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Abstract: This article covers a case study with homes equipped with multiple appliances for energy
consumption. The central goal is to provide for aggregators’ flexibility in distribution networks by
building an optimal schedule that takes advantage of load flexibility resources. This, in turn, allows
for the re-scheduling of shifting/real-time home appliances to provision a request from a distribution
system operator (DSO). The paper concludes with the consideration of the CBCC-RDG3, HyDE-DF,
and genetic algorithms, which were used to find the best schedule that would be highly efficient and
meet all the constraints associated with the problem that successfully demonstrate the effectiveness
of this particular approach.

Keywords: global optimization; evolutionary computation; smart grid; energy domain

1. Introduction

The dawn of Smart Grids (SG) together with the high penetration of Distributed
Generation (DG) poses a new level of complexity in power system operation planning [1].
Broadly speaking, the complexity resides in the consideration of stochastic variables in
the mathematical formulation of optimization problems (associated with the increasing
penetration of renewables) [2]. Paper [3] introduces two testbeds, which constitute a
valuable reference for testing and comparing heuristic optimization algorithms.

There are several methods of demand management and algorithms used in the litera-
ture [4–11]. Most of them are system-specific [4–6,8,11] strategies, and some of them do not
apply to practical systems with a large number of independent devices. Most of the meth-
ods have been developed using dynamic programming [11] and linear programming [5,8].
These programming methods cannot handle a large number of managed devices from
multiple device types that have multiple calculation patterns and heuristics. The primary
goal of demand management techniques presented in the literature is to reduce system
peak demand and operating costs. While utilities may offer various incentives to relevant
customers to directly control [5,10–12] selected loads by grouping customer loads, most
methodologies used in the literature do not consider criteria and targets independently.
Thus, it is difficult to use these methods for demand management in future smart grids,
which aim to give consumers more control over their energy consumption. In a smart grid,
demand management strategies must handle a large number of controlled loads of several
types. In addition, loads may have characteristics extending over several hours. Therefore,
the strategies must be able to deal with all possible durations of managing the various
controlled loads.

The artificial neural network (ANN) optimization method and NSGA II heuristic
planning are used for load prediction [13]. Heuristic strategies used for optimal energy
planning for each building in a neighborhood [14]. A load switching method is used for
Demand Side Management (DSM) [15]. The day-ahead load-shifting techniques were
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mathematically formulated as a minimization problem. A heuristic-based Evolutionary
Algorithm (EA) that easily adapts heuristics in the problem is developed for solving this
minimization problem, and simulations are carried out. The algorithm can handle a large
number of controllable devices of several types and achieves substantial savings while
reducing the peak load demand.

The Genetic and Evolutionary Computation Conference 2021 [16] organized a chal-
lenge dedicated to the flexibility management of home appliances to support DSO re-
quests [17]. The main goal of this competition is to provide models for an aggregator’s
flexibility provision in distribution networks that take advantage of load flexibility re-
sources, allowing the re-schedule of shifting/real-time home-appliances to provision a
request from a distribution system operator (DSO).

Among stochastic optimization methods, methods that use laws and principles bor-
rowed from nature itself, such as evolutionary optimization methods, swarm intelligence
methods [18,19], particle swarm intelligence [20,21], annealing simulation algorithms, and
genetic algorithms [22] have proven themselves especially useful in practice. The first two
groups belong to the so-called population methods since they use systems consisting of
agents (populations of agents). As a rule, an agent is understood as a certain point in the
search space for solutions to the problem, and the optimization process consists of moving
agents in this space.

The methods were chosen as follows: we first undertook a review of the literature
as well as other recent comparable competitions. The Large-Scale Global Optimization
competition was found [23], according to the results of which the CBCC-RDG3 algorithm
was selected as a potentially good method for stating our problem.

The novelty of our research work is related to the application of the generally new and
efficient global optimization algorithms to the applied industry-related research problem.
We made an extensive comparison of the existing heuristic algorithms and drew the
conclusion that the HyDE-DF algorithm has a better performance.

2. Competition

The owner of the challenge problem is the Genetic and Evolutionary Computation
Conference (GECCO). GECCO has presented the latest high-quality results in genetic and
evolutionary computation since 1999 [16]. The GECCO 2021 competition proposed a track
in the energy domain: flexible control of home appliances to support DSO requests.

The issue concerns the aggregator that controls device management with demand
response (DR) capabilities [24]. Users voluntarily enroll in Flexibility by receiving monetary
compensation if their base profile changes.

The features and assumptions of the optimization model in a competitive environment
follow:

• Perspective of an aggregator in charge of HEMS with various devices with disaster
recovery capabilities.

• Two types of devices are considered for disaster recovery: devices whose consump-
tion can be rolled over to another period, and devices with the ability to manage
in real time.

• The aggregator responds to a flexibility request from the DSO or BRP, which pays
monetary compensation for each unit of capacity (PU) of flexibility provided.

• The aggregator uses a flex management system to reschedule some devices and
approximate the flex curve provided by the DSO as closely as possible.

• Users can register their devices for flexibility and set preferences for the allowed shift
times, expected rewards for flex activation, and the prioritization of available devices
for activation, among other things.

• Assuming that the necessary infrastructure to achieve such command and control
(e.g., smart metering systems, communication lines, HEMS) is in place.

• Both the DSO/BPR and the aggregator have access to the predicted baseline power
consumption provided by a third party.
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The case study looks at homes equipped with household appliances in one of the
categories mentioned above. In particular, we assume houses with the following main
equipment for energy consumption (Figure 1):

(A) Mobile devices: dishwashers, washing machines, and dryers;
(B) Real-time devices: lighting devices, televisions, and computers.

4 Optimizing DSO Requests using CBCC-RDG3
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Fig. 1: Overview of flexibility management of DR devices [19]

2.1 Description of parameters

For a specific task, this solution should contain all new launch periods for type
A devices: with shifting capabilities and type B: with the new intensities of
real-time appliances.

2.1.1 Type A appliances.

The information related to appliances type A can be encoded in a vector that
indicates the new starting times of each device:

xshift =
[
Tnew(1), Tnew(2), ..., Tnew(i)

]

xshift contains the decision variables corresponding to the new starting
period of appliance i ∈ A (Type A).

Figure 1. Overview of flexibility management of DR devices [17].

2.1. Description of Parameters

For a specific task, this solution should contain all new launch periods for type A de-
vices: with shifting capabilities and type B: with the new intensities of real-time appliances.

2.1.1. Type A Appliances

The information related to appliances type A can be encoded in a vector that indicates
the new starting times of each device:

xshi f t =
[

Tnew(1), Tnew(2), . . . , Tnew(i)

]

xshi f t contains the decision variables corresponding to the new starting period of
appliance i ∈ A (Type A).

2.1.2. Type B Appliances

New intensities for appliances type B should be defined for all of their operation
periods and are encoded as:

xint = [Intnew(1,1), . . . , Intnew(1,NT)
, Intnew(2,1), . . . ,

Intnew(2,NT)
, . . . , Intnew(Nj ,1), . . . , Intnew(Nj ,NT)

]

where xint contains the decision variable Intnew(j,t) that represents the new intensity of the
jth appliance in the operation period t.

2.2. Solution Representation

The vectors xshi f t and xint are concatenated to form a new vector that represents a
solution (Figure 2).

X = [xshi f t, xint]
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Minimize f =

(
N1∑

i=1

RemA(i) +

N1∑

i=1

RemB(i)

)
+ CDSO · Fmatch; (1)

RemA(i) =

{
CA(i), if tstart(i) ̸= tnew(i)

0, otherwise
; (2)

RemB(i)
= CB(i) ·

NT∑

i=1

| Bbase(j,t) −Bflex(j,t) |; (3)

Fmatch =

NT∑

i=1

| Fagg(t) − FDSO(t) |; (4)

lbi ≤ Xi ≤ ubi, i = 1, 940. (5)

Solution is evaluated using the fitness function (Eq. 1). In order to maximize
the aggregator profits, the fitness function modelled as the minimization of the
remuneration to be paid to the households plus a penalty for the mismatch of
flexibility procured by the DSO/BRP (Fmatch). Where the Eq. 2 corresponds
to the monetary compensation paid for shifting device i (a flat payment CA(i)

in EUR is considered despite how many periods the device is shifted); the Eq.
3 corresponds to the remuneration given for the modification of the baseline
profile of devices type B (where CB(j) is a compensation paid in EUR/kWh
modification); and the Eq. 4 corresponds to a penalty, CDSO in EUR/kWh,
paid for the mismatch between the flexibility procured by the DSO (FDSO(t))
and the flexibility provided by the aggregator (Fagg(t)) in each period t.

Figure 3. Fitness function as black box.

3. Mathematical Optimization Problem

The following mathematical optimization problem was proposed in the research
paper [24] and by the competition organizers [17].

Minimize f =

(
N1

∑
i=1

RemA(i) +
N1

∑
i=1

RemB(i)

)
+ CDSO · Fmatch; (1)

RemA(i) =

{
CA(i), if tstart(i) 6= tnew(i)

0, otherwise
; (2)

RemB(i)
= CB(i) ·

NT

∑
i=1
| Bbase(j,t) − B f lex(j,t) |; (3)

Fmatch =
NT

∑
i=1
| Fagg(t) − FDSO(t) |; (4)

lbi ≤ Xi ≤ ubi, i = 1, 940. (5)

The solution is evaluated using the fitness function (Equation (1)). In order to max-
imize the aggregator profits, the fitness function is modeled as the minimization of the
remuneration to be paid to the households plus a penalty for the mismatch of flexibility
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procured by the DSO/BRP (Fmatch). Here, Equation (2) corresponds to the monetary com-
pensation paid for shifting device i (a flat payment CA(i) in EUR is considered despite how
many periods the device is shifted); Equation (3) corresponds to the remuneration given
for the modification of the baseline profile of devices type B (where CB(j) is a compensa-
tion paid in EUR/kWh modification); and Equation (4) corresponds to a penalty, CDSO in
EUR/kWh, paid for the mismatch between the flexibility procured by the DSO (FDSO(t))
and the flexibility provided by the aggregator (Fagg(t)) in each period t.

A solution is represented as a vector X = [xshi f t, xint] (Figure 2). For each component
of the xshi f t vector, there are constraints in the form of a lower bound (lb) and an upper
bound (ub).

Optimization problem details:

• The competition organizers provided information that a maximum number of
100,000 function evaluations are allowed in the competition.

• The total dimension of the problem is 940.

Finally, we obtain a continuous optimization problem (Equations (1)–(5)). Because
of the complexity and types of equations integrated into the objective function, we will
examine our problem as a problem of nonlinear continuous optimization. Due to the
complexity of the optimization problem, we consider it a black-box optimization problem.
Therefore, we will use an evolutionary algorithm as a core optimization method.

4. Solution Approach
4.1. Known Methods

When analyzing competitions in the field of global, combinatorial and black optimiza-
tion, we have chosen a solution [25] to this problem that is of high quality at the moment.
A detailed analysis of cases of the competitive process generates new ideas, which then
help to obtain effective solutions. In particular, the IEEE CEC’2019 Special Session and
Competition on Large-Scale Global Optimisation were considered, according to the results
of which CBCC-RDG3 became the leading algorithm.

We decided to use the winner of the CEC’2019 competition, since the algorithm had
shown good results in all considered categories, including the one of our interest. As a
result, to solve our problem, we chose the CBCC-RDG3 algorithm, which was the winner of
one of the considered problems. Moreover, the GA (a classical solution) and HyDE-DF (a
solution, given by the organizers) algorithms were chosen as comparisons. We deliberately
did not compare CBCC-RDG3 with other algorithms, but only with HyDE-DF, since [26]
has already compared EPSDE [27], MPEDE [28], and CLPSO [29] with HyDE-DF, and it
was concluded from the results that HyDE-DF shows better results.

4.2. CBCC-RDG3

The CBCC-RDG3 [30] uses a “divide and conquer” strategy and consists of two stages:
decomposition via RDG3 (Modified Recursive Differential Groupping) and optimization,
using CMA-ES Algorithm 1:

Algorithm 1 CBCC-RDG3.

1: divide decision parameters X into subsets Xi: 1 <= i <= m, using RDG3
2: x∗—a context vector
3: for i from 1 to itermax do
4: for i from 1 to m do
5: Find optimal solution for the sub-component using CMA-ES
6: Update x∗

7: end for
8: end for
9: return x∗

Below, you can see the description of algorithm components.
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4.2.1. RDG3

Variables are divided into groups based on their interaction with each other. Two
variables, xi and xj, are considered to interact if the fitness change induced by perturbing
xi varies for different values of xj.

At first, we examine x1 to interact with all the other variables. If no interaction is found,
then x1 is placed to separable variables S, and we move to the next variable x2. Otherwise,
all the rest of the variables are randomly divided into two equal-sized groups, G1 and
G2. Then, we search for the interaction between x1 and these two groups. The process is
continued recursively until all the variables interacting with x1 are found. They are placed
to X1 with x1.

In the next step, if | X1 |< εn, where εn is the threshold for group size, we try to find
the interaction between X1 with the remaining variables to discover variables that interact
with x1 indirectly. In case such variables are found, we include them in X1. We continue
the process until | X1 |>= εn or until we run out of variables.

After that, we repeat the process with the next variable x2 while we do not reach the
last one.

4.2.2. CMA-ES

The algorithm works as follows: the parameters of the multivariate normal distribution
over search space is generated, and a population of candidate vectors is randomly sampled
from the distribution (line 9 of the Pseudocode) [31–34]. Then, the fitness function is
evaluated for each vector from the population in order to update the mean value and
covariance matrix of the distribution (line 17). Since CMA-ES belongs to the class of
Evolutionary Strategies (ES), the method includes such steps as mutation, recombination,
and selection.

CMA-ES is concerned with matching the search to the level lines of the multivariate
target function to be minimized Algorithm 2. The geometric meaning of the covariance
matrix determines the algorithm, since the matrix describes an ellipsoidal scattering obeying
the normal distribution law. So, by each step changing the covariance matrix, we are looking
for an ellipsoid that is as similar as possible to the shape of the objective function level.
This will make it easier to find an extremum.

Algorithm 2 CMA-ES.

1: Assigning initial parameters:
2: p(0)a = 0; p(0)c = 0; – Evolutionary paths
3: C(0) = I; – Covariative Matrix
4: σ(0) ∈ R+; m(0) ∈ Rn – Step size and mean distribution
5: g = 0; – generation
6: while t < tmax do
7: A new population of the desired values:
8: x(g+1)

k ∼ m(g) + σ(g)N
(

0, C(g)
)

f or k = 1 . . . λ

9: After selection and recombination, obtain new mean:

10: m(g+1) =
µ

∑
i=1

ωi · x(g+1)
i:λ

11: The step size σ(g+1) is recalculated

12: p(g+1)
σ = (1− cσ) p(g)

σ +
√

cσ (2− cσ) µ C(g)−
1
2

13: σ(g+1) = σ(g)exp
(

cσ
dσ

(
‖p(g+1)

σ ‖
E‖N (0,I)‖ − 1

))

14: Recalculation of the covariance matrix:
15: p(g+1)

c = (1− cc)p(g)
c +

√
cc(2− cc)µ

m(g+1)−m(g)

σ(g)

16: C(g+1) = (1− ccov)C(g) + ccov p(g+1)
c p(g+1)T

c
17: t = time;
18: end while
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4.3. Genetic Algorithm

Genetic algorithm (GA) [35] is one of the most common methods of optimization. It
consists of the following steps:

1. Initialization
A set of vectors Xi,G = [x1,G, x2,G, . . . , xNP,G] called population is randomly generated,
where G is the number of generations and NP is the size of the population. Then, we
calculate the fitness function for every vector from the population.

2. Selection
In this step, we leave in the next generation either the parent vector or trial vector
according to their fitness value.

3. Recombination
Trial vectors are generated on the basis of our current generation using a recombination
operator: the mutation vector is combined with the individual from the population.

4. Mutation
At every generation for each vector, we generate mutation vectors using a muta-
tion operator.
Steps 2–4 are repeated until we reach the maximum number of iterations or function
evaluations.

In our case, to compare the results, we used default methods from the Genetic Algo-
rithm TOOLBOX For MATLAB [36].

1. Initialization
This is performed by generating a required number of individuals using a random
number generator that uniformly distributes numbers in the desired range, in our
case lbi ≤ xi,G ≤ ubi.

2. Selection
Stochastic Universal Sampling was used. It is a single-phase sampling algorithm with
minimum spread and zero bias.

3. Recombination
The default crossover function ’crossover scattered’ generates a random binary vector
and selects the genes where the vector is a 1 from the first parent and the genes where
the vector is a 0 from the second parent, further combining the genes to form the child.

4. Mutation
For that, we used Gaussian mutation. That method adds a random number obtained
from a Gaussian distribution with a mean 0 to every part of the parent vector.

4.4. HyDE-DF

Hybrid-Adaptive DE with Decay Function (HyDE-DF) [37] is an advanced HyDE [38]
algorithm. Below is the pseudocode of Algorithm 3.

The difference between HyDE-DF and HyDE is in the mutation function; HyDE-DF
uses the mutation operator known as “DE/target-to-perturbedbest/1” (similar to HyDE),
with a decay coefficient δG, the function decreases gradually from 1 to 0 in a period of
iterations. The operator is as follows:

~mi,G = ~xi,G + δG · [F1
i (ε ·~xbest −~xi,G)] + F2

i (~xr1,G −~xr2,G) (6)

where F1
i , F2

i , and F3
i are scale coefficients in the range [0, 1] independent for each individual

i and renew every iteration following the self-adaptive parameter mechanism of the jDE [39]
algorithm. ~xr1,G and ~xr2,G are two different random individuals from the population
and also different from the current target vector xi,G. xbest and the best found solution.
ε = N(F3

i , 1) is a random perturbation coefficient obtained from a normal distribution
with mean F3

i and standard deviation 1. The factor δG is used to gradually decrease the
influence of the term F1

i (ε · ~xbest − ~xi,G) responsible for the fast convergence toward the
best individual in the population. In addition, the HyDE-DF includes a reinitialization
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mechanism that is activated if some successive iterations show no improvement in the
objective function. In this case, the population is replaced by generating new individuals
around a given number of the best-found solutions. The new individuals are generated
using random numbers that follow a normal distribution with the mean of those best
solutions and a standard deviation of 10× 10−4. The best individual in the population after
reinitialization is kept to preserve memory.

Algorithm 3 HyDE-DF.

1: Set the control parameters F1
i , F2

i , F3
i , Cri = 0.5 and NP.

2: Generate the initial population Pop.
3: Evaluate fitness of every individual.
4: Save the best fitness individual xbest
5: for G = 1 : GEN do
6: Calculate decay factor δG (lineary decreasing factor)
7: Generate F1

i , F2
i , F3

i and Cri ∀i ∈ Pop
8: for i = 1 :NP do
9: Select two individuals: xr1,G 6= xr2,G.

10: Apply mutation operator (6).
11: Apply recombination (same as standard DE).
12: Verify boundary constraints.
13: Apply selection operator (same as standard DE) and update Pop.
14: end for
15: Update F1

i , F2
i , F3

i and Cri ∀i ∈ Pop (same as jDE)
16: Update best individual xbest
17: if DFt iterations passed, δG = 1, o.w., decrease δG → 0
18: Apply reinitialization of population if in RN successive iterations there is no

objective value improvement.
19: end for

5. Simulation Results

For calculations, we used a computer with CPU—Intel(R) Xeon(R) Platinum 8259CL
CPU @ 2.50 GHz; RAM—128 GB; OS—Ubuntu 16.04. For the implementation of the
algorithms, MATLAB R2021a was used.

In the CBCC-RDG3 algorithm, we tuned εn to be the threshold—the maximum set of
non-separated variables, also considering the original article [30]. In CMA-ES, we used
parameters in accordance with the original paper [40]. In HyDE-DF and GA, the parameters
were not tuned.

The graphs below show a comparison of convergence in the solution of a 50,000 func-
tion evaluation (Figures 4 and 5) and of a 100,000 function evaluation (Figures 6 and 7).
You can notice that in the graphs for CBCC-RDG3, the line starts at about 6000 scores,
because we are considering the work of the RDG3 algorithm for grouping variables.
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Fig. 4: HyDE-DF, 5×104 func. eval-
uations: 76.211 seconds optimization
value = 8.5478

Fig. 5: HyDE-DF, 105 func. eval-
uations: 92.442 seconds optimization
value = 8.1763

Fig. 6: CBCC-RDG3, 5 × 104 func.
evaluations: 62.725 seconds optimiza-
tion value = 8.0469

Fig. 7: CBCC-RDG3, 105 func. eval-
uations: 135.64 seconds optimization
value = 9.6103

Below are more detailed results of the algorithms. The table 1 presents a
comparison of the solutions we have obtained on 20 stochastic independent
trials for CBCC-RDG3. It contains the following columns: average fit, aver-
age convergence rate, and time spent. Similar tables were generated for each
algorithm in order to compare in more detail. Based on this data, we made
table 2 which presents a comparison of CBCC-RDG3, HyDE-DF, and GA by
average fit, standard deviation, variance, minimum, maximum, and average
time. In the average value of fitness, HyDE-DF is better than CBCC-RDG3
by 3,186% and better than GA by 29,713%. The faster method is HyDE-DF
average execution time on 20 trails is 103.1191s, while the CBCC-RDG3 is
slower by 31,5607 seconds and the GA is slower by 1047,790 seconds. For
standard deviation and variance, the worst result was obtained by the genetic
algorithm, CBCC-RDG3 for these parameters is better and even better than
HyDE-DF. As a result of the research, the worst algorithm is GA, and the

Figure 4. HyDE-DF, 5× 104 func. evaluations: 76.211 s optimization value = 8.5478.
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Figure 5. CBCC-RDG3, 5× 104 func. evaluations: 62.725 s optimization value = 8.0469.

Below are more detailed results of the algorithms. Table 1 presents a comparison of
the solutions we have obtained on 20 stochastic independent trials for CBCC-RDG3. It
contains the following columns: average fit, average convergence rate, and time spent.
Similar tables were generated for each algorithm in order to compare in more detail. Based
on these data, we made Table 2, which presents a comparison of CBCC-RDG3, HyDE-DF,
and GA by average fit, standard deviation, variance, minimum, maximum, and average
time. In the average value of fitness, HyDE-DF is better than CBCC-RDG3 by 3.186% and
better than GA by 29.713%. The faster method is HyDE-DF: the average execution time
on 20 trails is 103.1191 s, while the CBCC-RDG3 is slower by 31.5607 s and the GA is
slower by 1047.790 s. For standard deviation and variance, the worst result was obtained
by the genetic algorithm, CBCC-RDG3 for these parameters is better and even better than
HyDE-DF. As a result of the research, the worst algorithm is GA, and the best is HyDE-DF
of the three presented.
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uations: 76.211 seconds optimization
value = 8.5478

Fig. 5: HyDE-DF, 105 func. eval-
uations: 92.442 seconds optimization
value = 8.1763

Fig. 6: CBCC-RDG3, 5 × 104 func.
evaluations: 62.725 seconds optimiza-
tion value = 8.0469

Fig. 7: CBCC-RDG3, 105 func. eval-
uations: 135.64 seconds optimization
value = 9.6103
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comparison of the solutions we have obtained on 20 stochastic independent
trials for CBCC-RDG3. It contains the following columns: average fit, aver-
age convergence rate, and time spent. Similar tables were generated for each
algorithm in order to compare in more detail. Based on this data, we made
table 2 which presents a comparison of CBCC-RDG3, HyDE-DF, and GA by
average fit, standard deviation, variance, minimum, maximum, and average
time. In the average value of fitness, HyDE-DF is better than CBCC-RDG3
by 3,186% and better than GA by 29,713%. The faster method is HyDE-DF
average execution time on 20 trails is 103.1191s, while the CBCC-RDG3 is
slower by 31,5607 seconds and the GA is slower by 1047,790 seconds. For
standard deviation and variance, the worst result was obtained by the genetic
algorithm, CBCC-RDG3 for these parameters is better and even better than
HyDE-DF. As a result of the research, the worst algorithm is GA, and the
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12 Optimizing DSO Requests using CBCC-RDG3

Fig. 4: HyDE-DF, 5×104 func. eval-
uations: 76.211 seconds optimization
value = 8.5478

Fig. 5: HyDE-DF, 105 func. eval-
uations: 92.442 seconds optimization
value = 8.1763

Fig. 6: CBCC-RDG3, 5 × 104 func.
evaluations: 62.725 seconds optimiza-
tion value = 8.0469

Fig. 7: CBCC-RDG3, 105 func. eval-
uations: 135.64 seconds optimization
value = 9.6103

Below are more detailed results of the algorithms. The table 1 presents a
comparison of the solutions we have obtained on 20 stochastic independent
trials for CBCC-RDG3. It contains the following columns: average fit, aver-
age convergence rate, and time spent. Similar tables were generated for each
algorithm in order to compare in more detail. Based on this data, we made
table 2 which presents a comparison of CBCC-RDG3, HyDE-DF, and GA by
average fit, standard deviation, variance, minimum, maximum, and average
time. In the average value of fitness, HyDE-DF is better than CBCC-RDG3
by 3,186% and better than GA by 29,713%. The faster method is HyDE-DF
average execution time on 20 trails is 103.1191s, while the CBCC-RDG3 is
slower by 31,5607 seconds and the GA is slower by 1047,790 seconds. For
standard deviation and variance, the worst result was obtained by the genetic
algorithm, CBCC-RDG3 for these parameters is better and even better than
HyDE-DF. As a result of the research, the worst algorithm is GA, and the

Figure 7. CBCC-RDG3, 105 func. evaluations: 135.64 s optimization value = 9.6103.

Table 1. The table of obtained solutions for CBCC-RDG3.

iRuns Fit avgConveRate timeSpent

Run 1 8.86501141 −0.131981 134.466
Run 2 8.08449529 −0.141198 131.738
Run 3 7.0025118 −0.152127 135.624
Run 4 9.1514026 −0.122969 127.689
Run 5 8.0904988 −0.142578 133.0495
Run 6 7.936813 −0.134536 127.6906
Run 7 8.1752147 −0.141713 133.892
Run 8 8.6713717 −0.127540 121.833
Run 9 8.7980497 −0.135358 135.251
Run 10 9.280903 −0.129113 135.896
Run 11 8.485648 −0.130553 129.031
Run 12 7.002512 −0.152127 137.488
Run 13 8.700719 −0.128485 131.982
Run 14 8.3261197 −0.132086 130.299
Run 15 8.1971067 −0.141490 135.037
Run 16 8.4959366 −0.131720 132.182
Run 17 7.9112851 −0.142948 140.537
Run 18 8.3895182 −0.132753 132.206
Run 19 7.9224518 −0.142835 156.714
Run 20 8.8456134 −0.134872 150.9896
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Table 2. Common results for CBCC-RDG3, HyDE-DF and GA.

Method AvgFit StdFit VarFit minFit maxFit AvgTime

CBCC-RDG3 8.31665 0.5998037 0.3598 7.002511 9.2809 134.6798
HyDE-DF 8.05981 0.4778170 0.2283 6.974658 8.8835 103.1191
GA 10.4546 0.798004 0.63681 8.657787 11.859997 1150.9098

Figure 8 expresses the results of the comparison values of fitness function for CBCC-
RDG3, HyDE-DF, and GA algorithms on 20 runs that included 100,000 function evaluations.
The results show that HyDE-DF is 22% better and GA is 9% worse than CBCC-RDG3.

14 Optimizing DSO Requests using CBCC-RDG3

Figure 8 expresses the results comparison values of fitness function for CBCC-
RDG3, HyDE-DF, and GA algorithms on 20 runs that included 100,000
function evaluations. The results show that HyDE-DF is 22% better and GA
is 9% worse than CBCC-RDG3.

Fig. 8: 105 func. evaluations; CBCC-RDG3: 9.6103; HyDE-DF: 7.463; GA:
10.5938

6 Conclusion

The main outcome of our work is a solution-based approach among the
algorithms applied to similar competitions with the same set of problems.

We conclude, according to the simulation results for our optimization prob-
lem, that the CBCC-RDG3 and HyDE-DF algorithms get a higher fitness
value within a limited number of evaluation functions and are therefore better
to use. These approaches have made it possible to obtain solutions that are
significantly ahead of classical algorithms in this area and are able to compete
in some respects with more well-known and advanced algorithms.

Figure 8. 105 func. evaluations; CBCC-RDG3: 9.6103; HyDE-DF: 7.463; GA: 10.5938.

6. Conclusions

The main outcome of our work is a solution-based approach among the algorithms
applied to similar competitions with the same set of problems.

We conclude, according to the simulation results for our optimization problem, that the
CBCC-RDG3 and HyDE-DF algorithms obtain a higher fitness value within a limited num-
ber of evaluation functions and are therefore better to use. These approaches have made it
possible to obtain solutions that are significantly ahead of classical algorithms in this area
and are able to compete in some respects with more well-known and advanced algorithms.

Author Contributions: Conceptualization, V.V.; methodology, V.V. and O.P.; software, M.B. and D.B.;
validation, D.B., M.B.; formal analysis, O.P.; investigation, E.D. and L.Y.; resources, O.P., E.D. and L.Y.;
data curation, O.P.; writing—original draft preparation, D.B.; writing—review and editing, M.B., D.B.
and E.D.; visualization, D.B. and M.B. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by Saint Petersburg State University (project ID: 93024916) and
a grant of the President of the Russian Federation for state support of young Russian scientists—
candidates of science (Project number MK-4674.2021.1.1).

Data Availability Statement: Not applicable.



Computation 2022, 10, 188 12 of 13

Acknowledgments: This work was supported by Saint Petersburg State University and a grant of
the President of the Russian Federation for state support of young Russian scientists—candidates
of science.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tuballa, M.L.; Abundo, M.L. A review of the development of smart grid technologies. Renew. Sustain. Energy Rev. 2016, 59,

710–725. [CrossRef]
2. Aien, M.; Hajebrahimi, A.; Fotuhi-Firuzabad, M. A comprehensive review on uncertainty modeling techniques in power system

studies. Renew. Sustain. Energy Rev. 2016, 57, 1077–1089 [CrossRef]
3. Lezema, F.; Soares, J.; Vale, Z.; Rueda, J.; Rivera, S.; Elrich, I. 2017 IEEE competition on modern heuristic optimizers for smart grid

operation: Testbeds and results. Swarm Evol. Comput. 2019, 44, 420–427. [CrossRef]
4. Cohen, A.I.; Wang, C.C. An optimization method for load management scheduling. IEEE Trans. Power Syst. 1988, 3, 612–618.

[CrossRef]
5. Ng, K.-H.; Sheble, G.B. Direct load control-A profit-based load management using linear programming. IEEE Trans. Power Syst.

1998, 13, 688–694. [CrossRef]
6. Schweppe, F.C.; Daryanian, B.; Tabors, R.D. Algorithms for a spot price responding residential load controller. IEEE Trans. Power

Syst. 1989, 4, 507–516. [CrossRef]
7. Lee, S.H.; Wilkins, C.L. A practical approach to appliance load control analysis: A water heater case study. IEEE Power Eng. Rev.

1983, PER-3(5), 64. [CrossRef]
8. Kurucz, C.N.; Brandt, D.; Sim, S. A linear programming model for reducing system peak through customer load control programs.

IEEE Trans. Power Syst. 1996, 11, 1817–1824. [CrossRef]
9. Chu, W.-C.; Chen, B.-K.; Fu, C.-K. Scheduling of direct load control to minimize load reduction for a utility suffering from

generation shortage. IEEE Trans. Power Syst. 1993, 8, 1525–1530.
10. Weller, H.G. Managing the instantaneous load shape impacts caused by the operation of a large-scale direct load control system.

IEEE Trans. Power Syst. 1988, 3, 197–199. [CrossRef]
11. Hsu, Y.-Y.; Su, C.-C. Dispatch of direct load control using dynamic programming. IEEE Trans. Power Syst. 1991, 6, 1056–1061.
12. Yao, L.; Chang, W.-C.; Yen, R.-L. An iterative deepening genetic algorithm for scheduling of direct load control. IEEE Trans. Power

Syst. 2005, 20, 1414–1421. [CrossRef]
13. Kunwar, N.; Yash, K.; Kumar, R. Area-load based pricing in DSM through ANN and heuristic scheduling. IEEE Trans. Smart Grid

2013, 4, 1275–1281. [CrossRef]
14. Pallotti, E.; Mangiatordi, F.; Fasano, M.; Vecchio, P.D. GA strategies for optimal planning of daily energy consumptions and user

satisfaction in buildings. In Proceedings of the 2013 12th International Conference on Environment and Electrical Engineering,
Wroclaw, Poland, 5–8 May 2013; pp. 440–444.

15. Logenthiran, T.; Srinivasan, D.; Shun, T.Z. Demand side management in smart grid using heuristic optimization. IEEE Trans.
Smart Grid 2012, 3, 1244–1252. [CrossRef]

16. GECCO 2021. The Genetic and Evolutionary Computation Conference. Available online: https://gecco-2021.sigevo.org/
HomePage (accessed on 1 April 2021).

17. Call for Competition on Evolutionary Computation in the Energy Domain: Smart Grid Applications 2021. Available online:
http://www.gecad.isep.ipp.pt/ERM-competitions/2021-2/ (accessed on 1 April 2021).

18. Yang, J.; Zhuang, Y. An improved ant colony optimization algorithm for solving a complex combinatorial optimization problem.
Appl. Soft Comput. 2010, 10, 653–660. [CrossRef]

19. Deng, W.; Xu, J.; Zhao, H. An improved ant colony optimization algorithm based on hybrid strategies for scheduling problem.
IEEE Access 2019, 7, 20281–20292. [CrossRef]

20. Kemmoe Tchomte, S.; Gourgand, M. Particle swarm optimization: A study of particle displacement for solving continuous and
combinatorial optimization problems. Int. J. Prod. Econ. 2009, 121, 57–67. [CrossRef]

21. Niar, S.; Bekrar, A.; Ammari, A. An effective and distributed particle swarm optimization algorithm for flexible job-shop
scheduling problem. J. Intell. Manuf. 2015, 2, 603–615.

22. Mirjalili, S. Genetic Algorithm; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 43–55.
23. Special Session and Competition on Large-Scale Global Optimization. Available online: http://www.tflsgo.org/special_sessions/

cec2019 (accessed on 1 April 2021).
24. Lezama, F.; Soares, J.; Canizes, B.; Vale, Z. Flexibility management model of home appliances to support DSO requests in smart

grids. Sustain. Cities Soc. 2020, 55, 102048. [CrossRef]
25. Weise, T. Global Optimization Algorithm: Theory and Application. Self-Published Thomas Weise. 2009. Available on-

line: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiT7-P34Oj6AhVQfd4
KHZOPCU0QFnoECBMQAQ&url=http%3A%2F%2Fwww.it-weise.de%2Fprojects%2Fbook.pdf&usg=AOvVaw1Ajs2m4Z940
ArUFDXZh77N (accessed on 1 April 2021).

http://doi.org/10.1016/j.rser.2016.01.011
http://dx.doi.org/10.1016/j.rser.2015.12.070
http://dx.doi.org/10.1016/j.swevo.2018.05.005
http://dx.doi.org/10.1109/59.192913
http://dx.doi.org/10.1109/59.667401
http://dx.doi.org/10.1109/59.193823
http://dx.doi.org/10.1109/MPER.1983.5519192
http://dx.doi.org/10.1109/59.544648
http://dx.doi.org/10.1109/59.43198
http://dx.doi.org/10.1109/TPWRS.2005.852151
http://dx.doi.org/10.1109/TSG.2013.2262059
http://dx.doi.org/10.1109/TSG.2012.2195686
https://gecco-2021.sigevo.org/HomePage
https://gecco-2021.sigevo.org/HomePage
http://www.gecad.isep.ipp.pt/ERM-competitions/2021-2/
http://dx.doi.org/10.1016/j.asoc.2009.08.040
http://dx.doi.org/10.1109/ACCESS.2019.2897580
http://dx.doi.org/10.1016/j.ijpe.2008.03.015
http://www.tflsgo.org/special_sessions/cec2019
http://www.tflsgo.org/special_sessions/cec2019
http://dx.doi.org/10.1016/j.scs.2020.102048
https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiT7-P34Oj6AhVQfd4KHZOPCU0QFnoECBMQAQ&url=http%3A%2F%2Fwww.it-weise.de%2Fprojects%2Fbook.pdf&usg=AOvVaw1Ajs2m4Z940ArUFDXZh77N
https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiT7-P34Oj6AhVQfd4KHZOPCU0QFnoECBMQAQ&url=http%3A%2F%2Fwww.it-weise.de%2Fprojects%2Fbook.pdf&usg=AOvVaw1Ajs2m4Z940ArUFDXZh77N
https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiT7-P34Oj6AhVQfd4KHZOPCU0QFnoECBMQAQ&url=http%3A%2F%2Fwww.it-weise.de%2Fprojects%2Fbook.pdf&usg=AOvVaw1Ajs2m4Z940ArUFDXZh77N


Computation 2022, 10, 188 13 of 13

26. Zhang, X.; Wang, X. Hybrid-adaptive differential evolution with decay function applied to transmission network expansion
planning with renewable energy resources generation. Iet Gener. Transm. Distrib. 2022, 16, 2829–2839. [CrossRef]

27. Mallipeddi, R.; Suganthan, P.N.; Pan, Q.-K.; Tasgetiren, M.F. Differential evolution algorithm with ensemble of parameters and
mutation strategies. Appl. Soft Comput. 2011, 11, 1679–1696. [CrossRef]

28. Wu, G.; Mallipeddi, R.; Suganthan, P.N.; Wang, R.; Chen, H. Differential evolution with multi-population based ensemble of
mutation strategies. Inf. Sci. 2016, 329, 329–345. [CrossRef]

29. Liang, J.J.; Qin, A.K.; Suganthan, P.N.; Baskar, S. Comprehensive learning particle swarm optimizer for global optimization of
multimodal functions. IEEE Trans. Evol. Comput. 2006, 10, 281–295. [CrossRef]

30. Sun, Y.; Li, X.; Ernst, A.; Omidvar, M.N. Decomposition for Large-scale Optimization Problems with Overlapping Components. In
Proceedings of the 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10 June 2019; pp. 326–333.

31. Auger, A.; Brockhoff, D.; Hansen, N.; Ait Elhara, O.; Semet, Y.; Kassab, R.; Barbaresco, F. A Comparative Study of Large-Scale
Variants of CMA-ES. In Proceedings of the 15th International Conference, Dubrovnik, Croatia, 21–24 May 2018; pp. 3–15.

32. Beyer, H.-G.; Sendhoff, B. Simplify Your Covariance Matrix Adaptation Evolution Strategy. IEEE Trans. Evol. Comput. 2017, 21,
746–759. [CrossRef]

33. Hansen, N. The CMA Evolution Strategy: A Comparing Review. Towards a new evolutionary computation. Stud. Fuzziness Soft
Comput. 2007, 192, 75–102.

34. Hansen, N. The CMA Evolution Strategy: A Tutorial. arXiv 2016, arXiv:1604.00772.
35. Hansen, P.; Mladenovic, N.; Moreno-Pérez, J. Variable neighbourhood search: Methods and applications. 4OR 2010, 175, 367–407.
36. Genetic Algorithm, Global Optimization Toolbox, MATLAB Documentation. Available online: https://se.mathworks.com/help/

gads/genetic-algorithm.html (accessed on 1 April 2021).
37. Lezama, F.; Soares, J.A.; Faia, R.; Vale, Z. Hybrid-adaptive differential evolution with decay function (hyde-df) applied to

the 100-digit challenge competition on single objective numerical optimization, CMA-ES. In Proceedings of the GECCO ’19:
Proceedings of the Genetic and Evolutionary Computation Conference Companion, Prague, Czech Republic, 13–17 July 2019;
pp. 7–8.

38. Lezama, F.; Soares, J.A.; Faia, R.; Pinto, T.; Vale, Z. A New Hybrid-Adaptive Differential Evolution for a Smart Grid Application
Under Uncertainty. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation, Rio de Janeiro, Brazil, 8–13 July
2018.

39. Brest, J.; Zamuda, A.; Boskovic, B.; Maucec, M.S.; Zumer, V. Dynamic optimization using self-adaptive differential evolution. In
Proceedings of the IEEE Congress on Evolutionary Computation, Trondheim, Norway, 18–21 May 2009; pp. 415–422.

40. Hansen, N.; Ostermeier, A. Completely Derandomized Self-Adaptation in Evolution Strategies. Evol. Comput. 2001, 9, 159–195.
[CrossRef]

http://dx.doi.org/10.1049/gtd2.12296
http://dx.doi.org/10.1016/j.asoc.2010.04.024
http://dx.doi.org/10.1016/j.ins.2015.09.009
http://dx.doi.org/10.1109/TEVC.2005.857610
http://dx.doi.org/10.1109/TEVC.2017.2680320
https://se.mathworks.com/help/gads/genetic-algorithm.html
https://se.mathworks.com/help/gads/genetic-algorithm.html
http://dx.doi.org/10.1162/106365601750190398

	Introduction
	Competition
	Description of Parameters
	Type A Appliances
	Type B Appliances

	Solution Representation
	Objective Function

	Mathematical Optimization Problem
	Solution Approach
	Known Methods
	CBCC-RDG3
	RDG3
	CMA-ES

	Genetic Algorithm
	HyDE-DF

	Simulation Results
	Conclusions
	References

