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Abstract: Logical analysis of data (LAD), an approach to data analysis based on Boolean functions,
combinatorics, and optimization, can be considered one of the methods of interpretable machine
learning. A feature of LAD is that, among many patterns, different types of patterns can be identified,
for example, prime, strong, spanned, and maximum. This paper proposes a decision-support
approach to recognition by sharing different types of patterns to improve the quality of recognition
in terms of accuracy, interpretability, and validity. An algorithm was developed to search for pairs
of strong patterns (prime and spanned) with the same coverage as the training sample, having the
smallest (for the prime pattern) and the largest (for the spanned pattern) number of conditions.
The proposed approach leads to a decrease in the number of unrecognized observations (compared
with the use of spanned patterns only) by 1.5–2 times (experimental results), to some reduction in
recognition errors (compared with the use of prime patterns only) of approximately 1% (depending
on the dataset) and makes it possible to assess in more detail the level of confidence of the recognition
result due to a refined decision-making scheme that uses the information about the number and type
of patterns covering the observation.

Keywords: interpretable machine learning; logical analysis of data; prime patterns; spanned patterns;
rule-based classifiers

1. Introduction

Different machine-learning methods based on various ideas and assumptions (induc-
tive bias) are known to solve classification problems in recognition [1,2]. The choice of
method for a particular problem is determined not only by the estimated classification
accuracy but also by the situation in question, as well as by the purpose for which the ma-
chine generates a recognition solution. Thus, for some tasks, black-box predictive models
are applicable, but there are also those tasks that require the interpretation of the solution
and the justification of the result, for example [3–5]. The most suitable method for these
situations can be summarized as “interpretable machine learning” [6,7]. Such methods
make it possible to build recognition and prediction systems that provide user-interpretable
results [8]. These are decision-support systems for recognition that not only assign a new
object to a certain class but also answer the following questions: (1) Why does the object
belong to this class? (2) How confident is this recognition? (3) Which features are the most
influential? (4) How far the object is from the “class boundary”? (6) Other Questions.

In this study, the logical analysis of data (LAD) methodology was used to build
decision-support systems for recognition. LAD is based on finding logical expressions
(patterns) in the data, which summarize many examples of the same class using Boolean
functions [9–11]. A decision rule for recognition was generated from a set of patterns [12].

A broad overview of the main achievements and applications of LAD can be found
in [13,14]. The recent advances in the theory and practice of the logical analysis of data are
described in [14].
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The further development of LAD may be due to its faster processing as a result of its
ability to process large volumes of data, as well as its increasing interpretability.

LAD, in its original form, is a rather laborious computational procedure [15], which
may limit its practical application for the analysis of large volumes of data. However, there
are ways to accelerate the LAD process. In [16,17], a technique based on ensembles and the
merging of LAD models obtained from subsamples of data was proposed to accelerate the
LAD process.

One of the most interesting directions in the development of LAD is the construction
of a compact classifier. This requires the selection of those features with combinatorial
effects [18,19]. It is also important to select the most informative and significant pat-
terns [20,21] and to form a LAD model (decision rule) [22].

A feature of LAD is that, among many patterns (logical rules), different types of
patterns can be identified, for example, prime, strong, spanned, and maximum [23–25]. The
use of particular types of patterns makes it possible to place the right emphasis when build-
ing a decision-support system: making the rules simpler or more selective, paying attention
to reducing recognition errors, or decreasing the proportion of unrecognized cases.

This paper proposes a decision-support approach to recognition by sharing different
types of patterns to improve the quality of recognition in terms of accuracy, interpretability,
and validity.

2. Patterns in LAD

Consider the problem of recognizing the objects described by binary features and
dividing them into two classes: K = K+ ∪ K− ⊂ Bn

2 , where Bn
2 = {0, 1}nBn

2 = B2 · B2 · . . . ·
B2. The classes do not intersect: K+ ∩ K− =ø.

An observation X ∈ K is described by a binary vector X = (x1, x2, . . . , xn) and can be
represented as a point in the hypercube of the binary feature space Bn

2 . The observations of
class K+ will be called the positive sampling points of K, and the observations of K− will
be referred to as negative sampling points.

Consider a subset of points from Bn
2 , in which some variables are fixed and identical,

and others take an arbitrary value Equation (1) [26]:

T =
{

x ∈ Bn
2 |xi = 1 for ∀i ∈ A and xj = 0 for ∀j ∈ B

}
, (1)

for some subsets of A, B ⊆ {1, 2, . . . , n}, A∩ B =, ø. This set can also be defined as a Boolean
function that takes the true value for the elements of the set t(x) = ( ∧

i∈A
xi) ∧ ( ∧

j∈B
xj).

The set of points x for which t(x) = 1 denotes S(t). S(t) is a subcube in the Boolean
hypercube Bn

2 . The number of points in the subcube is 2(n−|A|−|B|).
A binary variable xi or its negation xi in a term is called literal. The notation xα

i denotes
xi, if α = 1, and xi, if α = 0. Thus, a term is a conjunction of different literals that do not
contain some variable and its negation at the same time. We denote the set of literals in
term t as Lit(t).

Consider that the term t covers the point a ∈ Bn
2 ; if t(a) = 1, then this point belongs to

the corresponding subcube.
The basic concept of the logical analysis of data is the notion of a pattern. A positive

pattern is a subcube of an entire hypercube that intersects with K+ and does not intersect
with K− [27]. Negative patterns have similar definitions.

In other words, pattern P is a term that covers at least one observation of a class and
does not cover any observation of another class. That is, the pattern corresponds to a
subcube that has a non-empty intersection with one of the sets (K+ or K−) and an empty
intersection with another set (K− or K+). Pattern P, which does not intersect with K−, will
be referred to as positive, and pattern P’, which does not intersect with K+, will be called
negative.

More formally [26], term C is called a positive (negative) dataset pattern (K+, K−) if

• C (w) = 0 for every w ∈ K− (w ∈ K+), and;
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• C (w) = 1 for at least one vector w ∈ K+ (w ∈ K−).

The set of observations covered by pattern P is denoted as Cov(P). Patterns are elemen-
tary blocks used for constructing logical decision functions.

2.1. Example 1

Consider the binary dataset presented in Table 1. In this table, a, b, c, d, and e are
positive observations, and f, g, h, i and j are negative observations. For example, it is
possible to verify that x1x3x4 is a positive pattern, and x1x3x4 is negative.

Table 1. Binary data (K+, K−).

x1 x2 x3 x4 x5

K+

a 1 0 1 1 0
b 0 1 0 0 1
c 1 1 1 1 1
d 1 1 0 1 1
e 1 1 1 1 0

K-

f 1 0 0 1 0
g 1 0 0 0 0
h 1 1 0 0 0
i 0 0 0 1 0
j 0 0 0 1 1

As the terms are geometrically interpreted as the subcubes of an n-dimensional cube
{0,1}n, positive (negative) patterns correspond to those subcubes that intersect set K+ (K–)
but do not intersect set K– (K+).

Consider Example 1 again. The term C = x1x4x5 has a positive pattern. The set of
points for which C takes a value of 1, that is, the points for which x1 = 0, x4 = 0, x5 = 1, is
subcube Q = {(00001), (00101), (01001), (01101)}.

As the properties of positive and negative patterns are completely symmetric, without
any loss of generality, we focus on positive patterns and refer to positive patterns simply
as patterns.

As patterns play a central role in LAD, different types of patterns (e.g., prime, spanned,
maximum) were studied, algorithms were developed to enumerate them [25,28], and their
relative effectiveness was analyzed [29,30].

Unfortunately, there is no single and unambiguous criterion for comparing patterns.
Different data may have different requirements for the quality and features of the formed
patterns. In accordance with [18], three partial-order relations—simplicity, selectivity, and
evidence—as well as their possible combinations are used to assess the quality of pure
(homogeneous, without covering observations of other classes) patterns.

The simplicity (or compactness) relationship is often used to compare patterns, includ-
ing those produced by different learning algorithms. Pattern P1 is preferred to P2 with
respect to simplicity (denoted as P1�

Σ
P2), if Lit(P1) ⊆ Lit(P2).

Pattern P is prime if after removing any literal from Lit(P), a term that is not a (pure)
pattern (i.e., it covers the observations of another class) is formed. Evidently, the optimality
of a pattern with respect to simplicity is identical to the statement that this pattern is prime.

2.2. Example 2

The prime pattern Equation (2) can be specified in the binary dataset shown in Table 1.

x3, x1x4, x4x5, x2x4, x1x5, x1x2, x2x5, (2)

In contrast, the pattern x3x4 gives an example of a non-prime pattern.
The search for simpler patterns requires consideration. First, such patterns are better

interpretable and understandable for a person who uses them to make a decision. Second,
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simpler patterns are often considered to have better generalizability, and their use leads to
better recognition accuracy. However, this claim is controversial, and, as will be considered
later, reducing simplicity can lead to higher accuracy.

The use of simple, short patterns reduces the number of incorrectly recognized positive
observations (false negatives) but can also increase the number of incorrectly recognized
negative observations (false positives). A natural way to reduce the number of false
positives is to form more selective patterns, which is achieved by reducing the size of the
subcube defining the pattern.

Pattern P1 is preferred to P2 with respect to selectivity (denoted as P1�
Σ

P2), if S(P1) ⊇
S(P2).

It should be noted that the two relationships discussed earlier are opposed to each
other, that is, Lit(P1) ⊆ Lit(P2)⇔ S(P1) ⊇ S(P2).

The maximum pattern in relation to selectivity is a minterm, that is, a pattern that
covers a single positive observation. The use of this relationship by itself is naturally
ineffective because minterms do not have any generalizing power. However, the selec-
tivity relationship is extremely useful in conjunction with other relationships, as will be
discussed later.

Another useful relation based on the coverage Cov(P) of pattern P is the set of positive
observations of the training sample X ∈ K+, satisfying the conditions of the pattern
P(X) = 1. There is no doubt that patterns with larger coverage have higher generalizability.
The observations of the training sample covered by the pattern are evidence that this
pattern is applicable in decision making.

However, the following points should be noted: Although the relation |Cov(P1)|>
|Cov(P2)| can be interpreted as meaning that pattern P1 is more representative than P2,
it considers only the number of elements in the two sets Cov(P1) and Cov(P2). However,
replacing the mentioned comparison of the number of elements in these two sets with a
stronger relation, which considers the elements of these sets, makes it possible to consider
the individual observations covered by these two patterns. The observations in Cov(P) can
be considered as a “body of evidence” confirming pattern P.

Pattern P1 is preferred to P2 with respect to evidence (denoted as P1�
ε
P2) if it is

Cov(P1) ⊇ Cov(P2). Those patterns that are maximal in the relation of evidence are called
strong; that is, pattern P is strong if there is no pattern P’ such that Cov(P′) ⊃ Cov(P).

2.3. Example 3

The following strong pattern Equation (3) can be identified in the binary dataset
presented in Table 1.

x3, x3x4, x1x3, x1x3x4, x2x4, x1x2x4, x2x5, (3)

You can see that, for example, pattern x1x5 is not strong, because Cov (x2x5) = {b, c, d}⊃
{c, d} = Cov (x1x5).

It is important to note that the relationships in question are not completely indepen-
dent. Thus, the relations of simplicity and selectivity are opposite. Moreover, we note the
following dependencies in Equations (4) and (5):

P1�
σ

P2 ⇒ P1�
ε
P2, (4)

P1�
Σ

P2 ⇒ P2�
ε
P1, (5)

As each of the presented relations expresses different aspects of pattern preference, it
appears reasonable to use different combinations, as noted in [24].

The new relations that can be obtained by applying their combinations (intersection
and lexicographic refinement) are as follows:

The patterns that are maximal in their intersections Σ ∧ ε are called spanned patterns.
The patterns that are maximal in lexicographic refinement ε|σ are called strong prime
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patterns. The patterns that are maximal in lexicographic refinement are called strongly
spanned patterns.

Among all the types of patterns obtained in accordance with the relations and their
combinations considered earlier, the most useful for identifying informative patterns and
using them to support decision making in recognition appears to be the following: prime,
strong prime, and strongly spanned patterns.

Table 2 shows some examples highlighting the existence of patterns with different
combinations of the properties described above.

Table 2. Patterns for binary data, presented in Table 1.

Pattern Properties
Examples of Patterns

Strong Prime Spanned

- + - x1x4, x4x5, x1x5, x1x2
+ + - x3, x2x4
+ - + x1x3x4, x1x2x4
+ + + x2x4x5

3. Searching for Maximum Strong Patterns

Patterns are the building blocks for the formation of the recognition solver function. In
most situations, except for the simplest cases, a single pattern is not sufficient to construct a
solver function [27,31,32], and a set of different patterns ∏ k =

{
Pk

1 , . . . , Pk
qk

}
, which together

cover all or almost all the training observations of some class k (approximate the class
domain), is required. Finding a set of patterns is a key problem in LAD.

Different approaches can be used to find a set of patterns, particularly enumeration
algorithms, which implement a pattern search as an optimization problem. The original
version of LAD [12] used an enumeration algorithm to search for prime patterns. In [23],
an enumeration algorithm was proposed to find spanned patterns. These algorithms are
time-consuming, especially when processing large volumes of data; thus, their practical
use is limited.

In [24], the algorithms for transforming a random pattern into a pattern with certain
properties (prime, spanned, and strong) were given. However, using them to convert
an arbitrary pattern into a prime or a strong pattern does not lead to a pattern with
maximum coverage.

In [30], the optimization problem aimed at searching for patterns with maximum cov-
erage of training observations of some classes was considered, provided that the coverage
of the observations of other classes was unacceptable. A set of patterns requires diversity
to cover all the training observations of some classes. The diversity of the resulting patterns
in this approach is achieved by relying on the feature values of the specific objects.

Consider the observation a ∈ K+. The regularity Pa covers observation a. Those vari-
ables that are fixed in Pa are equal to the corresponding values of the object features a [13].

Based on [30], we consider an a-pattern as a pattern covering observation a. A max-
imum a-pattern is an a-pattern P with maximum coverage, that is, with the maximum
number of positive observations covered by P (if a is positive) or with a maximum number
of negative observations covered by P (if a is negative).

Consider the problem of finding a maximum regularity Pa, that is, a term that, in
addition to observation a, covers as many positive observations as possible without negative
ones.

To define regularity Pa, the binary variables Y = (y1, y2, . . . , yn) are introduced
Equation (6):

yj =

{
1, i−th attribute is fixed in Pa,
0, if not.

, (6)
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Some points b ∈ K+ will be covered by regularity Pa only if yi = 0 for all i, for which
bi 6= ai. In contrast, some points c ∈ K− will not be covered by regularity Pa yi = 1 for at
least one variable i, for which ci 6= ai.

Thus, the problem of finding a maximum pattern can be described as the prob-
lem of finding such values Y = (y1, y2, . . . , yn), in which the resulting regularity Pa

covers as many points as possible b ∈ K+ and does not cover a single point c ∈ K−

Equations (7) and (8) [30]:

∑
b∈K+

n

∏
i = 1

bi 6= ai

(1− yi)→ max, (7)

n

∑
i = 1

ci 6= ai

yi ≥ 1 for all c ∈ K−. (8)

This problem is a conditional pseudo-Boolean optimization problem, that is, the
problem in which the target function and the left parts of the constraints are pseudo-
Boolean functions that are the real functions of the Boolean variables. The target and
constraint functions in this problem are unimodal and monotonic, respectively.

To search for the maximum negative regularities, the problem is formulated in a
similar manner.

It is important to note that any point in Y = (y1, y2, . . . , yn) corresponds to a subcube
in the Boolean feature space.

X = (x1, x2, . . . , xn), which includes basic observations. At Y ∈ Ok(Y1) (i.e., Y differs
from Y1 з by the value of k coordinates), where Y1 = (1, 1, . . . , 1), the number of points of
this subcube is equal to 2k.

Objective Equation (1) is nonlinear. Bonates, Hammer, and Kogan [30] considered
reducing problems Equations (1) and (2) to integer linear programming (ILP) problems.
However, as a result, the dimensionality of the problem greatly increases, and they refuse
the practical application of this approach and resort to heuristic algorithms, particularly
the greedy algorithm, which allows for finding an approximate solution to the problem.

3.1. Greedy Algorithm 1: Increasing Patterns to Maximum Prime Patterns

For a given positive pattern P, covering a, this heuristic converts P into a positive,
prime pattern by sequentially removing the literals from P. At each step, the removal of a
literal is considered advantageous if the resulting pattern is “closer” to the set of positive
observations not covered by it than to the set of negative observations.

To refine the criterion for choosing the best pattern at each step, the “divergence”
between observation b and pattern P is introduced as the number of P literals whose values
in b are equal to zero (these conditions are not satisfied for a given observation). We
denote the divergence between a positive pattern P and the set of positive observations
not covered by it by d+(P). Similarly, d–(P) denotes the divergence between P and a set of
negative observations. The computational experiments carried out in [30] showed that the
ratio (d+(P))/(d−(P)) is a good criterion for choosing a deletable literal at each step.

This heuristic makes it possible to find the prime pattern for the underlying observation
a. However, it should be noted that an approximate solution to the problem using a greedy
algorithm does not guarantee a strong pattern.

3.2. Greedy Algorithm 2: Increasing Patterns to Maximum Strong Patterns

This heuristic extends the current positive pattern P, covering a, by choosing the next
observation to be included in Cov(P), i.e., in the set of positive observations covered by P.
For a non-empty subset S of positive observations, denote by [S] the convex hull of S, i.e.,
the smallest subcube containing S. The heuristic chooses a positive observation b, not yet
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covered by P, such that “[Cov(P)∪{b}]”, is a positive pattern with the maximum number
of literals.

The considered problems with Equations (1) and (2) aim to generate the pure patterns
for which constraint Equation (2) on the non-coverage of observations of the opposite
class is strictly satisfied. However, this leads to overtraining in certain tasks. In such
cases, constraint Equation (2) can be weakened [20], resulting in partial (non-uniform)
patterns. This increases the generalizability of individual patterns and reduces the effects
of overtraining. The following approach is applicable to both pure (homogeneous) and
partial (heterogeneous) patterns.

4. Decision Making on a Set of Patterns

Suppose that several positive Π+ =
{

P+
1 , . . . , P+

q+

}
and negative Π− =

{
P−1 , . . . , P−q−

}
patterns are found. According to the logical analysis of the data, the following rule is used
to determine whether a recognizable observation belongs to one of the classes (Figure 1):

• If an observation is only covered by positive patterns, it is considered positive;
• If an observation is only covered by negative patterns, it is considered negative;
• If an observation is subject to the condition t of the patterns of one class and f of

the other, then the class of observation is determined by voting, for example, as the
result of the difference t/T − f /F, where T and F are the numbers of patterns of
these classes;

• If an observation is not covered by any pattern, it is considered to be unrecognized.

Figure 1. Explanatory diagram for a decision rule.

Thus, the entire feature space is divided into the following areas: unambiguous areas,
which are covered by patterns of only one class; a conflict area, where points are covered by
patterns of different classes (in this case, class membership is determined by pattern voting);
and an area not covered by any pattern (observations of this area cannot be recognized).

The LAD methodology, as described above, makes it possible to identify the patterns
of different types. The use of different patterns has several significant features. The most
influential factor seems to be the opposition between the prime and spanned patterns. The
influence of the pattern type on the recognition results is summarized in Table 3.

Table 3. Influence of pattern types on recognition.

- Prime Patterns Spanned Patterns

Recognition result Fewer unrecognized
observations Lower recognition error

Interpretability Shorter rules Greater confidence in the
recognition result

Prime patterns are simpler and consist of fewer conditions than other patterns. The use
of prime patterns reduces the number of unrecognized observations. The use of spanned
patterns produces classifiers with better generalizability.

This study proposes an approach based on the joint use of two types of patterns,
namely, the construction and use of patterns in pairs: spanned and prime. This makes it
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possible to combine the advantages of these two types of patterns. Certainly, a strongly
spanned pattern and a strong prime pattern are preferable.

If a strong prime pattern and its corresponding strongly spanned pattern (which
differs from the prime pattern in the presence of additional literal) are taken, the following
expressions can be written with respect to them Equations (9)–(11):

Cov(Pspanned) = Cov(Pprime), (9)

S(Pspanned) ⊆ S(Pprime), (10)

Lit(Pprime) ⊆ Lit(Pspanned). (11)

where Pspanned is a strongly spanned pattern, and Pprime is a strong prime pattern.
In Figure 2, some examples of pattern pairs are shown.

Figure 2. Examples of pattern pairs.

Thus, the spanned patterns are more reliable. The prime patterns are simpler and
involve more observations. This increases the interpretability of recognition and makes
decision making more reasonable (Figure 3).

Figure 3. Diagram explaining decision making when using pattern pairs.

Decoding areas:

• 1—Coverage by spanned patterns of the same class;
• 2—Coverage only by prime patterns of the same class;
• 3—Coverage by spanned patterns of different classes;
• 4—Coverage only by prime patterns of different classes;
• 5—Coverage by spanned patterns of one class and prime patterns of another class;
• 6—No pattern coverage.

The proposed approach makes it possible to assess the level of reliability of the
recognition result in more detail through a refined decision-making scheme using the
information on the number and type of patterns covering the observation.
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When using only one type of pattern (or without considering the type of pattern) to
make a classification decision for an observation, the situation could be assigned to one of
the following levels, in descending order of confidence in the recognition result:

• Level 1: implementing patterns of the same class;
• Level 2: patterns of the two classes→ voting;
• Level 3: no satisfying patterns.

The number of these levels increases when two types of patterns, prime (PP) and
spanned (SP), are used.

• Level 1: spanned patterns (SP) of the same class;
• Level 2: only prime patterns (PP) of one class;
• Level 3: SP of one class and only PP of another class;
• Level 4: SP of two classes→ voting;
• Level 5: only PP (of two classes)→ voting;
• Level 6: no satisfying patterns.

When making a decision based on the patterns of one type (prime or spanned), there
are four possible options (Table 4).

Table 4. Classification by patterns of one type.

Implementing the Rules
“−” Rules

Positive Negative

“+” rules
positive voting “+” observed
negative “−” observed unrecognized

When making a decision based on two types of patterns (prime and spanned), the
number of possible choices increases (Table 5).

Table 5. Two types of pattern classification.

Implementing the Rules
“−” Rules

Spanned Prime Negative

“+” rules
spanned voting + +

prime − voting +
negative − − unrecognized

Consider the sets of pattern pairs consisting of a prime pattern and its corresponding
spanned pattern (with additional literal (Lit(Pprime) ⊆ Lit(Pspanned)) and the same coverage
(Cov(Pspanned) = Cov(Pprime)).

Despite the fact that the coverage (on training observations) of these two patterns in
each pair is the same, the subcube obtained by the prime pattern can be more extensive
(S(Pspanned) ⊆ S(Pprime)). Consequently, the area obtained by combining the prime pat-
terns of the same class includes (and may be wider than) the area formed by combining
corresponding covering patterns.

Consider a classification based only on prime patterns. In the set of control observa-
tions, we select a subset of observations that are covered by the patterns of both classes.
Voting was used to confirm these observations. The experiments showed that most recogni-
tion errors occurred in these observations. Now, we consider the classification of this subset
of observations by the patterns of the two types. The considered subset of observations
in this case can be divided into four groups according to the combinations of the pattern
types that cover them:

• Spanned (and prime) positive patterns and only prime (without spanned) negative
patterns;
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• Spanned (and prime) negative patterns and only prime (without spanned) positive
patterns;

• Spanned (and prime) patterns of both classes;
• Prime (without spanned) patterns of both classes.

In view of the fact that spanned patterns are, by definition, more “selective” than
prime patterns, the observations from the first group should be classified as positive and
the observations from the second group as negative, thus reducing the uncertainty that
exists when using prime patterns alone (compare the tables in Figure 4).

Figure 4. Use of two types of patterns compared with using prime patterns only.

Thus, the use of two types of patterns leads to a higher recognition accuracy than the
use of only prime patterns.

Now, consider classification by covering only the patterns. In the set of control
observations, we identify a subset of observations that are not covered by any pattern.
These observations remain unclear. To this subset of observations, apply the prime patterns,
which have more coverage (corresponding to larger subcubes), as shown above. In this
case, some of the observations not covered by the spanned patterns are covered by the
prime patterns. The considered subset of observations in this case can be divided into four
groups according to the combinations of the classes of regularities that cover them:

• Only positive (prime) patterns;
• Only negative (prime) patterns;
• Positive and negative (prime) patterns;
• No coverage.

The observations from the first two groups were clearly recognized as positive and
negative observations, respectively. Voting should be applied to the observations of the
third group. Only the observations of the fourth group remain unrecognized (see the tables
in Figure 5).
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Figure 5. Use of two types of patterns compared with using spanned patterns only.

Thus, the use of two types of patterns results in fewer unrecognized observations than
the use of spanned patterns only.

5. Algorithms for Finding a Pair of Patterns

The following algorithm is proposed to find a pair of patterns: First, a prime pattern
is identified by solving the optimization problem using a greedy algorithm to find the
prime pattern. The prime pattern is then uniquely converted into the corresponding
spanned pattern.

Algorithm for Finding a Pair of Patterns

• Find the prime pattern Pprime by solving problems Equations (1) and (2);
• Determine the set of observations S that are covered Pprime: S = Cov(Pprime);
• Find the corresponding Pprime spanned pattern Pspanned = ∏i∈I xαi

i (convex hull of set
S), where i is the set of all indices i, for which the i-th components of all vectors X ∩ S
have the same value.

Thus, after executing this algorithm for some observations a, the output has a prime
pattern Pprime as a conjunction of literals tprime(x) = ( ∧

i∈A
xi) ∧ ( ∧

j∈B
xj) for some subsets

A, B ⊆ {1, 2, . . . , n}, and a corresponding spanned pattern Pspanned as a conjunction of
tspanned(x) = tprime(x) ∧ tadd(x), where tadd(x) is a conjunction of additional literals, the
presence of which distinguishes the spanned pattern from the prime. The coverage of
these patterns is the same as for the training observations. However, owing to differ-
ent descriptions (additional literals) and volumes, the coverage of the test observations
can differ.

The problem with this method is that finding a strong prime pattern requires an exact
solution to the optimization problem. An approximate solution will only provide a prime
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pattern that may not provide the best coverage. The solution to this problem is to use a
better optimization algorithm to find an exact solution.

6. Results and Discussion

The testing was conducted using publicly available data from the UCI repository.
The most popular datasets [33,34] were selected for testing in order to be able to com-
pare the results with the results of other studies on LAD [12,30,35]: Wisconsin Breast
Cancer (699 observations, 9 categorical attributes) [36,37]; Heart Disease (303 observa-
tions, 14 heterogeneous attributes); Australian Credit (690 observations, 15 heterogeneous
attributes); Boston Housing (506 observations, 14 heterogeneous attributes); and Congres-
sional Voting (435 observations, 16 categorical attributes).

Comparisons of LAD results with other classification methods, including rule-based
classifiers, have already been performed and have shown the competitiveness of LAD with
other methods [29,38]. In this study, the effectiveness of the proposed approach was tested.

The binarization of categorical and numerical attributes was carried out in accordance
with the traditional method used in LAD [27,39,40]. The search for positive and negative
patterns (strongly spanned and prime) was performed using the greedy algorithms de-
scribed above. Each training observation was used as the base observation for the pattern
generation. The test observations were classified by voting for positive and negative pat-
terns. A set of pairs of patterns was generated using the proposed algorithm to search
for a pair of patterns. The classification was performed by voting, considering the type of
covering patterns, as described in the previous section.

Each dataset was randomly divided into two datasets: training (50%) and testing
(50%). The average values for the 20 random partitions are listed in Table 6.

Table 6. The average values for 20 random partitions.

- Observation Classification Breast
Cancer Heart Credit Housing Voting

Strong prime

pos
True 91.3 75.6 83.7 83.4 95.2
False 5.8 19.4 11.4 14.2 3.7

Not recognized 2.9 5.0 4.9 2.4 1.1

neg
True 97.4 79.9 84.0 84.9 95.8
False 2.4 16.4 12.3 11.9 3.6

Not recognized 0.2 3.7 3.7 3.2 0.6

all
True 95.3 77.9 83.9 84.2 95.4
False 3.6 17.8 11.9 13.0 3.7

Not recognized 1.1 4.3 4.2 2.8 0.9

Strongly
spanned

pos
True 91.8 73.4 81.8 82.3 94.4
False 4.1 18.7 10.4 12.6 3.7

Not recognized 4.1 7.9 7.8 5.1 1.9

neg
True 96.8 78.1 82.7 83.4 96.4
False 2.1 14.6 11.8 11.1 3.0

Not recognized 1.1 7.3 5.5 5.5 0.6

all
True 95.0 75.9 82.4 82.8 95.2
False 2.9 16.5 11.1 11.9 3.4

Not recognized 2.1 7.6 6.5 5.3 1.4

Pairs of
patterns

pos
True 93.5 75.7 84.4 84.2 95.2
False 4.6 18.7 10.7 13.4 3.7

Not recognized 2.9 5.6 4.9 2.4 1.1

neg
True 97.7 81.1 84.5 85.7 96.4
False 2.1 15.2 11.8 11.1 3.0

Not recognized 0.2 3.7 3.7 3.2 0.6

all
True 95.9 78.9 84.5 84.9 95.7
False 3.0 16.8 11.3 12.3 3.4

Not recognized 1.1 4.3 4.2 2.8 0.9



Computation 2022, 10, 185 13 of 15

One of the considered real problems is the problem of diagnosing breast cancer from a
sample collected in Wisconsin (Wisconsin Breast Cancer) [34].

The sample contained information on 699 cases. Each case was described by 11 vari-
ables: variable 1—identification number; significant variables 2–10 describe the quantitative
signs of tissues (sample code number, clump thickness, uniformity of cell size, uniformity
of cell shape, marginal adhesion, single epithelial cell size, bare nuclei, bland chromatin,
normal nucleoli, mitoses), expressed as integers from 1 to 10; variable 11 is the target, indi-
cating the class of neoplasm (benign or malignant). The sample contained 458 observations
of the negative class (benign) and 241 observations of the positive class (malignant).

Since data are numeric (integer) values, their binarization is necessary, that is, the
transition to new binary attributes. Cut-point-based binarization was used. Based on the
original attribute x, new binary attributes xt can be introduced as follows Equation (12):

xt =

{
1, if x ≥ t,
0, if x < t,

, (12)

where t is a cut point.
As a result of the binarization procedure, 72 binary attributes were obtained from

9 initial attributes, on the basis of which the patterns were generated. When visualizing
patterns, binary attributes are converted back to numerical values: the presence of the
literal “xt” in the pattern corresponds to the condition of exceeding the cut point t, and the
presence of the literal “negation of xt” in the pattern corresponds to the condition of not
exceeding the cut point t.

The application of the proposed approach is aimed at obtaining pairs of patterns,
where each pair consists of a prime and a spanned pattern. First, a prime pattern is
generated, and then a spanned pattern is built from it. The resulting spanned pattern
differs from the prime one by the presence of additional literals, that is, the additional
clarifying conditions for this problem. In some cases, the spanned pattern may coincide
with the prime.

Some examples of pairs of patterns for the problem under consideration are given
below (the given positive patterns have coverage of at least 30%, and the negative ones of
at least 50%). The main conditions (corresponding to the prime pattern) are highlighted
in bold. The additional conditions (corresponding to the spanned pattern) are written in
normal font: [prime conditions] [additional spanned conditions].

[Clump Thickness > 8] [Uniformity of Cell Size > 3] ≥malignant;
[Clump Thickness > 6] [Uniformity of Cell Shape > 4] [Bare Nuclei > 2] [Marginal

Adhesion > 2] ≥malignant;
[Clump Thickness > 8] [Bare Nuclei > 1] ≥malignant;
[Marginal Adhesion > 5] [Bare Nuclei > 4] [Uniformity of Cell Shape > 4] ≥malignant;
[Uniformity of Cell Size ≤ 1] [Normal Nucleoli ≤ 2] [Bare Nuclei ≤ 1] ≥ benign;
[Uniformity of Cell Shape ≤ 2] [Bare Nuclei ≤ 2] [Uniformity of Cell Size ≤ 1]

[Marginal Adhesion ≤ 1] ≥ benign.
The classification of objects was carried out on the basis of the obtained patterns

according to the procedure described in Section 4, and the results are shown in Table 6.
In the future, it is planned to test the proposed approach on other, more specific machine
learning problems, as well as to expand the class of problems to be solved, for example, its
application to unsupervised learning problems.

7. Conclusions

Searching for patterns is a key part of LAD. Although a pattern is simply a conjunction
of a number of literals, it is possible to identify patterns with certain properties among the
entire set of patterns: prime, spanned, and strong. The distinctive feature of LAD is that
the pattern generation process can be controlled, and patterns with the desired properties
can be obtained. This study proposes an approach that extends the advantages of LAD.
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A study of the peculiarities of using different types of patterns revealed that the use
of prime patterns reduces the number of unrecognized observations, whereas the use of
spanned patterns reduces recognition errors. A new approach for decision support in
recognition was developed by combining the use of two types of patterns: prime and
spanned. This result aims to extend the capabilities of LAD as a promising method for
interpretable machine learning. From the point of view of interpretability, paired patterns
can be considered not as two different rules, but as two variants of one rule: one version is
simpler, and the other is stricter, clarifies, and uses additional conditions.
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