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Abstract: In this paper, we consider the minimum power cover problem with submodular penalty
(SPMPC). Given a set U of n users, a set S of m sensors and a penalty function π : 2U → R+ on
the plane, the relationship that adjusts the power p(s) of each sensor s and its corresponding radius
r(s) is: p(s) = c · r(s)α, where c > 0 and α ≥ 1. The SPMPC problem is to determine the power
assignment on each sensor such that each user u ∈ U is either covered by the sensor or penalized
and the sum of the total power consumed by sensors in S plus the penalty of all uncovered users is
minimized, the penalty here is determined by the submodular function. Based on the primal dual
technique, we design an O(α)-approximation algorithm.

Keywords: power cover; submodular function; primal dual; approximation algorithm

1. Introduction

The minimum power cover problem is defined as follows. Given a set U of n users
and a set S of m sensors on the plane, the relationship that adjusts the power p(s) of each
sensor s and its corresponding radius r(s) is: p(s) = c · r(s)α, where c > 0 and α ≥ 1.
The minimum power cover problem is to find a power assignment of each sensor such
that all users on the plane are covered and the total power consumption is minimized.
Lev-Tov et al. [1] studied the 1-dimensional minimum power cover problem and obtained
a fast algorithm in polynomial time. Charikar et al. [2] designed a primal dual algorithm
and obtained a constant approximation. Since the power consumption of signal coverage
will increase sharply with the increase of radius, it is very important to control the power
consumption. Zhang et al. [3] studied wireless access points with limited capacity in mobile
edge computing, proposed a local ratio based algorithm, and verified by simulation experi-
ments that the algorithm can get a near optimal result in polynomial time. subsequently,
Zhang et al. [4] studied the power control problem of the edge server antenna with limited
capacity, proposed an m-approximation algorithm of the primal dual frame, and verified
the performance and practicability of the algorithm through simulation experiments.

The minimum power partial cover problem is to find a power assignment that covers
at least k users on the plane and has the smallest total power consumption. Freund
and Rawitz [5] introduced this problem, and when α = 2, they proposed a (12 + ε)-
approximation algorithm. Li et al. [6] designed a primal dual algorithm to obtain a
3α-approximation solution. Recently, Dai et al. [7] improved their algorithm and obtained
an O(α)-approximation solution.

The minimum power multiple cover problem is a generalization of the minimum-
power cover problem, where each user u has a cover requirement du, finding a power
assignment for each sensor on the premise that each user satisfies its coverage requirements.
Abu-Affash et al. [8] studied the special case where α = 2 and all users u ∈ U have the same
coverage requirements du = d, and they presented an approximation algorithm with an
approximation ratio of at most 23.02 + 63.91(d− 1). Bar-Yehuda and Rawitz [9] considered
the case of general metric space and obtained a 3α · dumax -approximate solution based on a
local ratio algorithm, where dumax is the maximum coverage requirement. Liang et al. [10]
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considered the situation where all users and sensors are on a same straight line, and
designed an optimal algorithm based on dynamic programming when the maximum cover
requirement has a constant upper bound. Ran et al. [11] designed a polynomial time
approximation scheme (PTAS) under the assumption that all users cover requirements
have a constant upper bound.

The minimum power partial cover problem with penalty is also a generalization of
the minimum power cover problem and the minimum power partial cover problem. It is
assumed that each user has a penalty, at least k users are required to be covered, and the
sum of the total power of covered users plus the penalty of uncovered users is minimized.
Recently, Liu et al. [12] studied this problem and designed a 3α-approximation algorithm
based on the primal dual technique. In real life, the performance detection of sensor
networks meets the property of submodule-diminishing marginal benefit. If a user is not
covered, the punishment can be regarded as a loss of a reputation of company. As the
number of users not covered increases, the loss of a reputation of company may remain
unchanged. Therefore, when the penalty function is a submodular function, Liu et al. [13]
designed a polynomial time (5 · 2α + 1)-approximation algorithm based on the primal
dual framework for the minimum power partial cover problem with penalty on the plane.
And Liu et al. [14] studied the minimum power cover problem with submodular penalty
and obtained a (3α + 1)-approximation algorithm, when the penalty function is a linear
function, based on the plane subdivision technique, and a PTAS was given. In this paper,
our algorithm improves on the minimum power cover problem with submodular penalty
by Liu et al. [14].

The main structure of this paper is as follows. The first part describes the minimum
power cover problem with submodular penalty; the second part gives a brief overview of
the algorithm of [14]; the third part designs an improved primal dual algorithm for this
problem; the fourth part gives a conclusion of this question.

2. Preliminary

We are given a set of n users U = {u1, u2, · · · , un}, a set of m sensors S = {s1, s2, · · · , sm}
on the plane and a real-valued function f : 2U → R+ defined on all subsets of U. If for any
subset U1 ⊆ U2 ⊆ U, f (U1) ≤ f (U2), then f is called monotonic. If f (∅) = 0, then f is
called normalized. If for any subset U1, U2 ⊆ U,

f (U1) + f (U2) ≥ f (U1 ∪U2) + f (U1 ∩U2),

then f is called submodular.
In this paper, we consider the minimum power cover problem with submodular

penalty (SPMPC). Given n users U, m sensors S and a penalty function π : 2U → R+ on
the plane, the power p(s) generated by each sensor s can be adjusted by its corresponding
radius r(s), and the relationship between p(s) and r(s) is:

p(s) = c · r(s)α, where c > 0, α ≥ 1.

For any user u ∈ Disk(s, r(s)), the user u is said to be covered by a circular cover area
Disk(s, r(s)) with sensor center s and sensor radius r(s). The SPMPC problem is to find
a power assignment for each sensor such that each user u ∈ U is either covered by the
sensor or penalized and the sum of the total power consumed by sensors in S plus the
penalties of all uncovered users is minimized, where the penalty is determined by the
submodular function.

Let (U, S, p, π) be an instance of the SPMPC problem. Each circular coverage area in
the optimal solution of this instance, there will be at least one point on its boundary, other-
wise its radius can be reduced to cover the same point resulting in a smaller assignment.
Therefore, each sensor has at most n disks of different radius, and all sensors have at most
mn disks to be considered. Next, we denote such a disk set by D. For any disk D ∈ D, we
use U(D) to represent the set of users covered by the disk D, c(D) to represent the center
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of the disk D, and p(D) to represent the power of the disk D. For any D′ ⊆ D, U(D′)
represents the set of users covered by the union of all disks in D′. Here, we assume that the
power of all sensors is not limited.

For each subset T ⊆ U, let zT = 1 indicate that the subset T is rejected; otherwise
zT = 0. For each disk D ∈ D, let xD = 1 indicate that the disk D is selected; otherwise
xD = 0.

The integer linear programming of the SPMPC problem is as follows:

min ∑
D:D∈D

c · r(D)αxD + ∑
T:T⊆U

π(T)zT

s.t. ∑
D:u∈U(D)

xD + ∑
T:u∈T⊆U

zT ≥ 1, ∀u ∈ U, (1)

xD ∈ {0, 1}, ∀D ∈ D,

zT ∈ {0, 1}, ∀T ⊆ U.

Relaxing xD ∈ {0, 1} and zT ∈ {0, 1}, the relaxed linear programming of the SPMPC
problem is as follows:

min ∑
D:D∈D

c · r(D)αxD + ∑
T:T⊆U

π(T)zT

s.t. ∑
D:u∈U(D)

xD + ∑
T:u∈T⊆U

zT ≥ 1, ∀u ∈ U, (2)

xD ≥ 0, ∀D ∈ D,

zT ≥ 0, ∀T ⊆ U.

The dual programming of the SPMPC problem is as follows:

max ∑
u:u∈U

yu

s.t. ∑
u:u∈U(D)

yu ≤ c · r(D)α, ∀D ∈ D.

∑
u:u∈T

yu ≤ π(T), ∀T ⊆ U. (3)

yu ≥ 0, ∀u ∈ U.

In order to intuitively understand the dual programming, for each user u ∈ U, we
can consider yu as the “paid” price of user u being covered. For each disk D ∈ D, if
∑u:u∈U(D) yu = c · r(D)α, the power consumed by disk D is “paid” and the disk D is called
tight. For each user set T ⊆ U, if ∑u:u∈T yu = π(T), the penalty cost of user subset T is
“paid” and subset T is called tight.

3. Overview of the Algorithm of [14]

Let Dtight denote the set of tight disks, and Rtemp denote the set of temporarily rejected
points. Our algorithm improves on the algorithm of [14]. We replace ball B in [14] with
disk D and repeat the algorithm in three phases.

In the first phase, we start from the trivial dual feasible solution 0, and simultaneously
increase the dual variable {yu}u∈U of all users u ∈ U until some disk D becomes tight, and
add D to the tight disk set Dtight, and the dual values of all users covered by D are frozen;
otherwise, some user subset T ⊆ U becomes tight, all users in T are added to the temporary
rejection point set Rtemp, and the dual values of all users in T are frozen. The above process
iterates until all users in U are frozen. Therefore, dual feasibility is maintained throughout
the algorithm.

In the second phase, we consider all tight disks in Dtight, by descending order of
radius, if Dtight 6= ∅, select a disk D′ with the largest radius in Dtight for each iteration, and
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for any D ∈ Dtight, if U(D) ∩U(D′) 6= ∅, delete D from Dtight. This step iterates, and we
finally get a maximum independent set I.

In the last phase, we expanded the radius of all disks in I by three times. Let p be the
power assignment corresponding to I and R be the set of users that are not covered by any
ball supported by p. Then, the output is (p, A, R), where A = U \ R.

Note that the main idea of the algorithm of [14] is to greedily select a maximal inde-
pendent set I from Dtight in which any two disks D, D′ satisfy U(D) ∩U(D′) 6= ∅, and for
any user u ∈ U to be covered by at most one disk in the maximum independent set I, i.e.,

|max
u∈U
{D|u ∈ D ∈ I}| = 1.

then expand the radius of each disk in I by three times to cover all users in A. So the
algorithm of [14] yields an approximate solution of 3α + 1. The improved algorithm we
designed in the third section will be different here.

4. An Improved Primal Dual Algorithm

Before the algorithm starts, we cite [7] for the definition of ρ-relaxed independent set.
For any two disks D1, D2 ∈ D′, if U(D1) ∩U(D2) = ∅ or

d(c(D1), c(D2)) > ρ max{r(D1), r(D2)},

where ρ ∈ [0, 2], d(·, ·) represents the Euclidean distance, then D′ is called a ρ-relaxed
independence set. Our algorithm mainly replaces the “independent set” in [14] with the
“relaxed independent set”. In each relaxed independent set, we no longer choose a disk
but choose t− 1 disks, where the integer t ∈ {2, 3, · · · }. So we get the following critical
Lemma 1.

Lemma 1 (Lemma 1 of [7]). For any integer t ∈ {2, 3, · · · }, any user u ∈ U is covered by at
most t− 1 disks in the 2sin π

t -relaxed independent set.

Our algorithm is based on the algorithm of [7], which is mainly divided into the
following three stages.

In the first stage, in order to maintain the feasibility of the duality. Start with the trivial
dual feasible solution 0, and simultaneously increase all dual variables {yu}{u∈U} until
some disk D becomes tight or some user set T becomes tight. If a disk D becomes tight, add
D to the set of tight disks Dtight, and freeze the dual values of all users in U(D). Otherwise,
a user set T becomes tight, and all users in T are added to the temporary rejected user set
Rtemp, and the dual values of all users in T are frozen. The above process iterates until the
dual values of all users in U are frozen.

In the second stage, for any disk D ∈ Dtight, if there is a disk D′ of r(D′) ≥ r(D) such
that U(D′) ∩U(D) 6= ∅ and

d(c(D′), c(D)) ≤ 2sin
π

t
r(D′), t ∈ {2, 3, · · · }.

we remove D from Dtight.
In the third stage, set I := Dtight. For any integer t ∈ {2, 3, · · · }, expand the radius

of all disks in I by a factor of 1 + 2sin π
t . Set such a disk set as F and a penalty user set

as R = U \U(F), and finally the algorithm outputs (F, R). Our algorithm pseudocode is
Algorithm 1:
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Algorithm 1 Primal Dual Algorithm
Input: An instance (U, S, p, π).
Output: (F, R).

1 Initially, for any user u ∈ U, yu = 0. Set Dtight = I = Rtemp = ∅.
2 while U 6= ∅ do
3 Simultaneously increase the dual variable yu of all users u ∈ U until some disk

D becomes tight or some user set T becomes tight.
4 if disk D gets tight then
5 Dtight := Dtight ∪ {D} and U := U \U(D).

6 else
7 Rtemp := Rtemp ∪ T and U := U \ T.

8 for D ∈ Dtight do
9 if There exists a disk D′ with a larger radius that satisfies U(D) ∩U(D′) 6= ∅ and

d(c(D), c(D′)) ≤ 2sin π
t r(D′), t ∈ {2, 3, · · · }. then

10 Dtight := Dtight \ {D}.

11 Set I := Dtight.
12 for D ∈ I do
13 p(c(D)) := c · ((1 + 2sin π

t )r(D))α.

14 Set F := {Disk(s, (1 + 2sin π
t )r(D))|D ∈ I}, R := U \U(F). Output (F, R).

To facilitate the understanding of the algorithm, we give a simple example (see
Figure 1). U = {u1, u2, u3, u4, u5}, S = {s1, s2, s3}. For any subset T ⊆ U, if |T| = 1,
π(T) = 3; |T| = 2, π(T) = 4; |T| ≥ 3, π(T) = 5. We set c = 1, α = 2, t = 6. Initially, we
set the dual value yu1 = yu2 = yu3 = yu4 = yu5 = 0 for all users. We execute the algorithm
and simply describe it in the following five steps.

(a). Increase the dual value {yu}u∈U of all users u ∈ U simultaneously until disk D1
becomes tight, Dtight = {D1}, and the values of yu3 and yu4 are frozen.

(b). Simultaneously increase the dual values of users u1, u2, u5 of yu1 , yu2 , yu5 until
the subset T = {u1, u2} becomes tight, set Rtemp = {u1, u2}, and the values of yu1 , yu2 are
frozen.

(c). Increase the values of yu5 until the disk D2 becomes tight, set Dtight = {D1, D2},
and the value of yu5 is frozen.

(d). Because U(D1) ∩U(D2) 6= ∅ and d(D1, D2) ≤ r(D2), D1 is removed from Dtight,
setting I := Dtight = {D2}.

(e). Expand the radius of D2 ∈ I by twice to become D′2, set R = {u1} and F = {D′2}.
Therefore, we obtain a feasible solution (F, R).

Figure 1. A simple example U = {u1, u2, u3, u4, u5}, S = {s1, s2, s3} and t = 6.

Lemma 2 (Lemma 3.1 of [14,15]). Algorithm 1 can be performed in polynomial time.

Lemma 3. (F, R) is a feasible solution to the SPMPC problem.
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Proof. Let U(I) and U(F) represent the set of users covered by the union of all disks in I
and F, respectively. According to Algorithm 1, we know that Rtemp ∪U(Dtight) = U. For
any user u ∈ U(I), we have u ∈ U(F). Then for any user u ∈ U(I), u is covered by the disk
in F.

Otherwise, u is covered by the disk removed in Dtight, that is, for any user u ∈ D′ ⊆
Dtight \ I, there is a disk D ∈ I satisfies U(D′) ∩ U(D) 6= ∅ and r(D) ≥ r(D′), then
according to the triangle inequality, we have

d(u, c(D)) ≤ d(u, c(D′)) + d(c(D′), c(D))

≤ r(D′) + 2sin
π

t
r(D)

≤ (1 + 2sin
π

t
)r(D)

that is, for any integer t ∈ {2, 3, · · · }, expanding the radius of the disk D by 1 + 2sin π
t

times can cover the user u. Therefore, for any integer t ∈ {2, 3, · · · }, enlarging all disks
D ∈ I by 1 + 2sin π

t times can cover all users in Dtight, that is, F can cover all users in Dtight.
Since R = U \U(F) and R ⊆ Rtemp, so (F, R) is a feasible solution.

Lemma 4. The temporary rejection point set Rtemp satisfies π(Rtemp) = ∑u:u∈Rtemp yu.

Proof. Consider all tight subsets T1, · · · , Tl formed by all users in Rtemp, i.e.,
⋃l

i=1 Ti =

Rtemp. According to the Algorithm 1, for any subset Ti, i ∈ {1, · · · , l}, ⋂l
i=1 Ti = ∅, we have

π(
l⋂

i=1

Ti) = 0. (4)

Since any subset Ti, i ∈ {1, · · · , l} is a tight set, there is π(Ti) = ∑u:u∈Ti
yu. According to

the (4) and submodularity of π(·), there is ∑l
i=1 π(Ti) ≥ π(

⋃l
i=1 Ti), i.e.,

l

∑
i=1

∑
u:u∈Ti

yu = ∑
u:u∈⋃l

i=1 Ti

yu ≥ π(
l⋃

i=1

Ti).

Because of dual programming (3) , for any
⋃l

i=1 Ti ⊆ U, there is

∑
u:u∈⋃l

i=1 Ti

yu ≤ π(
l⋃

i=1

Ti).

Therefore, we have ∑u:u∈⋃l
i=1 Ti

yu = π(
⋃l

i=1 Ti), i.e., ∑u:u∈Rtemp yu = π(Rtemp).

According to Lemma 1, we know that for any user u ∈ U can be covered by at most
t− 1 disks in I, so we can get the following lemma.

Lemma 5. For any integer t ∈ {2, 3, · · · }, p(I) ≤ (t− 1)OPT, where OPT is the optimal value
of the SPMPC problem.
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Proof. According to Algorithm 1, for any D ∈ I ⊆ Dtight, there is ∑u:u∈D yu = c · r(D)α,
then

p(I) = ∑
D:D∈I

c · r(D)α

= ∑
D:D∈I

∑
u:u∈D

yu

≤ (t− 1) ∑
u:u∈U(I)

yu

≤ (t− 1) ∑
u:u∈U

yu

≤ (t− 1)OPT

where the first inequality is due to Lemma 1.

Lemma 6. For any integer t ∈ {2, 3, · · · }, p(F) ≤ (t− 1)(1 + 2sin π
t )

αOPT, where OPT is the
optimal value of the SPMPC problem.

Proof. According to Algorithm 1, we know F = {Disk(s, (1 + 2sin π
t )r(D))|D ∈ I}. There-

fore, there is

p(F) = ∑
D:D∈F

c · r(D)α

= (1 + 2sin
π

t
)α p(I)

≤ (t− 1)(1 + 2sin
π

t
)αOPT

where the last inequality is based on the Lemma 5.

Theorem 1. Algorithm 1 obtains an O(α)-approximate solution to the SPMPC problem.

Proof. Since the output of the Algorithm 1 is (F, R), then

p(F) + π(R) ≤ (t− 1)(1 + 2sin
π

t
)αOPT + π(R)

≤ (t− 1)(1 + 2sin
π

t
)αOPT + π(Rtemp)

= (t− 1)(1 + 2sin
π

t
)αOPT + ∑

u:u∈Rtemp

yu

≤ ((t− 1)(1 + 2sin
π

t
)α + 1)OPT

where the second inequality is due to R ⊆ Rtemp.
For each given α, let t∗ = arg mint∈{2,3,4,··· }((t− 1)(1 + 2sin π

t )
α + 1), then there is a

minimum value (t∗ − 1)(1 + 2sin π
t∗ )

α + 1, which is always optimal compared with 3α + 1
in [14]. The comparison of the approximate ratio of our algorithm and the approximate
ratio 3α + 1 of the algorithm in [14] is depicted in Figure 2.

Let g(t) = (t− 1)(1 + 2sin π
t )

α + 1, similar to the reference [7], we have

lim
α→+∞

g(bαc)
α

= lim
α→+∞

bαc − 1
α

(1 + 2sin
π

t
)α + lim

α→+∞

1
α
= e2π .

when α is large enough, g(t) is almost linear in the α value, and we have the minimum
value (t∗ − 1)(1 + 2sin π

t∗ )
α + 1 ≈ e2πα = O(α).
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Figure 2. Comparison of two approximate ratios.

5. Conclusions

In this paper, we study minimum power cover problem with submodular penalty.
Using the concept of relaxed independent sets of [7], based on the primal dual technique, we
design an O(α)-approximation algorithm. Our result is an improvement on the minimum
power cover problem with submodular penalty of [14].
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