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Abstract: A number of algorithms that aim to reduce power system losses and improve voltage
profiles by optimizing distributed generator (DG) location and size have already been proposed, but
they are still subject to several limitations. Hence, new algorithms can be developed or existing ones
can be improved so that this important issue can be addressed more appropriately and effectively. This
study proposes a reconfiguration methodology based on a hybrid optimization algorithm, consisting
of a combination of the genetic algorithm (GA) and the improved particle swam optimization (IPSO)
algorithm for minimizing active power loss and maintaining the voltage magnitude at about 1 p.u.
The buses at which DGs should be injected were identified based on optimal real power loss and
reactive power limit. When applying the proposed optimization algorithm for DGs allocation in
power system, the search space or number of iterations was reduced, increasing its convergence rate.
The proposed reconfiguration methodology was test in an IEEE-30 bus electrical network system with
DGs allocations and the simulations were conducted using MATLAB software compared to other
optimization algorithms, such as GA, PSO, and IPSO, the combination of GA and IPSO or Hybrid GA
& IPSO (HGAIPSO) method has a smaller number of iterations and is more effective in optimization
problems. The effectiveness of the proposed HGAIPSO has been tested on IEEE-30 bus network
system with DGs allocations, and the obtained test results have been compared to those from other
methods (i.e., GA, PSO, and IPSO). The simulation results show that the proposed HGAIPSO can be
an efficient and promising optimization algorithm for distribution network reconfiguration problems.
The IEEE-30 bus test system with DGs integrated at various location revealed reductions in overall
real power loss of 40.7040%, 36.2403%, and 42.9406% for type 1, type 2, and type 3 DGs allocation,
respectively. The highest bus voltage profile goes to 1.01 pu in the IEEE-30 bus.

Keywords: power loss minimization; power system reconfiguration; voltage profile improvement;
optimization algorithms; reduction of power loss; distribution power network optimization

1. Introduction

It has always been necessary for power distribution networks to adapt to variations in
load demand, which has led to voltage oscillations beyond the permissible variation range
at various buses and power losses. As a result, proper placement and scale of distributed
generation (DG) are required to improve the voltage profile and reduce electrical power
losses. According to research, global consumption is predicted to expand at a 1.6 percent
yearly rate between now and 2025. Consequently, distributed generation (DG), also known
as alternative energy systems, is likely to play a larger role in the future of power systems [1].
Because of their overall favorable impacts on power networks, DG units are now becoming
more in use in electrical distribution networks. For smart grid technology, DG systems
constitute the backbone of smart electrical networks. The DG systems can also increase
system dependability by acting as a backup generator for some customers in the event of
electricity outages [2].

There are two categories of DG technologies: those that use fossil fuels and those that
use renewable energy sources. Fossil-fuel-based DGs include internal combustion engines,
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combustion turbines, and fuel cells. Examples of renewable energy sources include modest
hydro, solar, biomass, geothermal, wind turbines, and various DGs based on these sources.
The technological effects of DG on electrical networks must be evaluated. It takes time to
evaluate the technical effects of DG on power networks [3]. To prevent power losses and
changes in voltage profile, DGs placed in electrical distribution networks must be linked
carefully. Factors such as fault currents, voltage oscillations, interference in voltage control
procedures, increased power losses, increased system capital, and operational expenses, etc.
may result from a weak DG location and allocated capacity. The installation of DG units
in power systems is not a straightforward decision; therefore, the placement and sizing
of DG units to reduce losses and to improve voltage profile must be carefully considered.
Different optimization methods for DG allocations in electrical distribution network are
being developed for power loss minimization and voltage profile improvement.

Changes in load demand have long been a problem for the power distribution net-
work, leading to voltage oscillations outside the range allowed by fluctuations at various
buses and power losses. To enhance the voltage profile and lower electrical power losses,
distributed generation (DG) must be placed and scaled properly. Research indicates that
between now and 2025, global consumption will grow at a 1.6 percent annual rate. Conse-
quently, distributed generation (DG), usually referred to as alternative energy systems, will
likely have a bigger impact on power networks in the future [4]. DG units are being utilized
more commonly in electrical distribution networks because of their overall positive effects
on power networks. DG systems serve as the foundation of smart electrical networks in
the context of smart grid technologies. In the case of power outages, these DG systems can
serve as backup generators for select consumers, which helps boost system reliability.

1.1. Context, Background, and Motivation

Over 6000 MW of generation capacity has been added to the existing power systems in
African countries via renewable energy sources, namely the wind, solar, biomass, and small
hydro that are a part of DGs systems. Through private-sector investment, independent
electricity producers (IPP) hope to add more megawatts to the power grid. The allocation
for coal project procurement from IPPs is around 2500 MW [4]. While the Grand Inga
Project, which aims to secure 2500 MW, is still under construction, South Africa and the
DRC have already inked an energy deal. A legal basis for collaboration between the two
nations is provided by the 2014 agreement.

The implementation of open-energy markets in many countries in the early 1990s
paved the way for new competitors to enter the market, while the introduction of new elec-
tricity production led to its liberalization. In terms of the environment, several traditional
types of generators release carbon dioxide, which could contribute to global warming.
Changing from fossil fuels such as coal, gas, and oil to renewable energy sources such
as solar and wind would reduce emissions. Governments have introduced incentives to
encourage IPP to use renewable energy sources as an alternative source of energy [5].

Since electricity generated is to be consumed immediately as it cannot be efficiently
stored, power system operators must make sure to balance power generation and demand.
However, the redial design of distribution systems with the integration of DGs was not
originally considered in the course of power system design [5]. This makes the involvement
of the DGs essential to meet system technical and economical demands by optimally placing
and sizing DGs. Optimal allocation and sizing find their main application in this regard in
the use of different algorithms for decision-making.

1.2. Problem Statement

Optimization methods for electrical distribution network reconfiguration and DG
placement have shown remarkable results for power loss minimization and voltage profile
improvement. The optimization method used in this research paper for electrical distribu-
tion network reconfiguration is the HGAIPSO, an artificial-intelligence-based approach that
selectively locates the optimal location for a particle. The problem in this study consists of
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determining the optimal size or rating of DGs to be injected into power systems at specific
nodes and also to find the optimal allocation of DGs in power systems for reactive power
control and power loss minimization. Details of the GA, PSO, and IPSO algorithms can
be found in the literature. There are two categories of DG technologies: those based on
fossil fuels and those based on renewable energy sources. Examples of DGs using fossil
fuels are internal combustion engines, combustion turbines, and fuel cells. Examples of
DGs that use renewable energy sources include wind turbines, solar, biomass, geothermal,
small hydro, and others. It is critical to evaluate the technological effects of DG in power
networks. It takes time to examine the technical effects of DG on power networks [3]. As
a result, DGs installed in electrical distribution networks need to be linked in a way that
prevents power losses and changes in voltage profile. In this paper,

• The candidate bus in power systems at which DGs should be allocated based on the
load flow, reactive power control limit, and power loss sensitivity factors is determined.

• The load flow problem, including constraints, is solved for DGs placement and sizing
using a hybrid approach that combines both GA and IPSO. A sample electrical distri-
bution network, i.e., the IEEE-30-bus test system, is used to evaluate the performance
of the proposed algorithm.

1.3. Research Aims and Objectives

This research paper presents an improved optimization method for electrical power
network reconfiguration applications. The iteration process of the algorithm takes account
of constraints such as the real power loss minimization, reactive power limit, and voltage
amplitude stability. Other aims of this study include the following:

• Development of the HGAIPSO algorithm, which is a combination of GA and IPSO
algorithms, for optimal allocation of DGs in electrical distribution network. Formula-
tion of a multi-objective function that incorporates the real power loss reduction index
(PLRI), the reactive power control reduction index (QCRI), and the voltage profile
improvement index (VPII) is provided.

• Reduction of power losses and improvement of voltage profiles by optimal sizing and
placement of DGs.

• Comparative analysis of the proposed HGAIPSO algorithm with existing ones, i.e., the
GA, PSO, and IPSO. An IEEE-30 bus electrical network with DGs allocation at various
buses has been used for testing.

1.4. Contributions of the Study

This study will be advantageous to several parties, either directly or indirectly. Distribu-
tion firms and others will directly profit from the results of this study for the following reasons:

• Distribution firms and independent power producers (IPP) will be able to lessen actual
power loss in their networks. By taking advantage of this decrease, they can avoid
fines and reimbursements and increase their profit margins.

• Independent power producers (IPP) will be able to more simply and consistently
incorporate small-scale renewable energy sources into their networks. This is crucial
since the power generation sector is switching to green energy.

• Customers will gain, since they will feel comfortable using their devices with constant
voltage profiles.

1.5. Research Questions

Answers to the following questions are provided via analysis of the sample electrical
power network with DG allocation:

• By considering the real power losses and voltage profile as index for analysis, what
would be the performance of a power system with and without optimal allocation and
sizing of DGs?
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• What are the advantages of using the HGAIPSO method compared to the GA, PSO,
and IPSO methods in power system reconfiguration?

1.6. Paper Structure

The research paper is arranged into five sections. The introduction is the first section,
which discusses generalities of electrical distribution networks. This section also discusses
methods for minimizing power system losses and improving voltage profiles, as well as
the manner in which DGs affect power system performance. Section 2 contains a literature
review and discusses different optimization algorithms for power system analysis, presents
a definition of sensitivity factors, defines the multi objective function equation, and includes
a set of operational constraints. The reasons for choosing the proposed optimization algo-
rithm are discussed in Section 3, the methodology section, which also provides details on
the study of each different optimization strategy, including its parameters, implementation
steps, flow charts, and the methods chosen for this investigation. Throughout Section 3,
the proposed algorithm and its flowchart is described in detail. In Section 4, tables and
graphs that present the results are provided with detailed discussion. A conclusion is given
in Section 5.

2. Literature Review
2.1. Generality of Distributed Generation

Figure 1 shows the plot of a typical power loss versus DG size for a particular distribu-
tion network. As the DG size increases in power rating at a specific bus, the losses become
minimal. If the size of DG increases further, it is likely to also see power losses increase.
Therefore, to minimize the overall losses, DGs must be optimally allocated in a distribution
network [6]. Figure 1 shows that it is not always appropriate to inject a large DG into an
electrical distribution system. It should be of such size that it can consumed within the
distribution substation boundary. A high-capacity DG in an electrical distribution network
(DN) can result in reverse power flow and overvoltage at the point of common coupling
(PCC) between DG and DN, resulting in very high loss [6,7]. Therefore, in choosing the rat-
ing of DG, it is important to take into account the size of the electrical distribution network,
including the size of the load (MW). At high DG capacities, losses are higher because the
distribution system was initially designed to maximize power flow from the source end
(substation) to the load and gradually decrease conductor sizes from the substation to the
consumer point. Using high-capacity DG without a strengthening of the system will result
in excessive flow of power through small conductors and consequently higher losses.
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2.2. Radial Electrical Distribution Networks

Conventional electrical distribution networks are designed to operate in radial mode,
as shown in Figure 2; the power is flowing from main generator to the consumer loads at
low voltages. These types of electrical distribution networks can be easily reconfigured.
The radial distribution system shown in Figure 2 has separated feeders that are coming
from a single substation [8].
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2.3. Fuzzy Logic Algorithm

In [9], M. M. Aman and G. B. Jasmon proposed a new method for the placement of
DG in radial distribution systems that employs fuzzy logic algorithms (FLA) in order to
reduce real power losses and improve voltage profiles. FLA algorithms take a shorter
time to compute than GA and PSO because they are simple by design. In [10], Nasim
Ali Khan, S. Ghosh, and S. P. Ghoshal proposed an approach to allocate and size DGs in
distribution networks and evaluated the benefits of employing DG by utilizing voltage
profile improvement indexes (VPII) and line loss reduction indexes (LLRI).

For reactive power control with the aim of improving the voltage profile of power
systems, the fuzzy logic algorithm shown in the Figure 3 flow diagram has been applied
for many years. The voltage and controlling variables are converted into fuzzy sets to form
the relations between voltage and controlling ability of the controlling device installed [11].
The control variables are selected based on local control towards a bus having unacceptable
voltage and overall control towards the buses having poor voltage profile. They can be
used in anything from small circuits to large mainframes. They can be used to increase the
efficiency of the power distribution systems, as most of the data used in power distribution
system analysis are approximate values and assumptions.

Advantages of Fuzzy Logic Algorithms

• Permanent and consistent.
• Easily documented.
• Easily transferred or reproduced.

Disadvantages of Fuzzy Logic Algorithms

• Unable to learn or adapt to new problems or situations.

2.4. Artificial Neural Network

These are biologically inspired systems that convert a certain set of inputs into a set
of outputs by using a network of neurons in which each neuron can produce one output
as a function of inputs. A fundamental neuron can be considered as a processor that can
make a simple nonlinear operation of its inputs for the production of a single output. The
understanding of the neuron operation and the pattern of their interconnection can be used
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to form a computer for solving problems of classification of the pattern in the real world, as
shown in Figure 4 [12]. They can be classified by their structures, such as the number of
layers, topology, connectivity pattern, and recurrent.
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• Input Layer: The nodes are input units that cannot process the data and the information
but can distribute this data and information to other units.

• Hidden Layers: The nodes are hidden units that are not visible. Their task is to provide
the network ability to map or classify the nonlinear problems.

• Output Layer: The nodes are output units, which can encode possible values to be
allocated to the case under consideration.

Advantages of Artificial Neutral Networks

• Speed of processing.
• They do not need specific details of the power system.

Disadvantages of Artificial Neutral Networks

• Large dimensionality
• Results can always be generated even if the input data are unreasonable.

In [13], the methodology proposed by M. Heydari, S.M. Hosseini, and S.A. Gholamian
can solve the optimal capacitor allocation problem in practical distribution networks using
an artificial neural network (ANN) algorithm. They proposed a best radial distribution
network (BRDN) determined by an ANN algorithm. This algorithm finds the best location,
size, and number of capacitor banks. In [12], M. Padma, N. Sinarami, and V.C Veera used
the ANN algorithm to optimize the placement and sizing of DGs for capacity improvement
and loss reduction.

2.5. Genetic Algorthm

In GA, the successive generations of a population adapt to the environment by mimick-
ing the biological processes that occur in an ecosystem using the principle of evolutionary
adaptation as modeled by genetic algorithms and unconstrained optimization methods.
Natural selection and evolution is initiated by the genetic algorithm, which seeks to solve
an optimization problem with objective function f(x) where x= x_1, x_2, x_3 . . . , x_n with
optimization parameters in N-dimensions. The basic unit of the GA are genes and chro-
mosomes, with standard optimization parameters encoded in binary code string. The GA
genes represent binary codes and are combined together to make chromosomes [13].

In GA, the population represents candidate solutions as determined by n chromosomes;
each chromosome represents a real value vector with m dimensions, where m is the number
of optimized parameters. The flowchart of GA that is used to solve engineering problems
is shown in Figure 5. The flowchart was constructed using the steps for the implementation
of a genetic algorithm’s steps.

In the methodology of [13], Auglt, R. Hooshmand, and M. Ataei determined the size
and location of the DG units via genetic algorithms (GA). Cost-function-based methods
give an optimal solution, but are computationally demanding and slow in convergence.
While they have addressed the problem in terms of costs, cost-function calculations may
lead to doubt regarding the exact size of DG units at suitable locations. In [14], Rahmat-
Allah Hooshmand used a real-coded genetic algorithm (RCGA) to solve the problem of
optimal placement of capacitor banks in unbalanced distributed systems with mesh/radial
configurations. For reducing losses and controlling voltages of distribution systems, fixed
and switched capacitors were optimally used.

In [15], S. Jalilzadeh, S. Galvani, H. Hosseinian, and F. Razavi developed a method
based on RCGA (real-coded genetic algorithms) for finding the optimal values for fixed
and switched capacitors in distribution networks. Various types of capacitors available on
the market were used to model the loads at different load levels to solve for the optimal
capacitor rate. In [16], Mehrdad Movahed examined voltage profiles in distribution systems
and used reactive power injection to facilitate the improvement of voltage profiles in end
busses that were far from slack buses. To determine optimum reactive power injection
values, a genetic algorithm was used. The method resulted in an improved voltage profile
and a decrease in losses.
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In [17], according to Carpinelli, DG can be optimally located in radial distribution
networks if they are located with the lowest minimum system losses. A GA solution
was obtained by formulating the problem as an optimization problem with the objective
of minimizing real power loss under equality and inequality constraints. Location was
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determined based on how sensitive active power loss was to real power injection through
DG. They demonstrated that the benefit increases as more locations are located within
certain areas, beyond which it is not economically feasible. Only active power loss was
considered in this formula.

In [18], a study by Saeed Amin Hajizadeh and Ehsan Hajizadeh Poor on shunt capacitor
placement and distributed generation plants, reported the effect of genetic algorithms on
the reduction of power loss and voltage profile in radial distribution systems. In the authors’
research, they found that locating distributed generation plants and capacitors at the best
locations leads to voltage profiles with lower losses. A distribution plant located near the
load is the best location for shunt capacitors.

2.6. PSO Algorthm

PSO is an optimization method inspired by social behavior of birds flocking and fish
schools as a starting point; as shown in the steps depicted in Figure 6, the PSO algorithm
creates a population of particles that are positioned randomly throughout the search space.
Particles represent solutions to the problem and have fitness values, with optimization
being based on their fitness. Eventually, particles will move toward the optimal position, as
they will have experienced their best position and the best solution. The updated velocity
of particles is based on three factors: their past velocity, their best position to date, and the
best position the entire swarm has reached in the past.

In [19], it is suggested by Amin Hajizadeh and Ehsan Hajizadeh that distribution
planning can be done in a PSO-based manner. They developed a multi-objective setting
for the optimal sizing and placing of distributed generation assets in distribution systems,
minimizing the costs of power loss. Based on a PSO and weight approach, a best com-
promise was achieved between these two costs using the implemented technique. In [20],
a study by Kai Zou and A. P. Agalgaonkar on shunt capacitors and DG units sought to
establish voltage support zones in distribution networks. Their method reduced the search
space by identifying the target voltage zones numerically and analytically. The authors
proposed minimizing the investment cost for DG units and shunt capacitors by strategically
placing DG units and shunt capacitors using PSO for overall voltage support and power
loss reduction.

In [21], a methodology was proposed by I. Ziari et al. for the optimal allocation of
capacitors and sizing capacitors for minimizing transmission line losses and improving
voltage profiles. The results showed that the proposed methodology was more accurate
and robust compared to genetic algorithm and nonlinear programming. In [22], according
to Khanjanzadeh et al., the role of the location and capacity of a DG on enhancing stable
voltage in radial distributed systems via PSO could be determined, and results of the
PSO algorithm compared to the GA algorithm in terms of accuracy and convergence
were discussed. PSO was found to be more accurate and faster to convergence than the
GA method.

In [23], using a PSO-based technique, Varesi proposed optimization of DG unit allo-
cation in the power system to reduce power losses and improve voltage profiles. Load
flow algorithm and PSO were properly integrated to determine the best number, type, size,
and placement of DG units. The researcher only considered two types of DG units. In [24],
according to Mohammed M. and M. A. Nasab, a multi-objective PSO approach was used to
optimize DG size and placement. The objective function used in the research was a hybrid
objective function with two parts, the first part being a Power Loss Reduction Index, and
the second part being a Reliability Improvement Index. Only acting power losses were
considered in the research.
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In [25], using a Novel Binary Particle Swarm Optimization (NBPSO) technique, N.
Mancer, B. Mahdad, and K. Srairi presented an improved total voltage profile by incorporat-
ing optimal placement of shunt capacitors with constraints in power distribution systems.
The NBPSO method determined the optimal capacitor sizing and locations by using the
near-global optimization approach. Shunt capacitors were incorporated into the sizing and
placement of capacitors. In [26], a new study by Mehdi Nafar used discrete particle swarm
optimization (DPSO) to optimize distribution system voltage profiles and to reduce total
harmonic distortion (THD) in a distributed generation and capacitor system. The objective
function had a term which prevented harmonic resonance between capacitor reactance and
system reactance. Constraints included voltage limit, voltage THD, and number/size of
capacitors and generators. The IEEE 33-bus test system was modified and employed in
testing the proposed algorithm.

2.7. IPSO Algorrthm

In [27], the IPSO (IPSO) referred to by I. Ziari and G. Platt used optimal scheduling
of DG and capacitor banks to minimize the reliability and line loss costs as well as the
investment cost associated with electricity networks. They used crossover and mutation
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operators in their research to reduce the likelihood of catching in the local smallest amount.
They only considered true power losses when modeling IPSOs by minimizing power loss
and maintaining the voltage profile and stability margin. In [28] N. Jain, S.N. Singh, and
S.C. Srivastava developed a method for optimizing the placing and sizing of multiple DGs
using IPSO. The researchers found that the method performed better compared to other
classical and analytical methods for the placement of a single DG.

In [29], the IPSO based method proposed by Umapathi Reddy et al. is applied to
loss reduction in unbalanced radial distribution systems. The study presented an efficient
algorithm for determining where, what kind, and what size capacitor bank to install in
unbalanced radial distribution systems. In addition, a selected bus identification method
described for determining optimal capacitor placement locations using power loss indices
(PLI) analysis. In unbalanced radial distribution systems, we used the IPSO approach to
determine the optimal capacitor bank sizing. There are n particles in the population of the
IPSO algorithm, and each represents a candidate solution; m is the number of optimized
parameters for each particle, and each particle is an m dimensional real value vector. These
parameters represent dimensions of the problem space. There are several steps in the
process of IPSO. The IPSO algorithm needs to be adapted to each type of optimization
problem that it must solve.

3. Methodology
3.1. IEEE-30 Bus Electrical Network

The IEEE-30 bus test represents a portion of the American Electric Power System (in
the Midwestern US). The model has these buses at either 132 or 33 kV. The IEEE-30 bus
test does not have line limits. Figure 7 shows the line diagram of the test system, while
Tables 1–3 show the bus load injection, reactive power limit, and line parameters of the
IEEE-30 bus test system, respectively [30].
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Table 1. Bus load injection bus for IEEE-30 bus test system.

Bus Load (MW) Bus Load (MW)
1 0.0 16 3.5
2 21.7 17 9.0
3 2.4 18 3.2
4 67.6 19 9.5
5 34.2 20 2.2
6 0.0 21 17.5
7 22.8 22 0.0
8 30.0 23 3.2
9 0.0 24 8.7
10 5.8 25 0.0
11 0.0 26 3.5
12 11.2 27 0.0
13 0.0 28 0.0
14 6.2 29 2.4
15 8.2 30 10.6

Table 2. Reactive power limit for IEEE-30 bus test system.

Bus Qmin (pu) Qmax (pu) Bus Qmin (pu) Qmax (pu)
1 −0.2 0.0 16
2 −0.2 0.2 17 −0.05 0.05
3 18 0.0 0.055
4 19
5 −0.15 0.15 20
6 21
7 22
8 −0.15 0.15 23 −0.15 0.055
9 24
10 25
11 −0.1 0.1 26
12 27 −0.055 0.055
13 −0.15 0.15 28
14 29
15 30

3.2. Types of DGs and Number of DGs Used

This study is about optimizing the location and size of three types of DGs using the
assumptions that DGs are operating under any one of the three cases listed below [31].

• Case 1: DG that injects active power, which is only referred to as Type A (photovoltaic
power); the number of DGs to be used will be determined by the proposed algorithm
and one will be placed per selected bus.

• Case 2: DG that injects both active and reactive power, referred to as Type B (wind
power); the number of DGs to be used will be determined by the proposed algorithm
and one will be placed per selected bus.

• Case 3: DG that injects active power and absorbs reactive power, referred to as Type
C (hydro power); the number of DGs to be used will be determined by the proposed
algorithm and one will be placed per selected bus.
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Table 3. Line parameters for IEEE-30 bus test system.

Line From Bus To Bus R(p.u) X(p.u) Tap Ratio Rating(p.u)
1 1 2 0.00192 0.0575 0.300
2 1 3 0.0452 0.1852 0.9610 0.300
3 2 4 0.0570 0.1737 0.9560 0.300
4 3 4 0.0132 0.4845 0.300
5 2 5 0.0472 0.5215 0.300
6 2 6 0.0581 0.4521 0.300
7 4 6 0.0119 0.4152 0.300
8 5 7 0.0460 0.5560 0.300
9 6 7 0.0267 0.1737 0.300

10 6 8 0.0120 0.0379 0.300
11 6 9 0.0000 0.1983 0.300
12 6 10 0.0000 0.1763 0.300
13 9 11 0.0000 0.0414 0.9700 0.300
14 9 10 0.0000 0.1160 0.9650 0.650
15 4 12 0.0000 0.0820 0.9635 0.650
16 12 13 0.0000 0.0420 0.320
17 12 14 0.1231 0.2080 0.320
18 12 15 0.0662 0.2560 0.320
19 12 16 0.0945 0.1304 0.320
20 14 15 0.2210 0.1987 0.160
21 16 17 0.0824 0.1997 0.160
22 15 18 0.1070 0.1932 0.160
23 17 19 0.0936 0.2185 0.9590 0.160
24 18 20 0.0324 0.1292 0.320
25 19 20 0.0348 0.0680 0.300
26 10 17 0.0727 0.2090 0.9850 0.300
27 10 21 0.0116 0.0749 0.300
28 10 22 0.0116 0.1499 0.160
29 10 22 0.1000 0.0236 0.300
30 21 23 0.1150 0.2020 0.160
31 15 24 0.1320 0.1790 0.300
32 22 24 0.1885 0.2700 0.300
33 23 25 0.2544 0.3292 0.9655 0.300
34 24 26 0.1093 0.3800 0.300
35 25 27 0.0000 0.2087 0.300
36 25 27 0.2198 0.3960 0.300
37 28 29 0.3202 0.4153 0.9810 0.300

3.3. Development of HGAIPSO Algorithm

This proposed method is a hybrid of GA and Improved Particle Swarm Optimization
IPSO for optimal DG allocation DG. The DG is located within the selected buses on the
distribution system with the aim of reducing power system losses and improving voltage
profile. The selected buses for DG location are selected based on power flow and power
loss sensitivity factors. The proposed algorithm (HGAIPSO) is able to select quickly by
reducing the number of iterations. The location of the DG is determined by HGAIPSO
based on sensitivity factors [32].

IPSO receives some GA output containing DG locations and DG sizes for various
solutions. This GA output is then used as the initial particle set by IPSO. This helps IPSO
reach convergence faster. Optimal solutions are derived from genetic algorithms through
IPSO. The following Figure 8 contains the implementation steps showing how DG units in
the distribution system are optimally allocated using HGAIPSO.



Computation 2022, 10, 180 14 of 24

Computation 2022, 10, x FOR PEER REVIEW 14 of 25 
 

 

This study is about optimizing the location and size of three types of DGs using the 

assumptions that DGs are operating under any one of the three cases listed below [31]. 

• Case 1: DG that injects active power, which is only referred to as Type A (photovol-

taic power); the number of DGs to be used will be determined by the proposed al-

gorithm and one will be placed per selected bus. 

• Case 2: DG that injects both active and reactive power, referred to as Type B (wind 

power); the number of DGs to be used will be determined by the proposed algo-

rithm and one will be placed per selected bus. 

• Case 3: DG that injects active power and absorbs reactive power, referred to as Type 

C (hydro power); the number of DGs to be used will be determined by the proposed 

algorithm and one will be placed per selected bus. 

3.3. Development of HGAIPSO Algorithm 

This proposed method is a hybrid of GA and Improved Particle Swarm Optimiza-

tion IPSO for optimal DG allocation DG. The DG is located within the selected buses on 

the distribution system with the aim of reducing power system losses and improving 

voltage profile. The selected buses for DG location are selected based on power flow and 

power loss sensitivity factors. The proposed algorithm (HGAIPSO) is able to select 

quickly by reducing the number of iterations. The location of the DG is determined by 

HGAIPSO based on sensitivity factors [32]. 

IPSO receives some GA output containing DG locations and DG sizes for various 

solutions. This GA output is then used as the initial particle set by IPSO. This helps IPSO 

reach convergence faster. Optimal solutions are derived from genetic algorithms through 

IPSO. The following Figure 8 contains the implementation steps showing how DG units 

in the distribution system are optimally allocated using HGAIPSO. 

 

Figure 8. A summarized flow diagram for the proposed algorithm HGAIPSO. 

3.4. Formulation of System Power Flow Sensitivity Factors 

Specifically, the system flow sensitivity determines whether there is a change in the 

amount of power flowing in a transmission or distribution line between two buses, for 

example, bus i and bus j, for the amount of power injected into any one of the buses in 

Figure 8. A summarized flow diagram for the proposed algorithm HGAIPSO.

3.4. Formulation of System Power Flow Sensitivity Factors

Specifically, the system flow sensitivity determines whether there is a change in the
amount of power flowing in a transmission or distribution line between two buses, for
example, bus i and bus j, for the amount of power injected into any one of the buses in the
system. Injection of complex power by a source into a system bus, such as some ith power
system bus, can be described as follows [32]:

Si = Pi + Qi = Vi J∗i − i = 1, 2, . . . , n (1)

where, with respect to ground, Vi is the voltage at the ith bus.
J∗i Injected into the bus by the source current is given by

Ji = ∑n
j=1 YiVJ;=1,2,...n (2)

In other words, if we substitute this equation into the complex conjugate equation of
power injection, we obtain the following:

Pi − jQi = ∑n
j=1 YiVJ;=1,2,...n (3)

We obtain the following equation when we combine the real and imaginary parts:

Pi = Re

{
Vi ∗∑n

j=1 YiVJ

}
(4)

Qi = −Im
{

Vi ∗∑n
j=1 YiVJ

}
(5)

The polar forms Vi and Yij can be expressed as

Vi = |Vi|ejδi (6)

Yi = |Yi|ejδi (7)
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The actual and reactive powers can be expressed in general by polar representations:

Pi = |Vi|∑n
j=1

∣∣Yij
∣∣ cos

(
θij + δij

)
; i = 1, 2, . . . , n (8)

3.4.1. Change in Real Power Flow Analysis

Real power flow in a line k connecting two buses i and j can be expressed as:

Qi = −|Vi|∑n
j=1

∣∣Yij
∣∣ sin

(
θij + δij

)
; i = 1, 2, . . . , n (9)

where Vi and Vj are the voltage magnitudes at buses i and j, respectively, and δi and δj are
the voltage angles at buses I and j, respectively. Further, Yij is the magnitude of the element
of the YBUS matrix, and θij is the angle of the ijth element of the YBUS matrix.

Mathematically, the real power flow sensitivity is written as

Pij = ViVjYij cos
(
θij + δij

)
−V∗i Vji cos

(
θij
)

(10)

By neglecting higher order terms and using Taylor series approximation, the change
can be expressed as [ ∆Pij

∆Pn
∆Pij
∆Qn

]
(11)

Based on the partial derivatives of real power flow with respect to variables ∂ and V,
the coefficients in the above equation can be obtained as follows:

∆Pij =
∂Pij

∂δi
∆Qi +

∂Pij

∂δj
∆Qj +

∂Pij

∂δi
∆Vi +

∂Pij

∂δj
∆Vi (12)

∂Pij

∂δi
= ViVjYij sin

(
θij + δij

)
(13)

∂Pij

∂δi
= −ViVjYij sin

(
θij + δij

)
(14)

∂Pij

∂Vi
= VjYij cos

(
θij + δij

)
− 2VjYij cos

(
θij
)

(15)

∂Pij

∂Vj
= VjYij cos

(
θij + δij

)
(16)

3.4.2. System Power Loss Sensitivity Factors

A real and reactive power controls sensitivity factor calculated from the circuit diagram
is shown in Figure 9 below.
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3.4.3. Choosing Weights Values for Multi-Objective Functions

The allocation of the various weights in a given multi-objective function vary according
to the designer’s concerns. This study gives more focus to real power loss reduction because
it can result in a decrease in the total cost of operation and increase the efficiency of the
power network [33]. However, as the other two factors are also important, a study of the
effect of the weights on the fitness was conducted in order to determine the best weights
combination to implement for the multi-objective function. In this study, weight values
were assumed to be positive and were restricted as follows:

• W1 was between 0.6 and 0.8
• W2 and W3 were restricted between 0.1 and 0.3

This was done to ensure that emphasis was given to the real power loss reduction
index, as stated earlier, while still ensuring that all three indices are taken into consideration
in the multi-objective function [34].

It is also important to note that the condition |W1| + |W2| + |W3| = 1 has to be
satisfied in each case. Weights are presented in Table 4.

Table 4. The effects of weights on fitness.

Weight 1 (W1) Weight 2 (W2) Weight 3 (W3) Best Fitness
0.5 0.1 0.4 0.909
0.5 0.2 0.3 0.910
0.5 0.3 0.2 0.909
0.5 0.4 0.1 0.910
0.6 0.1 0.3 0.910
0.6 0.2 0.2 0.909
0.6 0.3 0.1 0.909
0.7 0.1 0.2 0.91
0.7 0.2 0.1 0.910
0.8 0.1 0.1 0.909

Table 4 shows the combinations of weights chosen, which are those that gave the
minimum best fitness. The multi-objective function was given by

MOF = 0.6PLRI + 0.2QLRI + 0.2 VPII (17)

The Newton Raphson method was used to estimate the base case reactive power,
controlled to be 68.8881 MVAR, in order to ensure fair comparison. The number of DGs to
be located and sized optimally was equal to the number of DGs in the comparison work;
that is,

• the real power limitation for Type A, B, and C DGs is 0–12 MW;
• for Type B and C DGs, the reactive power limitation is 0–3 MVAR;
• for Type C, the reactive power limitation is −3–0 MVAR.

4. Results, Analysis, and Discussion

Based on the combined sensitivity factors of all the buses, the buses with a combined
sensitivity factor greater than 0.80 were taken as the selected buses in order to determine
the optimal location, size, and number of the DGs. The combined sensitivity factors of all
the buses analyzed and the results are shown in Table 5.
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Table 5. Results for CSF, fitness, and optimal DG sizes for selected buses.

DG
Selected Bus

Combined Sensitivity Factor
(CSF) Fitness DG Size (MW)

10 0.878 0.917 11.98
11 0.923 0.919 11.981
15 0.835 0.916 11.505
17 0.873 0.917 11.505
18 1.02 0.913 11.998
19 1.095 0.911 11.709
20 1.063 0.913 11.587
21 0.997 0.912 11.339
22 1.055 0.916 11.987
23 0.990 0.912 11.710
24 1.034 0.912 11.995
25 0.874 0.917 11.523
26 1.006 0.922 11.824
30 0.811 0.909 11.706

4.1. Case 1, Type A DG

Based on the columns representing fitness and DG size in Table 6, four optimal
locations for the DGs of type A and their corresponding optimal sizes were selected. These
locations gave the minimum fitness values and the corresponding DG sizes. According to
their effectiveness, the four best locations and their optimal DG sizes are as follows:

• Bus number 19, at 11.7099 MW
• Bus number 21, at 11.9937 MW
• Bus number 24, at 11.9960 MW
• Bus number 30, at 11.7061 MW

Table 6. A comparison of results obtained using Type A DG.

DG Size Power Losses Power Loss
Reduction

%Power Loss
ReductionMethod Bus Number

MW MW MVar MW MVar %MW %MVar
Without DG 17.8798

GA

10 11.472

13.3919 - 4.4879 - 25.1002 -10 11.904
19 11.052
24 11.772

PSO

10 11.694

12.2622 - 5.6176 - 31.4187 -15 11.394
20 11.378
30 10.577

IPSO

10 11.625

12.1851 - 5.6947 - 31.8499 -10 11.956
22 11.995
30 11.986

HGAIPSO

19 11.7099

10.6020 - 6.2778 - 40.7040 -21 11.9937
24 11.9960
30 11.7061

In order to determine the associated power losses and voltage levels, Newton Raphson
method was used with the chosen four DG sizes and locations. The results obtained for
power losses were compared to those obtained by other methods.

From Table 6 and Figure 10 for type A DG, it is clear that the HGAIPSO method
reduced real power loss the most when compared with all other methods: GA by 25.1002%,
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PSO by 31.4187%, IPSO by 31.8499%, and the proposed HGAIPSO method by 40.7040%.
DG obtained from the proposed method demonstrated good results with DG allocations
for loss reduction compared to the results obtained from other techniques. The HGAIPSO
method is superior to the GA, PSO, and IPSO methods when determining the optimum
location and size for a type A DG with the objective of reducing power losses within the
electrical distribution system.

Figure 11 compares voltages for the case without DGs and with DGs optimally located
and sized based on GA, PSO, IPSO, and HGAIPSO. A DG can affect the voltage stability
of an IEEE-30 bus system, even though the voltages in an IEEE-30 bus system are within
the acceptable limits, namely 0.95 pu to 1.1 pu. This can be seen in Figure 11: the inclusion
of DGs does not result in voltage levels to be outside of acceptable limits. It is evident
that all the bus voltages were within a range of 0.95 pu to 1.1 pu. The HGAIPSO method
improved the voltage levels of the bus that had voltages below 1.0 pu to at least 1.01 pu,
and no voltage exceeded the acceptable limit.
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Figure 10. Comparison of results for power loss obtained using Type A DG.
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Figure 11. Bus voltage results for profile comparison using Type A DG.

4.2. Case 2, Type B DG

Based on the columns representing fitness and DG size in Table 7, four optimal
locations for the DGs of type B and their corresponding optimal sizes were selected. These
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locations gave the minimum fitness values and the corresponding DG sizes. According to
their effectiveness, the four best locations and their optimal DG sizes are as follows:

• Bus number 19 with a DG generating 11.7872 MW and 2.9609 MVar
• Bus number 23 with a DG generating 11.7548 MW and 3.0002 MVar
• Bus number 24 with a DG generating 12.0001 MW and 1.3702 MVar

According to Table 7 and Figure 12, using the HGAIPSO method to optimize the
location and size of this type of DG results in a 36.2403% reduction in real power losses.
This is higher in comparison to GA, PSO and IPSO with reductions of 31.5890%, 32.2923%,
and 33.1648%, respectively. This is also comparable to the sizes determined using other
techniques that we chose for the DGs sizing and allocation for power loss minimization.

Table 7. Comparison of bus voltage using Type B DG.

DG Size Power Losses Power Loss Reduction %Power Loss Reduction
Method Bus Number

MW MW MVar MW MVar %MW %MVar
Without DG 17.8798

GA

10 11.35 + j1.22

12.2260 - 5.6538 - 31.5890 -23 11.47 + j1.17
24 11.92 + j2.04
30 11.816 + j1.468

PSO

10 11.474 + j2.159

12.1060 - 5.7738 - 32.2923 -17 11.981 + j0.919
20 11.67 + j2.309
30 11.349 + j3

IPSO

10 11.83 + j0.001

11.9500 - 5.9298 - 33.1648 -21 11.433 + j3
24 11.739 + j3
30 11.995 + j0.001

HGAIPSO

19 11.7872 + j2.9609

11.4001 - 6.4797 - 36.2403 24.2585
23 11.7548 + j3.0002
24 12 + j1.3702
30 11.8308 + j1.5817
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Voltage Profile

An analysis of the voltage profile of the IEEE-30 bus system was performed after the
placement and sizing of the type B DGs were optimized. Figure 13 below shows the results
of the bus voltage levels under this condition. A comparison is also given between this case
and the one without DGs and with DGs placed and sized using other methods.

Figure 13 compares voltages for the case without DGs and with DGs optimally located
and sized based on GA, PSO, IPSO, and HGAIPSO. A DG can affect the voltage stability
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of an IEEE-30 bus system, even though the voltages in an IEEE-30 bus system are within
the acceptable limits, namely 0.95 pu to 1.1 pu. The Figure 13 shows that the inclusion of
DGs did not result in voltage levels outside of acceptable limits. It is evident that all the
bus voltages were within a range of 0.95 pu to 1.1 pu. HGAIPSO method improved the
voltage levels of the bus that had voltages and no voltage exceeded the acceptable limit.
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Figure 13. Bus voltage profile comparison using Type B DG.

4.3. Case 3, Type C DG

Based on the columns representing fitness and DG size in Table 8, four optimal
locations for the DGs of type B and their corresponding optimal sizes were selected. These
locations gave the minimum fitness values and the corresponding DG sizes. According to
their effectiveness, the four best locations and their optimal DG sizes are as follows:

• Bus number 19, with a DG generating 12.0010 MW and absorbing 0.4882 MVar
• Bus number 24, with a DG generating 11.9470 MW and absorbing 0.5042 MVar
• Bus number 21, with a DG generating 11.9179 MW and absorbing 0.0692 MVar

Table 8. A comparison of results obtained using Type C DG.

DG Size Power Losses Power Loss Reduction %Power Loss Reduction
Method Bus Number

MW MW MVar MW MVar %MW %MVar
Without DG 17.8798

GA

10 9.0384 − j0.0882

11.5265 - 6.3533 - 35.6967 -18 11.1120 − j0.7150
22 11.7480 − j0.5891
30 10.0081 − j0.4870

PSO

10 11.885 − j0.7970

11.1056 - 6.7742 - 37.8874 -18 10.8811 − j0.3215
20 11.5631 − j0.8990
30 11.5310 − j0.3831

IPSO

10 12.0215 − j0.5260

11.2099 - 6.6699 - 37.3041 -19 10.8610 − j0.3002
22 11.9170 − j0.8370
30 11.9560 − j0.5260

HGAIPSO

19 12.0010 − j0.4882

10.2021 - 7.6777 - 42.9406 24.212
21 11.9470 − j0.5042
24 11.9179 − j0.0692
30 11.3651 − j0.5807

Table 8 and Figure 14 show the comparison of the results of the power losses as a
function of the different methods. When compared to GA, PSO, and IPSO, the HGAIPSO
method shows the greatest reduction in power loss at 42.9406%. The proposed method
performed better than GA (35.6967%), PSO (37.8874%), and IPSO (37.3041%).
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Figure 14. A comparison of results for power loss obtained using Type C DG.

The results from Figure 15 clearly show that the use of the HGAIPSO method resulted
in significantly higher bus voltage, which means the inclusion of the DGs optimized their
placement and sizing. Based on the optimization of type C DG location and size, it was
possible to achieve a higher bus voltage level of 1.01 pu from 0.973 pu. This means that
the highest value maintained at 1.095 pu. Therefore, based on these data, the bus voltage
profile improved.
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Figure 15. Bus voltage profile comparison using Type C DG.

5. Conclusions

By optimizing the location and size of DGs, the problem of power losses in systems
was solved because power losses were reduced and voltage profiles were improved. This
study presents a hybridized algorithm (HGAIPSO) to reduce system power losses and
improve voltage profiles. Combining the sensitivity factors and test the on the IEEE-30
bus test system was effective in reducing the number of iterations for algorithms. For the
IEEE-30 bus test system, 14 buses were selected as optimum DG locations. Comparing the
HGAIPSO method to the GA, PSO, and IPSO method in three types of DGs using IEEE-30
bus showed that it can be reduced. Using Type, A, Type B, and Type C DGs, real power
losses were reduced by 40.7040%, 36.2403%, and 42.9406%, respectively. Each of the three
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cases produced the highest bus voltage of 1.01 pu, which shows that the voltage profile
was generally improved.

The IEEE-30 bus test system’s losses were decreased and its voltage profile may be
improved as a consequence of HGAIPSO, proving that this approach is more suited to
maximizing this parameter than GA, PSO, and IPSO. It was clearly shown through the use
of the HGAIPSO algorithm how distribution generation affected power loss and voltage
profile: there was a decrease in system power losses when distributed generators were
added to the power system, up to an ideal number. Further DG introduction from the ideal
number is also expected to cause the voltage profile to operate in a different way, which
would impair bus voltages within the permissible range. The research objectives were met
successfully and the HGAIPSO optimization algorithm implemented in this study proved
to be more effective than GA, PSO, and IPSO for optimum locating and sizing of DGs in
power distribution systems to minimize losses.

This study used a hybrid GA and PSO technique to solve the Distribution Network
Reconfiguration problem in a more effective, accurate manner. This tactic makes use of a
number of strategies to sustain population variety. Additionally, the system uses a mending
approach to fulfill the radial specifications for each GA chromosome or PSO particle, greatly
decreasing the solution space. The global optimum may be located using the suggested
technique with a high rate of convergence and no premature convergence. The proposed
hybrid strategy outperforms existing approaches in terms of computation time, average
loss reduction, and least standard deviation while searching for optimum solutions of many
independent runs.

Recommendations for Future Work

• Since the loading of the power network cannot be stopped, the power distribution
companies need to apply this approach any time there is a need to incorporate DG in
the power distribution network.

• Include other aspects of the power system, such as stability, and improve the multi-
objective function.

• Code for this project programmed in Matlab resulted in long iteration times. Thus,
further efforts will need to try to reduce these delays.

• Negative impacts of DG, which can be eliminated with optimal allocation of DG,
should be investigated by planning engineers.
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Abbreviations

CSF Combined Sensitivity Factors

ANN Artificial Neuron Network

DG Distributed Generator

DGs Distributed Generators

DISCO Distribution Company
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IPSO Hybrid Particle Swarm Optimization
LLRI Line Loss Reduction Index
HGAIPSO Hybrid Genetic Algorithm Improved Particle Swarm Optimization
LSF Loss Sensitivity Factor method
IPSO Improved Particle Swarm Optimization
ORPF Optimal Reactive Power Flow
PLI Power Loss Index
PLRI Real Power Loss Reduction Index
PSO Particle Swarm Optimization
QLRI Reactive power control Reduction Index
FLA Fuzzy Logic Algorithm
GA Genetic Algorithm
T&D Transmission and Distribution
BRDN Best Radial Distribution Network
DSTATCOM Distribution-static compensator
RCGAA Real-Coded Genetic Algorithm
NBPSO Novel Binary Particle Swarm Optimization
DPSO Discrete Particle Swarm Optimization
THD Total Harmonic Distortion
PDIP Primal Dual Interior Point
VSI Voltage Sensitivity Indexes
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