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Abstract: This article addresses the problem of global practical output tracking by output feedback
for a class of uncertain inherently time-varying delay nonlinear systems. Firstly, a homogeneous
output-feedback controller is designed for the nominal uncertain inherently system by virtue of
adding a power integrator technique. Then, with the help of an appropriate Lyapunov–Krasovskii
functional and reduced-order observer, by using the homogeneous domination approach and adding
a power integrator method, an output-feedback controller is successfully developed to guarantee all
the states of the closed-loop system remain bounded and simultaneously making the tracking error
arbitrarily small. The simulation results of an example verify the proposed approach.

Keywords: homogeneous domination approach; output feedback; practical output tracking; time-varying
delay; uncertain nonlinear systems

1. Introduction

In this article, we consider a class of uncertain inherently time-varying delay nonlinear
systems of the following form:

.
xi(t) = αixi+1(t)

pi + ϕi(t, x(t), x1(t− d1(t)), . . . , xn(t− dn(t)), u(t)),
i = 1, . . . , n− 1,

.
xn(t) = αnu(t) + ϕn(t, x(t), x1(t− d1(t)), . . . , xn(t− dn(t)), u(t)),
y(t) = α0x1(t)− yr(t),

(1)

where x(t) = (x1(t), . . . , xn(t))
T ∈ Rn, u(t) ∈ R, and y(t) ∈ R are the system state, control

input, and output, respectively. di(t) ≥ 0, i = 1, . . . , n are time-varying delays satisfying
0 ≤ di(t) ≤ di for constants di, the system initial condition is x(θ) = ϕ0(θ), θ ∈ [−d, 0] with
d ≥ max1≤i≤n{di}. ϕi(·), i = 1, . . . , n are unknown continuous functions and αi, i = 0, 1, . . . , n
are unknown constants. It assumes that the only measurable signal in system (1) to be the output
y.pi ∈ R≥1

odd.
The issue of output tracking of nonlinear systems has attracted a great deal of attention

over the past decades and a series of research results have been achieved ([1–16], and
references therein). Due to the lack of a common and effective approach to design a
nonlinear observer, output-feedback tracking for uncertain inherently nonlinear systems
is very complex and challenging compared to the state-feedback case. Therefore, the
development of a theory for an output-feedback control design for this problem has been
relatively slow. Many studies require a precise knowhow of the non-linear functions,
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ϕi(·)’s, that are necessary to construct the non-linear observers. When the non-linear terms,
ϕi(·)’s, are not precisely known, the observers proposed in the works will no longer be
implementable. To deal with the uncertain non-linear terms, ϕi(·)’s, one study [17] has
developed a feedback domination method to achieve global output-feedback stabilization of
System (1). It is showed that an observer and controller can be constructed without knowing
the non-linearities and global stabilisation can be achieved under a linear growth condition.
In articles [3,5–7,9–11], there are some results reported to help solve the problem of output-
feedback tracking for inherently nonlinear systems, with the help of the homogeneous
domination method proposed in [17]. The superiority of the feedback domination method
compared with other methods is the controller and the observer are constructed only based
on the nominal system of System (1). No precise information on the nonlinearities ϕi(·) is
needed. In other words, the same dynamic controller can be applied to different nonlinear
systems as long as they satisfy Assumption 2. This property makes it possible to deal
with nonlinear systems with unknown disturbances. Recently, the problem was extended
to stochastic nonlinear systems and high-order switched nonlinear systems ([14–16], and
references therein).

In various engineering and physical systems, etc., time delays are frequently encoun-
tered. Nevertheless, the above literature does not consider the effects of time delays. As
everyone knows, a time-delay phenomenon will deteriorate the system’s performance and
even make it adversely affect system stability or other performance aspects. Therefore, it is
very important to investigate the stability or output-tracking issues of time-delay nonlinear
systems. There have been quite a few reports on stabilization issues in recent years, but
there are just a few references that are similar to the system considered in this study, such
as [18–27]. There are not many reports of studies on the output-tracking control time-delay
problem compared to the case of the stabilization problem. Recently, there have been a few
interesting research results for the problems of output tracking via output feedback [28–31].
However, these works only investigated the partially linearizable case of System (1). Re-
searchers [32,33] investigated and solved the problem by using state-feedback control.
Recently, we have published research results on the issue of output-feedback control where
the time delay is constant [34]. Naturally, an interesting question is whether it is possible
to extend the results in [34] to non-deterministic, inherently time-varying delay nonlinear
systems (1), which is the motivation behind this research.

This article addresses the problem of global practical output tracking by output
feedback for a class of uncertain inherently time-varying delay nonlinear systems. With
the help of an appropriate Lyapunov–Krasovskii functional and reduced-order observer,
by using the homogeneous domination approach and adding a power integrator method,
an output-feedback controller is successfully developed, to guarantee all the states of
the closed-loop system remain bounded and simultaneously making the tracking error
arbitrarily small.

The main contributions of this work can be highlighted as follows: (i) The consid-
ered nonlinear systems are uncertain inherently time-varying delays systems. Due to
the appearance of uncertain inherently nonlinear terms and the time-varying delays, the
observers in the existing results [28–30,34] and the Lyapunov–Krasovskii functionals are not
applicable to System (1). Therefore, choosing an appropriate Lyapunov–Krasovskii functional
and constructing an available observer are not easy work. In this work, we introduce a new
Lyapunov–Krasovskii functional and by using a homogeneous domination approach, over-
come a number of difficulties emerged in analysis and design, e.g., due to the non-linear terms,
ϕi(·), not being precisely known, or the Lyapunov–Krasovskii functionals and observers in the
existing results no longer being applicable to System (1). Furthermore, many more complex
nonlinear terms will be inevitably produced due to multiple time-varying delays. (ii) An
output feedback controller with an observer is proposed for the considered system by utiliz-
ing a recursive design approach, and the output tracking of the corresponding closed-loop
system is guaranteed. This work also extended the results in [8,34] to time-varying delay
nonlinear systems.
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The rest of this paper is organized as follows. Section 2 gives a useful definition and
the lemmas. Section 3 gives the problem formulation and our main results. Section 4 gives
a simulation example to verify the effectiveness of our proposed approach. The conclusions
are included in Section 5.

Notations: Rn denotes the real n-dimensional space and R+ := [0, ∞). For any vector
x := (x1, . . . , xn)

T ∈ Rn, ||x|| denotes the Euclidean norm of x. A function f : Rn → R
is said to be Ck function if its partial derivatives exist and are continuous up to order
k, 1 ≤ k < ∞. A C0 function means it is continuous. A C∞ function means it is smooth; that
is, it has continuous partial derivatives of any order. Besides, the arguments of functions
(or functionals) are sometimes omitted or simplified, whenever no confusion can arise from
the context. For instance, we sometimes denote a function f (x(t)) by f (x), f (·), or f .

2. Useful Definition and Lemmas

In this section, we give a definition and several lemmas. These lemmas will play
important roles in this paper.

Definition 1. [35]. For real numbers ri > 0, i = 1, . . . , n and fixed coordinates

x = (x1, . . . , xn) ∈ Rn, ∀ε > 0.

• The dilation ∆r
ε(x) is defined by ∆r

s(x) = (sr1 x1, · · · , srn xn), for ∀ε > 0, with ri being called
as the weights of the coordinate. For simplicity, we define dilation weight ∆ = (r1, . . . , rn).

• A function V ∈ C(Rn, R) is said to be homogeneous of degree m if there is a real number
m ≥ 0, such that

∀x ∈ Rn/{0}, V(∆m
ε (x)) = εmV(x1, · · · , xn).

• A vector field f = ( f1, . . . , fn)
T ∈ C(Rn, Rn) is said to be homogeneous of degree m if there

is a real number m ∈ R, such that for i = 1, . . . , n

∀x ∈ Rn/{0}, fi(ε
r1 x1, · · · , εrn xn) = εm+ri fi(x1, · · · , xn).

• A homogeneous p-norm is defined as ‖x‖∆,p = (∑n
i=1|xi|p/ri )

1/p
, ∀ x ∈ Rn for a constant

p ≥ 1. For simplicity, we choose p = 2 and write ‖x‖∆ for ‖x‖∆,2.

Lemma 1. [35]. Given a dilation weight ∆, suppose V1(x) and V2(x) are homogeneous functions
of degree m1 and m2, respectively. Then, V1(x)V2(x) is still a homogeneous function with respect
to the same dilation weight ∆. Moreover, the homogeneous degree of V1(x)V2(x) is m1 + m2.

Lemma 2. [35]. Suppose V : Rn → R is a homogeneous function of degree m with respect to the
dilation weight ∆. Then the following hold:

(i) ∂V/∂xi is homogeneous of degree m− ri with ri being the homogeneous weight of xi.
(ii) There is a constant σ > 0 such that V(x) ≤ σ‖x‖m

∆ . Moreover, if V(x) is positive definite,
σ‖x‖m

∆ ≤ V(x), for a constant σ > 0.

Lemma 3. [36]. For x ∈ R, y ∈ R and p ≥ 1, the following holds:

|x + y|p ≤ 2p−1|xp + yp|, (|x|+ |y|)1/p ≤ |x|1/p + |y|1/p≤ 2(p−1)/p(|x|+ |y|)1/p

If p > 0 is an odd integer, the following holds:

|x− y|p ≤ 2p−1|xp − yp|,
∣∣∣x1/p − y1/p

∣∣∣ ≤ 2(p−1)/p|x− y|1/p.
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Lemma 4. [37]. For x ∈ R, y ∈ R and real number p > 0 , the following holds:

|xp − yp| ≤ p|x− y|
∣∣∣xp−1 + yp−1

∣∣∣ ≤ c|x− y|
∣∣∣(x− y)p−1 + yp−1

∣∣∣
where c = p for 1 < p ≤ 2 and c = 2p−1 p for p > 2.

Lemma 5. [38]. Let x, y be real variables. Then, for any positive real numbers a, b, m and n, the
following holds:

a|x|m|y|n ≤ b|x|m+n +
n

m + n

(
m + n

n

)−m/n
a(m+n)/nb−m/n|y|m+n.

3. Problem Statement and Main Results

The purpose of this paper is to solve the problem of global practical output tracking
by an observer-based output-feedback controller for System (1). The specific description
will be formulated as follows.

The problem of global practical tracking via output feedback: For any given tolerance
ε > 0 design, an output feedback controller is of the form

.
ζ = α(ζ, y), ζ ∈ Rm

u(t) = g(ζ, y),
(2)

such that all states of the closed-loop Systems (1) and (2) are well defined and globally
bounded on [0, ∞), and for any initial condition (x(0), ζ(0)), there exists a finite time
T(ε, x(0), ζ(0)) > 0, making the tracking error of Systems (1) and (2) satisfy

|y(t)| = |x1(t)− yr(t)| < ε, ∀t ≥ T > 0 (3)

To achieve the objective, it needs the following assumptions.

Assumption 1. For i = 0, 1, . . . , n there exist positive constants α and α such that

α ≤ |αi| ≤ α

Assumption 2. There are constants C1 > 0, C2 > 0 and τ ≥ 0 such that

|ϕi(t, x(t), x1(t− d1(t)), . . . , xn(t− dn(t)), u(t))| ≤ C1

(
i

∑
j=1

∣∣xj(t)
∣∣(ri+τ)/rj +

i

∑
j=1

∣∣xj(t− dj(t))
∣∣(ri+τ)/rj

)
+ C2 (4)

where
r1 = 1, ri+1 = (ri + τ)/pi > 0, i = 1, . . . , n (5)

and pn = 1.

Assumption 3. The time-delays di(t) are differentiable and satisfies

0 ≤ di(t) ≤ di,
.
di(t) ≤ γi < 1,

for constants di and γi, i = 1, . . . , n.

Assumption 4. The reference signal yr(t) is continuously differentiable. Moreover, there is a
constant M > 0 such that

|yr(t)| ≤ M,
∣∣ .
yr(t)

∣∣ ≤ M, ∀t > −d.
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Remark 1. In the literature [3–7], although the control coefficients are all one, the output-feedback
control design of System (1) is more complicated. Assumption 1 relaxes these control coefficients.
Compared with [2–4,6,7], Assumption 2 is a milder condition; when di(t) = 0, it becomes the
assumptions in [3–8] that play an important role to solve the tracking problem. When time-delays are
constants and pi = 1, Assumption 2 becomes the assumptions in [28] and when di 6= 0 and pi > 1,
it reduces the assumption in the existing results [32,34]. However, when di(t) 6= 0, the global output
tracking of system (1) by output feedback is a relatively new problem because of a time-varying
delay entering system states makes the control design more difficult because the existence of a time-
varying delay effect makes the common assumption on the high-order system nonlinearities infeasible
and which conditions should be placed to the nonlinearities remains unanswered. Assumption
4 represents the condition of the reference signal, which can already be called the standard condition
for solving the tracking problem of nonlinear systems (see [3–8,28,32–34]).

Under Assumptions 1–4, the main purpose of this paper is designing the output-
feedback control to solve the practical output-tracking problem for uncertain inherently
time-varying delays nonlinear systems (1).

In order to achieve this goal, we make the following transformation:

z1(t) = α0x1(t), zi(t) = α̃ixi(t), i = 2, . . . , n (6)

where α̃i−1 = ∏i−2
j=1 α

1/(pj−1···pi−2)

j , p0 = 1. Using the new coordinates (6), System (1) can be
rewritten as follows:

.
zi(t) = zpi

i+1(t) + ψi(t, z(t), z1(t− d1(t)), . . . , zn(t− dn(t)), u(t)), i = 1, . . . , n− 1,
.
zn (t) = α̃nu(t) + ψn(t, z(t), z1(t− d1(t)), . . . , zn(t− dn(t)), u(t)),
y(t) = z1(t)− yr(t)

(7)

where
ψi(t, z(t), z1(t− d1(t)), . . . , zn(t− dn(t)), u(t))

= α̃i−1 ϕi(t, z(t), z1(t− d1(t)), . . . , zn(t− dn(t)), u(t)), i = 1, . . . , n

and α̃n =
(

∏n−1
j=1 α

1/(pj−1···pn−1)
j−1

)
αn.

Using Assumption 1, it can be easily proved that Assumption 2 also holds for ψi,

|ψi(t, z(t), z1(t− d1(t)), . . . , zn(t− dn(t)), u(t))| ≤ C1

 i

∑
j=1

∣∣∣zj(t)
∣∣∣(ri+τ)/rj

+
i

∑
j=1

∣∣∣zj(t− dj(t))
∣∣∣(ri+τ)/rj

+ C2 (8)

where Ci, i = 1, 2, are the new growth rates.
In what follows, we first design an output-feedback stabilizer for the system:

.
ηi(t) = η

pi
i+1(t), i = 1, . . . , n− 1,

.
ηn(t) = α̃nu(t), y(t) = η1(t) (9)

We adopt a similar the method as [8], which can construct a state-feedback stabilizer for the
system (9), as described by Fact 1.

Fact 1. Suppose there exists a state-feedback stabilizer for System (9) of the form

u(η) = −βnξ
(rn+τ)/σ
n = −βn

(
ησ/rn

n + βσ/rn
n−1

(
η

σ/rn−1
n−1 + · · ·+ βσ/r3

2

(
ησ/r2

2 + βσ/r2
1 ησ

1

)
· · ·
))(rn+τ)/σ

(10)

with a positive definite and proper Lyapunov function,

Vn =
n

∑
i=1

∫ ηi

η∗i

(
sσ/ri − η∗σ/ri

i

)(2σ−τ−ri)/σ

ds (11)

such that
.

Vn ≤ −
n

∑
j=1

ξ2
j , (12)
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where ξi = ησ/ri
i − η∗σ/ri

i , η∗i = −βi−1ξri/σ
i−1 , η∗1 = 0, σ ≥ max1≤i≤n{τ + ri} and βi, i = 1, . . . , n are

positive constants. Then, the closed-loop Systems (9) and (10) is globally asymptotically stable.

When states η2, . . . , ηn are unmeasurable, it can replace ηi with η̂i in (9) by the certainty
equivalence principle and via using a similar approach as [8], which can construct an output-feedback
stabilizer for System (9), as described by Fact 2.

Fact 2. Suppose there exists an observer-based output feedback stabilizer for System (9) of the form

.
ζ2 = −l1η̂

p1
2 , η̂

p1
2 = (ζ2 + l1η1)

r2 p1/r1

.
ζ i = −li−1η̂

pi−1
i , η̂

pi−1
i = (ζi + li−1η̂i−1)

ri pi−1/ri−1 , i = 3, . . . , n
(13)

u(η̂) = −βn(η̂
σ/rn
n + βσ/rn

n−1 (η̂
σ/rn−1
n−1 + · · ·+ βσ/r3

2 (η̂σ/r2
2 + βσ/r3

1 ησ
1 ) · · · ))

(rn+τ)/σ
(14)

with a positive definite, continuously differentiable and proper Lyapunov function,

Q = Vn +
n

∑
i=2

Ui (15)

Vn =
n

∑
i=1

∫ ηi

η∗i

(
sσ/ri − η∗σ/ri

i

)(2σ−τ−ri)/σ

ds, Ui =
∫ η

(2σ−τ−ri−1)/ri
i

(ζi+li−1ηi−1)
(2σ−τ−ri−1)/ri−1

(
sri−1/(2σ−τ−ri−1) − (ζi + li−1ηi−1)

)
ds

such that
.

Q ≤ −
n

∑
j=1

ξ2
j −

n

∑
j=2

e2
j (16)

where ξi = ησ/ri
i − η∗σ/ri

i , η∗i = −βi−1ξri/σ
i−1 ,η∗1 = 0, σ ≥ max1≤i≤n{τ + ri}, ei =

(
η

pi−1
i − η̂

pi−1
i

)σ/(ri pi−1)
,

and li, βi,i = 1, . . . , n are positive constants. Then, the closed-loop Systems (9), (13), and (14) are globally asymptoti-
cally stable.

The proofs of Facts 1–2 are similar to ([8], Theorem 1), with some modifications, and the
parameters li, i = 1, . . . , n, for the observer (13) also can be chosen by the technique proposed in [8].
Therefore, it is omitted here.

Note that from the construction of Q, it is not difficult to verify that Q is positive, definite, and
proper with respect to

H := [η1, . . . , ηn, η̂2, . . . , η̂n]
T (17)

The closed-loop Systems (9), (13), and (14) can be rewritten as

.
H = F(H) =

[
η

p1
2 , . . . , η

pn−1
n , α̃u(η1, η̂2, . . . , η̂n), fn+1, . . . , f2n−1

]T
(18)

where fn+1 :=
.
ζ2, fn+2 :=

.
ζ3, . . . , f2n−1 :=

.
ζn.

Moreover, by introducing the dilation weight,

∆ = [r1, r2, . . . , rn︸ ︷︷ ︸
for η1, ..., ηn

, r1, r2, . . . , rn−1]︸ ︷︷ ︸
for η̂2,...,η̂n

(19)

By Definition 1, it can be verified that F(H) have a homogeneous degree τ and since System (18) is
globally asymptotically stable by Fact 2, then there exists a Lyapunov function Q(H) of homogeneous
degree 2σ− τ for dilation weight ∆ and satisfies∣∣∣ .

Q(H)
∣∣∣∣∣∣(18) =

∣∣∣∣ ∂Q(H)

∂H
F(H)

∣∣∣∣ ≤ −c1‖H‖2σ
∆ (20)

where c1 > 0 is a constant and ‖H‖∆ =
(

∑2n−1
i=1 |Hi|2/ri

)1/2
. Moreover, there is a constant c2 > 0,

such that the following holds:∣∣∣∣ ∂Q(H)

∂Hi

∣∣∣∣ ≤ c2‖H‖2σ−τ−ri
∆ , c2 > 0 for i = 1, . . . , n. (21)
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Next, an output-feedback controller to solve the problem of global practical output tracking
will be constructed.

Theorem 1. Under Assumptions 1–4, the problem of global practical output tracking for System (7) can be
solved by an output-feedback control using Forms (13) and (14).

Proof. The observer-based output-feedback controller is constructed by introducing a scaling gain
into the output feedback controller obtained in Fact 2. Before proceeding, we introduce the following
a coordinates transformation:

χ1(t) := y(t), Lκi zi(t) := χi(t), i = 2, . . . , n, Lκn+1v(t) := u(t) (22)

where κ1 = 0, κi = (κi−1 + 1)/pi−1, i = 2, . . . , n and L ≥ 1 is a constant to be determined. Under the
coordinates (22), system (7) changed into

.
χi(t) = Lχ

pi
i+1(t) + ψi(·)/Lκi , i = 1, . . . , n− 1,

.
χn(t) = Lα̃v(t) + ψn(·)/Lκn ,
y(t) = χ1(t)

(23)

Using Lemma 3 and the fact L ≥ 1, it is not difficult to prove that the following inequalities hold:

1
Lκi |ψi(·))| ≤ C1

Lκi

(
|χ1(t) + yr(t)|(ri+τ)/r1 +

i
∑

j=2

∣∣∣Lκj χj(t)
∣∣∣(ri+τ)/rj

+|χ1(t− d1(t)) + yr(t− d1(t))|(ri+τ)/r1 +
i

∑
j=2

∣∣∣Lκj χj(t− dj(t))
∣∣∣(ri+τ)/rj

)
+ C2

Lκi

(24)

Further, by Assumption 2, we can easily calculate

1
Lκi
|ψi(·)| ≤ C1L1−v

i

∑
j=1

(∣∣∣χj(t)
∣∣∣(ri+τ)/rj

+
∣∣∣χj

(
t− dj(t)

)∣∣∣(ri+τ)/rj
)
+

C2
Lκi

, i = 1, . . . , n (25)

where ν = min2≤j≤i, 1≤i≤n

{
1− κj(ri + τ)/rj + κi

}
> 0 and Ci > 0, i = 1, 2 only depending on

Ci, τ , κi and M.
Next, we construct an observer with the scaling gain L,

.
ζ2 = −Ll1χ̂

p1
2 , χ̂

p1
2 = (ζ2 + l1χ1)

r2 p1/r1

.
ζ i = −Lli−1χ̂

pi−1
i , χ̂

pi−1
i = (ζi + li−1χ̂i−1)

ri pî1/ri−1 , i = 3, . . . , n
(26)

and the controller using the same construction of (14), i.e.,

u(t) = Lκn+1v(χ̂) = −Lκn+1βn(χ̂
σ/rn
n + βσ/rn

n−1 (χ̂
σ/rn−1
n−1 + · · ·+ βσ/r3

2 (χ̂σ/r2
2 + βσ/r3

1 χσ
1 ) · · · ))

(rn+τ)/σ
. (27)

Clearly, using the same notation (17), the system (23), (26) and (27) can be written as

.
X = LF(X) +

[
ψ1(·),

1
Lκ2

ψ2(·), ψ3(·) , . . . ,
1

Lκn
ψn(·), 0, . . . , 0

]T
(28)

where F(X) is same as defined in (18).
Therefore, adopting the Lyapunov function Q(X), as in (15), its derivative along (28) satisfies

.
Q(X) = L ∂Q(X)

∂X F(X) + ∂Q(X)
∂X

[
ψ1(·), 1

Lκ2 ψ2(·), ψ3(·) , . . . , 1
Lκn ψn(·), 0, . . . , 0

]T

≤ −Lc1‖X‖2σ
∆ +

n
∑

i=1

∂Q(X)
∂Xi

ψi(·)
Lκi .

(29)

Further, using (25), one obtains

.
Q(X) ≤ −Lc1‖X‖2σ

∆ + C1

n

∑
i=1

L1−ν

∣∣∣∣ ∂Q(X)

∂Xi

∣∣∣∣
 i

∑
j=1

∣∣∣χj

∣∣∣(ri+τ)/rj
+

i

∑
j=1

∣∣∣χj(t− dj(t))
∣∣∣(ri+τ)/rj

+ C2

n

∑
i=1

1
Lκi

∣∣∣∣ ∂Q(X)

∂Xi

∣∣∣∣. (30)
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Since, by Lemma 2 and [35], ∂Q(X)
∂Xi

is homogeneous of degree 2σ − τ − ri, the terms∣∣∣ ∂Q(X)
∂Xi

∣∣∣ i
∑

j=1

∣∣∣χj

∣∣∣(ri+τ)/rj
and

∣∣∣ ∂Q(X)
∂Xi

∣∣∣ i
∑

j=1

∣∣∣χj(t− dj(t))
∣∣∣(ri+τ)/rj

are homogeneous of degree 2σ, and so it

follows from Lemmas 1 and 2 that there exist positive constants
_
ωi ,

^
ωi for i = 1, . . . , n, such that

∣∣∣∣ ∂Q(X)

∂Xi

∣∣∣∣
 i

∑
j=1

∣∣∣χj

∣∣∣(ri+τ)/rj
+

i

∑
j=1

∣∣∣χj(t− dj(t))
∣∣∣(ri+τ)/rj

 ≤ _
ωi‖X(t)‖2σ

∆ +
^
ωi‖X(t− di(t))‖2σ

∆

Furthermore, it follows from Lemmas 2, 4, and 5 that there are positive constants b1, b2, b̃2
such that ∣∣∣ ∂Q(X)

∂X1

∣∣∣ ≤ b1‖X‖2σ−τ−r1
∆ = b1

(
L1/2σ‖X‖∆

)2σ−τ−r1
(

L−(2σ−τ−r1)/(2σ(τ+r1))
)τ+r1

≤ c1
2 L‖X‖2σ

∆ + b2L−(2σ−τ−r1)/(τ+r1),

1
Lκi

∣∣∣∣ ∂Q(X)

∂Xi

∣∣∣∣ ≤ c2‖X‖2σ−τ−ri
∆

(
L−κi/(τ+ri)

)τ+ri
≤ c2‖X‖2σ

∆ + b̃2L−2σκi/(τ+ri), i = 2, . . . , n (31)

Now, substituting (31) into (30) leads to

.
Q(X(t)) ≤ −Lc1‖X‖2σ

∆ + C1
n
∑

i=1
L1−ν

(
_
ωi‖X(t)‖2σ

∆ +
^
ωi‖X(t− di(t))‖2σ

∆

)
+ c1

2 L‖X(t)‖2σ
∆ + b2L−(2σ−τ−r1)/(τ+r1) +

n
∑

i=2

(
c2‖X(t)‖2σ

∆ + b̃2L−2σκi/(τ+ri)
)

≤ −Lc1‖X‖2σ
∆ + C1

n
∑

i=1
L1−ν

(
_
ωi‖X(t)‖2σ

∆ +
^
ωi‖X(t− di(t))‖2σ

∆

)
+ c1

2 L‖X(t)‖2σ
∆ + b2L−(2σ−τ−r1)/(τ+r1) +

n
∑

i=2

(
c2‖X(t)‖2σ

∆ + b̃2L−2σκi/(τ+ri)
)

≤ −L
[(

c1
2 − (n− 1)c2L−1 − C1L−ν

n
∑

i=1

_
ωi

)
‖X(t)‖2σ

∆ −
(

C1L−ν
n
∑

i=1

^
ωi

)
‖X(t− di(t))‖2σ

∆

]
+b2L−1 + b̃2

n
∑

i=2
L−2σκi/(τ+ri)

≤ −L
[(

c1
2 − (n− 1)c2L−1 − C1L−ν

n
∑

i=1

_
ωi

)
‖X(t)‖2σ

∆ −
(

C1L−ν
n
∑

i=1

^
ωi

)
‖X(t− di(t))‖2σ

∆

]
+b2L−1 + b̃2(n− 1)L−κmin

≤ −L
(

c1
2 − (n− 1)c2L−1 − L−νC1

n
∑

i=1

_
ωi

)
‖X(t)‖2σ

∆

+

(
L1−νC1

n
∑

i=1

^
ωi

)
‖X(t− di(t))‖2σ

∆ + b2L−1 + b̃2(n− 1)L−κmin

(32)

where κmin = min{κi}
To eliminate the effect of time delays, we chose a Lyapunov–Krasovskii functional, as follows:

V(X) = Q(X) + S(X), S(X) =
n

∑
i=1

λ

1− γi

∫ t

t−di(t)
‖X(s)‖2σ

∆ ds, (33)

where λ > 0 is a parameter to be determined later.
Since Q(X) > 0 is continuously differentiable and proper, from Lemma 4.3 of Ref. [39], there

exist two class K∞ functions, π1 and π2, such that

π1(|X|) ≤ Q(X) ≤ π2(|X|) (34)

According to the homogeneous theory, there are constants δi > 0, i = 1, 2, such that

δ1‖X‖2σ
∆ ≤W(X) ≤ δ2‖X‖2σ

∆ (35)

where W(X) > 0 is a function whose homogeneous degree is 2σ. Therefore, the following holds:

π1(|X|) ≤W(X) ≤ π2(|X|) (36)

with two class K∞ functions π1 and π2.
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With the help of 0 ≤ di(t) ≤ di and
.
di(t) ≤ γi < 1, it follows that

n
∑

i=1

λ
1−γi

∫ t
t−di(t)

‖X(s)‖2σ
∆ ds ≤ δi

∫ t
t−di

π̃2(|X(s)|)ds ≤ δi
∫ 0
−di

π̃2(|X(ς + t)|)d(ς + t)

≤ δ̃i sup
−di≤ς≤0

π̃2(|X(ς + t)|) ≤ _
π2(X|z(ς + t)|)

(37)

where δi > 0 and δ̃i > 0 are constants and π̃2 and
_
π2 are class K∞ functions, because

|X(t)| ≤ sup
−d≤ς≤0

|X(ς + t)| and sup
−di≤ς≤0

|z(ς + t)| ≤ sup
−d≤ς≤0

|X(ς + t)|.

Defining π2 =
^
π2 +

_
π2 from (33), (34), and (37), it follows that

^
π1(|X(t)|) ≤ S(X(t)) ≤ π2( sup

−d≤ς≤0
|X(ς + t)|) (38)

From, (20), (21), and (24), follows (32), (33), and (38), in that

.
V =

.
Q +

n
∑

i=1

λ
1−γi
‖X(t)‖2σ

∆ −
n
∑

i=1
λ‖X(t− di(t))‖2σ

∆

≤ −L
(

c1
2 − (n− 1)c2L−1 − L−νC1

n
∑

i=1

_
ωi −∑n

i=1
λ

1−γi

)
‖X(t)‖2µ

∆ −
(

λ− L1−νC1
n
∑

i=1

^
ωi

)
‖X(t− di(t))‖

2µ
∆

+b2L−1 + b̃2(n− 1)L−κmin

= −L
(

c1
2 − (n− 1)c2L−1 − L−νm1 − L−1∑n

i=1
λ

1−γi

)
‖X(t)‖2µ

∆ −
(
λ− L1−νm2

)
‖X(t− di(t))‖

2µ
∆

+b̂2(L−1 + L−κmin )

(39)

where m1 = C1
n
∑

i=1

_
ωi, m2 = C1

n
∑

i=1

^
ωi and ρ1 = b2L−1 + b̃2(n− 1)L−κmin

Therefore, by choosing λ = m2L1−ν, and with a sufficiently large L, it satisfies

(n− 1)c2L−1 + L−ν

(
m1 + m2

n

∑
i=1

1
1− γi

)
≤ c1

2
.

Then, the inequality (39) becomes

.
V (X(t)) ≤ − c1L

2
‖X(t)‖2σ

∆ + ρ1 (40)

In (33), Vn(z) and S(z) are homogeneous of degree 2σ− τ and 2σ with respect to the dilation weight
∆, respectively. Therefore, it follows from Lemma 2 that there exist constants λi > 0 and vi > 0 for i = 1, 2
such that

λ1‖X(t)‖2σ−τ
∆ ≤ Q(X(t)) ≤ λ2‖X(t)‖2σ−τ

∆ (41)

and
v1‖X(t)‖2σ

∆ ≤ S(X(t)) ≤ v2‖X(t)‖2σ
∆ . (42)

Moreover, due to 2σ− τ ≤ 2σ, L(τ−2σ)/τ < 1, τ − 2σ < 0, L > 1 and by Lemma 4, we have

λ2‖X(t)‖2σ−τ
∆ = L

(
(λ2/L)1/τ

)τ
‖X(t)‖2σ−τ

∆ ≤ 2σ− τ

2σ
L‖X(t)‖2σ

∆ +
τL(τ−2σ)/τ

2σ
λ2σ/τ

2 (43)

Then, we have

V(X(t)) ≤ ρ2L‖X(t)‖2σ
∆ +

τL(τ−2σ)/τ

2σ
λ2σ/τ

2 (44)

or
1
ρ2

V(X(t)) ≤ L‖X(t)‖2σ
∆ +

τL(τ−2σ)/τ

2σρ2
λ2σ/τ

2 , (45)

where ρ2 =: (v2 + (2δ− τ)/2σ).
Therefore, it follows from (33) and (44) that

.
V (X(t)) ≤ − c1

2

(
L‖X(t)‖2σ

∆ +
τL(τ−2σ)/τ

2σρ2
λ2σ/τ

2

)
+

τL(τ−2σ)/τ

2σρ2
λ2σ/τ

2 + ρ1 ≤ −
c1

2ρ2
V(X(t)) + ρ1, (46)
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where ρ1 = c1τL(τ−2σ)/τ

4σρ2
λ2σ/τ

2 + ρ1 =
c1τλ2σ/τ

2
4σρ2

L−(2σ−τ)/τ + b2L−1 + b̃2(n− 1)L−κmin .
That is,

d
dt

(
etc1/(2ρ2)V(X(t))

)
≤ etc1/(2ρ2)ρ1 (47)

taking integral on both sides,

etc1/(2ρ2)V(X(t))−V(X(0)) ≤ 2ρ2
c1

ρ1

(
etc1/(2ρ2) − 1

)
. (48)

Therefore, there exists a finite time T > 0,

V(X(t)) ≤ e−tc1/ρ2 V(X(0)) +
2ρ2
c1

ρ1

(
1− e−tc1/ρ2

)
≤ 6ρ2

c1
ρ1, for any t > T (49)

This leads to

|x1(t)− yr(t)| = |χ1(t)| ≤
3

2σL(2σ−τ)/τ
λ2σ/τ

2 +
6b2ρ2
c1L

+
6(n− 1)b̃2ρ2

c1Lκmin
, for any t > T.

Thus, for any given tolerance ε > 0, there exists a sufficiently large L such that

|x1(t)− yr(t)| ≤ ε, ∀ t > T > 0.

This completes the proof of our main theorem. �

Remark 2. In the observer and the controller design, the gain L needs to be assigned as a sufficiently large
number to achieve the given tracking accuracy ε > 0. The value of L depends on the bounds of the reference
signal yr(t) and its first order derivative

.
yr(t). In other words, once the bound of their and desired accuracy ε

are given, the gain L can be determined. Also note that, there are only three set of parameters L, li and βi need
to be determined in our dynamic compensator. The choice of li and βi only depends on the nominal system (9).
Therefore, they can be pre-fixed even for different nonlinear systems. This advantage greatly reduces the design
complexity normally associated with the dynamic output feedback design.

At the end of this section, we show that the problem of global practical tracking via the output
feedback of a system can be solved under the following mild assumption and the above Assumptions
1, 3, and 4 without the triangular increase condition in Assumption 2.

Assumption 5. There are constants C̃i > 0, i = 1, 2, L > 1, 0 < ν ≤ 1 and τ ≥ 0 such that under the
change of (22)

1
Lκi
|ψi(·)| ≤ C̃1L1−v

 n

∑
j=1

∣∣∣χj(t)
∣∣∣(ri+τ)/rj

+
n

∑
j=1

∣∣∣χj

(
t− dj(t)

)∣∣∣(ri+τ)/rj
+ v(ri+τ)/(rn+τ)

+
C̃2
Lκi

, i = 1, . . . , n (50)

where κ1 = 0, r1 = 1, piκi+1 = κi + 1, and ri+1 = (ri + τ)/pi > 0, i = 1, . . . , n.

It is obvious that Assumption 5 is a special case of Assumption 2, and next, a more general
result is given.

Theorem 2. Under Assumptions 1 and 3–5, there exist an observer-based output-feedback control of the form
(26)–(27) that solves the problem of global practical output tracking of System (23).

Proof. Similar to (25), Assumption 5 will directly lead to (32). The rest of the proof is similar to that
of Theorem 1 and hence omitted here. �

4. Example and Simulations
Consider the following time-varying delay nonlinear system,

.
x1(t) = α1x7/5

2 (t) + x6/5
1 (t− d1(t)) cos(x2(t))

.
x2(t) = α2u(t) + 0.5

(
x3/5

2 (t− d2(t)) + 1
)

x4/5
1 (t)

y(t) = α0x1(t)− yr(t)

(51)

where αi ∈ [1, 1.5], i = 0, 1, 2 are unknown constants and d1(t) = (0.3 + sin2(t))/3,
d2(t) = 0.2 + sin2(t)/2(1 + t2) represent time-varying delays. Using only the measurement y(t)
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to track the reference signal, yr(t) is our control purpose. Clearly, the system (51) is of Form (1).
Subsequently, we chose the reference signal as yr(t) = 0.2 sin 5t + (sin t)3.

Then,

|yr(t)| =
∣∣∣0.2 sin(5t) + (sin t)3

∣∣∣ ≤ 1.2,
∣∣ .
yr(t)

∣∣ = ∣∣∣cos(5t) + 3(sin(t))2 cos(t)
∣∣∣ ≤ 4. (52)

By choosing τ = 2/3, together with r1 = 1 and p1 = 7/5, we obtained r2 = 1 and σ = 7/5.
Further, by Lemma 4, it can be verified that

|ϕ1(·)| ≤ |x1(t− d(t))|6/5 ≤ 21/5|x1(t− d(t))|6/5 ≤ 6
7
|x1(t− d(t))|7/5 +

4
7

,

|ϕ2(·)| ≤ 1
2 |x1(t)|4/5|x2(t− d(t))|3/5 + 1

2 23/5|x1(t)|4/5

≤ 4
2×7 |x1(t)|7/5 + 3

2×7 |x2(t− d(t))|3/5 + 4
2×7 |x1(t)|7/5 + 3

2×7 27/5

≤ 4
7

(
|x1(t)|7/5 + |x2(t)|7/5 + |x2(t− d(t))|7/5

)
+ 6

7

(53)

and
0 ≤ d1(t) ≤ 13/30,

.
d1(t) = sin(2t)/3 ≤ 1/3 < 1

0 ≤ d2(t) ≤ 7/10,
.
d2(t) = sin(2t)/4(1 + t2)− t sin2(t)/2(1 + t2)

2 ≤ 3/4 < 1
(54)

Clearly, Assumptions 1–4 holds with C1 ≥ 6/7, C2 ≥ 6/7, and M ≥ 4, and it is specifically
assumed that α0 = 1, α1 = 1.2, α2 = 1.4.

Therefore, following the design procedure above, the output controller can be constructed as

.
η2 = −L5/7(η2 + l1(x1 − yr))

7/5

u = −L9/7β2

(
β1(x1 − yr)

7/5 + (η2 + l1(x1 − yr))
7/5
) (55)

choosing l1 = 4.1, β1 = 1.1, β2 = 4 and L = 80. To perform the simulation, we chose the reference sig-
nal yr(t) = 0.2 sin 5t+ (sin t)3 and the initial states (x1(0), x2(0), η2(0)) = (2, −2, 0.5). The simulation
results are shown in Figures 1–4. These figures verified the effectiveness of our design method.
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It is worth pointing out that although System (51) is simple, it cannot solve the global practical
tracking problem using the design methods presented in [1,3–8,10,11,34], because of the presence of
time-varying delay terms d1(t) and d2(t). Reference [1] only considers state feedback for a certain
class of p-normal form nonlinear systems, while Reference [3] only considers partially linear cases,
etc. In [34], a special case where the time-delay is only constant was considered. This paper addresses
the output-feedback-tracking problem of a class of high-order nonlinear time-varying delay systems.
However, if some classes of a general nonlinear system can be transformed into the considered system
in this article, then the method proposed in this article can also be used.

Next, we will verify that the same dynamic controller (55) can be applied to different nonlinear
systems, achieving the tracking purpose. We changed the functions ϕi(·) to

ϕ1(·) = x6/5
1 (t− d1(t)) + 0.5θ(t) cos(x2(t))

ϕ2(·) = 0.5θ(t)
(

x3/5
2 (t− d2(t)) + 1

)
x4/5

1 (t) + θ(t)
(56)

where |θ(t)| ≤ 1/2 is a bounded disturbance. It is not difficult to prove that Function (56) also
satisfies (53).

The observer and the controller remain the same as before. The numerical experiment demonstrates
that the very same controller, without any change, achieves practical tracking for different functions (56).
To perform the simulation, we chose the bounded disturbance as θ(t) = cos t/2 and the same reference
signal yr(t) = 0.2 sin 5t + (sin t)3, with the initial states being (x1(0), x2(0), η2(0)) = (2, −2, 0.5). The
simulation results are shown in Figures 5–8. These figures verified the effectiveness of our design method.
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5. Conclusions
This article has solved the problem of global output practical tracking for a class of uncertain

inherently time-varying delays nonlinear systems via an observer-based output-feedback control.
With the aid of the homogeneous domination method and the new Lyapunov–Krasovskii functional,
a scaling gain is introduced into the proposed output-feedback controller to guarantee all states of the
closed-loop system remain bounded and simultaneously making the tracking error arbitrarily small.
The simulation results of the given example verified the effectiveness of our designed method. Some
interesting problems still remained; for example, if the growth rate a in Assumption 2 is an unknown
constant, how can we design an adaptive output-feedback controller for System (1)? Recently, a few
results on switched or stochastic high-order time-delay nonlinear systems have been achieved (for
example, [14–16]), but these papers only consider the systems with a high-order nonlinear growth. In
addition, new research topics are also being extensively studied (for example, [40–42]). An important
issue is whether these results can be extended to switched or stochastic nonlinear systems with
low-order nonlinearities or the above topic systems.
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