3;j = 1, 2, 3. (12)

The first element of the second, third, and fourth row is calculated by applying the
inverse S-box to the corresponding element of the matrix to be transformed, and then
adding modulo 2 to the last element of the previous row:

ai,0 = S−1(ci,0)⊕ ci−1,3,i = 1, 2, 3. (13)

B as a result of this transformation, we get all the elements of the resulting matrix,
except for the first element in the first row. To get the first element of the first row, the
following steps are performed. Starting from the second line, three intermediate values, b1,
b2, and b3, are calculated by “modulo 2 addition” of the value of the first element, the value
obtained by applying the S-box to the second element, and the value obtained by applying
the S-box to the bit sum of the third and fourth elements:

bi = ai,0 ⊕ S(ai,1)⊕ S(ai,2 ⊕ ai,3),i = 1, 2, 3. (14)
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The intermediate value b0 is obtained from the matrix element located at the intersec-
tion of the first row and the first column by applying the inverse S-box to it, and bitwise
addition with the other three intermediate values:

b0 = S−1(c0,0)⊕ b1 ⊕ b2 ⊕ b3. (15)

To find the first element of the first row of the inverted matrix, the resulting intermedi-
ate value b0 is summed modulo 2 with the two results of applying the S-box, i.e., with the
result of applying the S-box to the second element of the first row, and the value obtained
as a result of applying the S-box to the bit sum of the second and third elements:

a0,0 = b0 ⊕ S(a0,1)⊕ S(a0,2 ⊕ a0,3). (16)

To obtain a plaintext block, it is necessary to repeat the inverse transformation five
times using the compositional method.

The method of obtaining the S-box is the same as in the Rijndael encryption algorithm,
except for the chosen irreducible polynomials and the matrix for multiplications. As a
result of the study, we made sure that when choosing any irreducible polynomial, the
cryptographic strength of the S-box does not decrease. However, the row elements of
the selected matrix must be linearly independent. The irreducible polynomial z(x), the
vector v, and the matrix used to construct the S-box are: z(x) = x8 + x7 + x5 + x + 1,
v = (110100011).

Let us show how to get the output element corresponding to each input element of
the S-box:

In the field GF
(
28), we get the inverse value for each element.

Next, the following transformation is performed:

s′0
s′1
s′2
s′3
s′4
s′5
s′6
s′7


=



1 0 0 0 0 1 0 1
1 1 0 0 0 0 1 0
0 1 1 0 0 0 0 1
1 0 1 1 0 0 0 0
0 1 0 1 1 0 0 0
0 0 1 0 1 1 0 0
0 0 0 1 0 1 1 0
0 0 0 0 1 0 1 1


×



s0
s1
s2
s3
s4
s5
s6
s7


+



v0
v1
v2
v3
v4
v5
v6
v7


where si, i = 0, . . . , 7 are the coefficients of the obtained inverse elements in the field
GF
(
28).
The resulting S-boxes are shown in Tables 1 and 2.

Table 1. Substitution S-box of the AL02 encryption algorithm.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 A5 04 A6 A7 F7 C6 A4 12 5F C8 C7 D1 F6 D4 7E 7B
1 0B EF 13 AD 94 5B 4C 8A 0C FC CE 1C 9B 76 19 F3
2 21 68 53 96 2D D0 A1 89 3D 9C DA 6D 51 AF E1 E9
3 A2 E3 09 FE C3 3F AA 1E BA DD 9F 1D 28 54 8E 92
4 E7 D5 43 33 DE 81 3C 97 32 EC 1F 72 74 CD B3 60
5 3A 95 39 FA 1A 0E C1 05 DF CC A0 8D 87 58 83 D3
6 26 FD 86 7C 20 4B 08 36 45 DC 3B 79 22 BE AB 14
7 2A 03 99 2C 6B E5 F9 5C B0 85 5D B2 30 80 ED DB
8 57 8F 9D A9 D6 B8 EE 24 CB 84 B7 D8 69 A8 6F 50
9 BD F1 01 38 F8 40 4E BF 9E 0D 91 C9 7D F4 47 07
A B9 63 6E 0F EB 70 D9 6A 7A 2B A3 CF 44 65 F5 00
B 98 35 C2 41 27 1B 62 AC 67 23 88 10 B6 8C 4D C0
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Table 1. Cont.

0 1 2 3 4 5 6 7 8 9 A B C D E F

C 64 3E 5A E8 34 D7 9A 16 B4 29 D2 37 73 F2 6C 46
D 06 E6 CA C4 EA 7F 18 E0 B5 31 FB FF 71 17 AE 02
E B1 15 25 78 BB F0 61 93 11 4F 56 82 8B 42 59 48
F 2F E2 66 4A 0A 90 2E 75 BC C5 E4 55 52 77 49 5E

Table 2. Reverse S-box of the AL02 encryption algorithm.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 AF 92 DF 71 01 57 D0 9F 66 32 F4 10 18 99 55 AF

1 BB E8 07 12 6F E1 C7 DD D6 1E 54 B5 1B 3B 37 BB

2 64 20 6C B9 87 E2 60 B4 3C C9 70 A9 73 24 F6 64

3 7C D9 48 43 C4 B1 67 CB 93 52 50 6A 46 28 C1 7C

4 95 B3 ED 42 AC 68 CF 9E EF FE F3 65 16 BE 96 95

5 8F 2C FC 22 3D FB EA 80 5D EE C2 15 77 7A FF 8F

6 4F E6 B6 A1 C0 AD F2 B8 21 8C A7 74 CE 2B A2 4F

7 A5 DC 4B CC 4C F7 1D FD E3 6B A8 0F 63 9C 0E A5

8 7D 45 EB 5E 89 79 62 5C BA 27 17 EC BD 5B 3E 7D

9 F5 9A 3F E7 14 51 23 47 B0 72 C6 1C 29 82 98 F5

A 5A 26 30 AA 06 00 02 03 8D 83 36 6E B7 13 DE 5A

B 78 E0 7B 4E C8 D8 BC 8A 85 A0 38 E4 F8 90 6D 78

C BF 56 B2 34 D3 F9 05 0A 09 9B D2 88 59 4D 1A BF

D 25 0B CA 5F 0D 41 84 C5 8B A6 2A 7F 69 39 44 25

E D7 2E F1 31 FA 75 D1 40 C3 2F D4 A4 49 7E 86 D7

F E5 91 CD 1F 9D AE 0C 04 94 76 53 DA 19 61 33 E5

For convenience, S-boxes are presented in tabular form and have the following characteristics: Balance—yes;
Nonlinearity—112; Hamming weight—128; t-stability—0, Bijectivity—yes, Correlation value—32.

3.3. Round Key Algorithm

The 128-bit seed key is set randomly. Based on this key, round keys are formed for
each iteration of this transformation. Figure 2 shows the scheme for generating round keys,
where G is a non-linear transformation.
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G transformation: The value of the initial key is chosen as input for the key transfor-
mation. After the input data are defined, we can proceed to the transformation itself.
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First, 16 bytes of input data are represented as a 16-byte vector A = ( a1, a2, a3, a4, a5, a6,
a7, a8, a9, a10, a11, a12, a13, a14, a15) or a 4 × 4 square matrix

A =


a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3
a3,0 a3,1 a3,2 a3,3

 =


a0 a1 a2 a3
a4 a5 a6 a7
a8 a9 a10 a11
a12 a13 a14 a15

.

The first element of the first row of the matrix is summed as modulo 2 with the value
obtained by applying the S-box to the second element, and with the result of applying the
S-box to the sum of the third and fourth elements. The resulting sum is then converted
using the S-box.

The resulting value b0 is added to the first element of the second row, then to the value
obtained by applying the S-box to the second element, and then to the value obtained by
applying the S-box to the bit sum of the third and fourth elements. The resulting bit sum is
also converted using the S-box:

b1 = S(b0 ⊕ a0,0 ⊕ S(a0,1)⊕ S(a0,2 ⊕ a0,3)) = S(b0 ⊕ a4 ⊕ S(a5)⊕ S(a6 ⊕ a7)). (17)

The same steps are repeated for the third and fourth lines:

bi = S(bi−1 ⊕ ai,0 ⊕ S(ai,1)⊕ S(ai,2 ⊕ ai,3)) = S(bi−1 ⊕ a4i ⊕ S(a4i+1)⊕ S(a4i+2 ⊕ a4i+3)), i = 2, 3. (18)

Next, the byte matrix is represented as a 128-bit sequence and rotated left by 3 bits,
and then the 8-bit elements of the resulting sequence are converted using the S-box.

This byte matrix transformation can be represented as follows:
a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3
a3,0 a3,1 a3,2 a3,3

 rotate left by three bits and

apply S− box


a′0,0 a′0,1 a′0,2 a′0,3
a′1,0 a′1,1 a′1,2 a′1,3
a′2,0 a′2,1 a′2,2 a′2,3
a′3,0 a′3,1 a′3,2 a′3,3

.

where the elements a′i,j of the transformed matrix are obtained as follows:

a′i,j = S
(((

ai,j(x)× x3
)

modx8
)
⊕
((

ai,(j+1)(x)× x3
)

modx8
)
⊕
((

ai,(j+1)(x)× x3
)

mod(x8 + 1)
))

, (19)

where, i = 0, 1, 2, 3; j = 0, 1, 2.

a′i,3 = S
(((

ai,3(x)× x3)modx8)⊕ ((a(i+1)mod4,0(x)× x3
)

modx8
)

⊕
((

a(i+1)mod4,0(x)× x3
)

mod(x8 + 1)
))

, i = 0, 1, 2, 3.

As the first element of the first row of the matrix after the key transformation, the
value obtained as a result of applying the S-box to the bit sum of b3 and a′0,0 is taken:

c0,0 = S(b3 ⊕ a). (20)

The values of the remaining elements of the transformed matrix are obtained by
applying the S-box to the sum of the previous element of the transformed matrix with the
corresponding element of the transformed matrix:

ci,j+1 = S
(
ci,j ⊕ ai,j+1

)
; i = 0, 1, 2, 3;j = 0, 1, 2. (21)

To obtain the first elements of the remaining rows of the transformed matrix, it is
necessary to calculate the value obtained as a result of applying the S-box to the bit sum
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of the last element of the previous row of the transformed matrix with the corresponding
element of the transformed matrix:

ci,0 = S(ci−1,3 ⊕ ai,0),i = 0, 1, 2, 3. (22)

In this way, all elements of the transformed matrix are calculated. In the case of
the key generation algorithm, the key transformation is repeated five times using the
compositional method.

When generating round keys, the matrix obtained as a result of a subsequent step of
the key transformation is taken as the next round key.

To determine the number of rounds providing non-linearity, each round of the algo-
rithm was considered to evaluate the algebraic normal forms (ANF) of the used permutation
functions in the initial 128-bit key space. Since the round keys depend on the initial keys,
in each round, the output bit of the ANF is evaluated by the monomial (single term) and
the degree of the ANF. To ensure good statistical performance, each ANF should consist of
approximately 2127 monomials and have a degree of 127. With 128 variables in the ANF,
the maximum number of monomials is 2128 and the exponent is 128. It was found that
in the considered algorithm, after the third round, the output bit in the ANF equation
has 2127 monomials and a degree of 127. As the number of rounds increases, the number
of monomials increases correspondingly. It turned out that five rounds are sufficient for
the algorithm.

The sufficiency of five rounds was assessed using statistical tests and an avalanche
test (Table 3 and Figure 3) for one file.
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Table 3. Results of the conducted statistical tests by rounds.

Tests Round 1 Round 2 Round 3 Round 4 Round 5

Frequency Test + - + + +
Frequency Test within a Block + + + + +
Run Test + + + + +
Longest Run of Ones in a Block + + + + +
Binary Matrix Rank Test + + + + +
Discrete Fourier Transform - + + + +
Non-Overlapping Template Matching Test + + + + +
Overlapping Template Matching Test + + + + +
Maurer’s Universal Statistical test + - + + +
Linear Complexity Test + + + + +
Serial Test - + + + +
Approximate Entropy Test - + + + +
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Table 3. Cont.

Tests Round 1 Round 2 Round 3 Round 4 Round 5

Cumulative Sums (Forward) Test + - + + +
Cumulative Sums (Reverse) Test + - + + +
Random Excursions Test - - + + +

The analysis results shown in Table 3 show that the AL02 algorithm passes all tests
after the third round. Figure 3 shows data on the “avalanche effect” property with positive
results after the second round of encryption. This confirms the adequacy of the established
number of rounds of the algorithm.

Table 4 shows an example of encryption for the AL02 algorithm.

Table 4. Encryption example for the AL02 algorithm.

Values in Hex Format

Key a3 13 ab e8 1d 5f b4 77 1d 59 72 0b a8 41 a5 ce
1 round key f2 ca bb d6 fd 87 c4 2b e9 fe 25 6f 11 fb 29 62
2 round key 30 16 22 d3 48 93 63 55 9e d6 87 14 d8 e0 60 41
3 round key 3d 55 1a e0 c4 52 2c b4 a1 ee c8 fa c7 1f 55 44
4 round key cc 5d 7d 24 9b c1 e5 51 bb 17 cc c1 a6 37 0 2d
5 round key 35 a1 7 ba 15 ae 5a f3 e4 a6 b6 8a 25 d9 74 8f
Plain text 53 6a 23 34 87 e2 42 d0 ff 31 69 e3 b8 be d3 aa
Results of the 1st round encryption 2f a3 45 c3 39 1b 3f e 6d 3d 68 85 6f e3 ce 59
Results of the 2nd round encryption a7 b2 55 7e 1f 86 c4 94 43 cf a6 2f 5a c1 39 2d
Results of the 3rd round encryption fa ef 41 2d 3d 8 86 67 2a 18 2a 1e a9 3e 66 de
Results of the 4th round of encryption b4 28 70 9d df db b0 6b 41 14 e3 df 6b a7 cc 58
Results of the 5th round of encryption 93 f9 af 69 ac 86 cb 1a 49 59 98 8f 80 54 89 22
Ciphertext 0d 64 7 66 51 40 6d 3d 8 6a 28 da 72 c3 f0 dc

Table 5 shows the experimental results of the performance characteristics of different
encryption algorithms. The experiment was conducted on a computer with the following
parameters: Processor: Intel(R) Core(TM) i7-10700 CPU @ 2.90 GHz 2.90 GHz, RAM: 16.0
GB (available: 15.7 GB), System type: 64-bit operating system Windows 10 Pro.

Table 5. Comparative performance characteristics of encryption algorithms.

No Name of the Encryption Algorithm Data Processing Speed Software Developer

1. BLOWFISH-128 51.68 MB/s GNU Project (Libgcrypt Library)

2. AL02 51.64 MB/s Institute of Information and
Computational Technologies CS MES RK

3. CAST-128 49.04 MB/s GNU Project (Libgcrypt Library)
4. IDEA 46.28 MB/s GNU Project (Libgcrypt Library)
5. 3DES 26.85 MB/s GNU Project (Libgcrypt Library)
6. GOST 34.12-2015 6.89 MB/s TK-26 (reference implementation)

4. Cryptographic Security Analysis of the Developed Encryption Algorithm
4.1. Statistical Analysis

For a computer study of the developed algorithm, 20 files with different extensions
and 5 keys were used. The file characteristics were as follows: 1.docx (108 KB), 2.xls
(20.0 KB), 3.pptx (453 KB), 4.pdf (561 KB), 5.rar (1059 KB), 6.zip (1063 KB), 7.jpg (205 KB),
8.png (889 KB), 9.txt (45 KB), 10.html (281 KB), 11.html (17 KB), 12.cat (928 KB), 13.mp4
(39 KB), 14.wmz (70 KB), 15.dll (210 KB), 16.log (508 KB), 17.lex (396 KB), 18.djvu (354 KB),
19. xml (689 KB), and 20 mp3 (193 KB).

Using the selected keys and plaintexts for the developed AL02 symmetric block
encryption algorithm, 100 ciphertexts were obtained, which were tested for statistical



Computation 2022, 10, 198 12 of 16

security. For testing, a developed software package was used, which implements a system
for assessing the quality of ciphertexts according to tests from the sets by D. Knuth and
NIST-822 STS.

The results of statistical tests for different keys with a probability value of 0.5 and with
a probability value of α are shown in Tables 6 and 7.

Table 6. The results of the statistical tests for different keys with a probability value of 0.5.

Statistical Tests Number of Files Key 1 Key 2 Key 3 Key 4 Key 5

Frequency test 20 18 19 19 19 19
Serial test 20 19 20 18 19 17
Character test 20 19 18 20 19 20
Gap test 20 18 17 17 17 16
Poker test 20 20 20 20 20 19
Coupon collector’s test 20 17 20 19 18 20
Permutation test 20 18 18 18 17 20
Monotonicity test 20 18; 19 19; 19 19; 20 19; 19 18; 18
Correlation test 20 20 20 20 20 20
Linear complexity test 20 20 20 20 20 20

Table 7. The results of the statistical tests with a probability value of α.

Statistical Tests Number of Files
Probability α

0.05 0.01 0.001

Frequency test 100 94 98 100
Serial test 100 93 99 100
Character test 100 96 100 100
Gap test 100 85 95 97
Poker test 100 99 100 100
Coupon collector’s test 100 94 99 100
Permutation test 100 93 97 100
Monotonicity test 100 95 97 100
Correlation test 100 100 100 100
Linear complexity test 100 100 100 100

The number of sequences that successfully passed each of the statistical tests was
determined. The significance level α was set as 0.001, 0.01, and 0.05.

The statistical parameters of the ciphertexts were evaluated using the NIST-822 STS
package (Table 8).

Table 8. Results of statistical tests from the NIST-822 STS set.

Tests Key1 Key2 Key3 Key4 Key5 Results

Frequency Test 20 20 19 20 20 99%
Frequency Test within a Block 20 20 20 20 19 99%
Runs Test 20 20 20 20 20 100%
Tests for the Longest-Run-of-Ones in a Block 20 20 20 20 20 100%
Binary Matrix Rank Test 20 20 20 20 20 100%
Discrete Fourier Transform 20 20 19 20 20 99%
Non-Overlapping Template Match 20 19 20 20 19 98%
Overlapping Template Matching Test 20 20 20 20 20 100%
Maurer’s “Universal Statistical” Test 15 15 16 16 16 91%
Linear Complexity Test 20 20 20 19 20 99%
Serial Test 20 20 20 20 20 100%
Approximate Entropy Test 18 20 20 20 20 98%
Cumulative Sums (Forward) Test 20 20 19 20 19 98%
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Table 8. Cont.

Tests Key1 Key2 Key3 Key4 Key5 Results

Cumulative Sums (Reverse) Test 20 20 18 20 20 98%
Random Excursions Test 16 19 17 19 16 93%
Random Excursions Variant Test 18 17 18 19 20 92%

For convenience, the experimental verification of the files under study in the NIST-822
CTC environment is presented in the form of a table, the last column of which contains the
percentages of the tests passed.

Ciphers with good statistical security indicators should have dc, da, and dsa values sat-
isfying the following conditions: dc ≈ 1, da ≈ 1, dsa ≈ 1 [16]. Table 9 shows the comparative
indicators of the statistical security of the algorithms AL02 and AES128.

Table 9. Single-round values of indicators of statistical security of the ciphers AES128 and AL02.

Round No
AES128 AL02

dc da dsa dc da dsa

1 0.0625 0.061535 0.059118 1 0.995010 0.991544
2 0.25 0.251176 0.247659 1 0.999642 0.992065
3 1 0.995746 0.991457 1 0.999212 0.992005
4 1 0.999514 0.992006 1 0.999304 0.992048
5 1 0.999773 0.992022 1 0.999257 0.992001
6 1 0.999712 0.992015
7 1 0.998668 0.992003
8 1 0.999176 0.992065
9 1 0.998481 0.992030

10 1 0.999595 0.991962

4.2. Avalanche Effect

The avalanche effect was tested in two versions. In the first version, 129 blocks of plain
texts were used, which differed from each other by one bit. These files were encrypted with
the AL02 algorithm using the same key. Then, the encrypted files were checked for a match
by the location of the bits. In the second version, the check was carried out for 129 different
keys and with one plaintext, where the keys were selected in such a way that they differed
from each other by only one bit. The resulting ciphertexts were also checked for matches in
terms of bit arrangement. The test results are shown in Figure 4, where the blue line shows
the results of the first option, and the orange line shows the results of the second option.
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In the first test, the chi-square value for a degree of freedom of 127 is 62.203, and in
the second test, the chi-square value is 77.313.
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4.3. Differential Analysis of the AL02 Algorithm

For the differential analysis of the AL02 algorithm, the difference values for each
function of a single round are first estimated. The AL02 algorithm consists of an XOR
operation, a non-linear transformation using an S-box, and the F-function.

The XOR operation is linear, so the difference has the same value for both the input
and the output, so the probability is one. The maximum substitution difference using the
S-box is 4, so in this case, the probability will be 2–6.

For the F function of the AL02 algorithm, the finding of the round keys with respect to
pairs of ciphertexts and the correspondence with the chosen pair of plaintexts are evaluated.

A =


a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3
a3,0 a3,1 a3,2 a3,3

, A′ =


a0,0 + 1 a0,1 a0,2 a0,3
a1,0 + 1 a1,1 a1,2 a1,3
a2,0 + 1 a2,1 a2,2 a2,3
a3,0 + 1 a3,1 a3,2 a3,3


Differences between selected plaintexts A and A′ are presented as a matrix ∆A:

∆A = A⊕ A′ =


1, 0, 0, 0
1, 0, 0, 0
1, 0, 0, 0
1, 0, 0, 0

.

Intermediate values bi and b′i , i = 0, 1, 2, 3 for plaintexts are bi = ai,0 ⊕ S(ai,1) ⊕
S(ai,2 ⊕ ai,3) and b′i = ai,0 ⊕ 1⊕ S(ai,1)⊕ S(ai,2 ⊕ ai,3). The first element of the first row of
the new matrix is: c0,0 = S(b0 ⊕ b1 ⊕ b2 ⊕ b3) = c′0,0 = S

(
⊕3

i=0b′i
)
= S

(
⊕3

i=0bi
)
.

This implies c0,0 ⊕ c′0,0 = 0, c0,1 = S(c0,0 ⊕ a0,1) = c′0,1 = S(c0,0 ⊕ a0,1), c0,2 =
S(c0,1 ⊕ a0,2) = c′0,2 = S(c0,1 ⊕ a0,2), c0,3 = c′0,3 since the first row of the difference of
the new matrices is completely equal to zero. The second row changes depending on
the key or plaintext. If one bit of the key or plaintext has been changed, then completely
different values are obtained in the second row.

As a result of the differential analysis of the F-function, the maximum probability is
2–12 and the minimum probability is 2–60, so the input of the function is selected in such a
way as to minimize the use of the S-box. In this case, the minimum S-box usage is 2 (the
maximum S-box usage is 10).

Differential analysis was carried out to obtain the upper bound for each round for the
selected pairs of open and closed texts (Table 10).

Table 10. Differential analysis of the AL02 algorithm.

Number of Rounds Number of S-Boxes Used Probability of Finding Round Keys Key Finding Probability

1 3 2−6 × 2−6 × 2−6 = 2−18 2−18

2 10 2−6 × 2−12 × 2−12 × 2−6 × 2−6 = 2−42 2−18 × 2−42 = 2−60

3 17 2−6 × 2−12 × 2−12 × 2−6 2−6 = 2−42 2−60 × 2−42 = 2−102

4 24 2−6 × 2−12 × 2−12 × 2−6 2−6 = 2−42 2−102 × 2−42 = 2−144

5 31 2−6 × 2−12 × 2−12 × 2−6 2−6 = 2−42 2−144 × 2−42 = 2−186

This algorithm does not allow us to keep the minimum difference at the input of any
of the rounds [17,18].

4.4. Linear Analysis

Before performing a linear analysis, the non-linear functions of the algorithm are
first examined separately. In the linear analysis table, the considered S-box has significant
deviations from the linear approximation, which is equal to 16. The maximum probability
of deviation is 0.5625. The overall linear analysis bound is determined by the upper value.
Consider each transformation applied in the encryption algorithm. The cipher uses bitwise
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addition (XOR), substitution (S-box), and cyclic shifts. The bitwise addition operation and
cyclic shifts are linear functions.

Lemmas 1 and 2 show that the probability of finding linear equations in one round is
0.5 + 29(0.5− 0.5625)10 = 0.5 + 29(2−4)10

= 0.5 + 2−31 , since the corresponding obtained
equations of one round of input and output variables of the linear approximation pass through
the S-box 10 times. Hence, to find a key with a probability of 0.97, 262 pairs of plaintexts and
ciphertexts are required (Table 11). For the full five rounds, the probability of finding linear
equations given 40 S-boxes is 0.5+ 249(0.5− 0.5625)50 = 0.5+ 249(2−4)50

= 0.5+ 2−151.

Table 11. Linear analysis of the AL02 algorithm.

Number of Rounds Number of S-Boxes Used Truth Probability of Equations for
Pairs of Plaintexts and Ciphertexts

Number of Pairs of
Plaintexts and Ciphertexts

1 10 2−31 262

2 20 2−61 2122

3 30 2−91 2182

4 40 2−121 2242

5 50 2−151 2302

Therefore, to determine the key with a probability of 0.97, 2302 pairs of plaintexts and
ciphertexts are required.

5. Conclusions

Symmetric cryptographic primitives are widely used due to their high performance
and low implementation complexity. Such algorithms use non-linear operations for confu-
sion and linear transformations for diffusion. Consistent repeated application of confusion
and diffusion makes it possible to achieve a high level of cryptographic strength. We
have developed a new symmetric block cipher algorithm AL02, the architecture of which
includes non-linear substitution nodes in the form of substitution tables, the F function,
and the round key scheduling algorithm. The advantage of the developed algorithm is the
possibility of its effective implementation on specialized equipment designed to perform
encryption and decryption operations. Theoretical and experimental tests have shown that
the algorithm fully complies with the basic cryptographic requirements. The study of the
cryptographic strength of the encryption algorithm will be continued in subsequent works.

The developed algorithm was investigated for reliability using well-known cryptanal-
ysis methods. It was shown that the parameters correspond to the requirements imposed
on them.

The algorithm was tested for randomness using statistical tests from the NIST and D.
Knuth sets. Based on the study results, it was found that the binary sequence obtained after
encryption by the proposed algorithm is close to random. Additionally, the S-box and the
AL02 encryption algorithm were tested for the presence of an avalanche effect. Based on
the tests and studies carried out, it has been established that the proposed S-box and the
AL02 encryption algorithm itself effectively provide a good avalanche effect.

It was also shown that the necessary level of resistance of the developed encryption
algorithm to linear and differential cryptanalysis is provided. Research is ongoing to test
the reliability of the algorithm against other existing cryptographic attacks.
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