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Abstract: The K-nearest neighbour classifier is very effective and simple non-parametric
technique in pattern classification; however, it only considers the distance closeness, but not the
geometricalplacement of the k neighbors. Also, its classification performance is highly influenced
by the neighborhood size k and existing outliers. In this paper, we propose a new local mean based
k-harmonic nearest centroid neighbor (LMKHNCN) classifier in orderto consider both distance-based
proximity, as well as spatial distribution of k neighbors. In our method, firstly the k nearest centroid
neighbors in each class are found which are used to find k different local mean vectors, and then
employed to compute their harmonic mean distance to the query sample. Lastly, the query sample is
assigned to the class with minimum harmonic mean distance. The experimental results based on
twenty-six real-world datasets shows that the proposed LMKHNCN classifier achieves lower error
rates, particularly in small sample-size situations, and that it is less sensitive to parameter k when
compared to therelated four KNN-based classifiers.

Keywords: K-nearest neighbor; nearest centroid neighbor; local centroid mean vector; harmonic
mean distance; pattern classification

1. Introduction

KNN [1] is a traditional non-parametric, and most famous, technique among machine learning
algorithms [2–4]. An instance-based k-nearest-neighbor classifier operates on the premise of first
locating the k nearest neighbors in an instance space. Then it uses a majority voting strategy to label the
unknown instance with the located nearest neighbors. Due to its simple concept and implementation,
its asymptotic classification performance is excellent in Bayes sense, with minimal error rates [5,6].
Also, KNN-based classifiers have a wide range of applications in the field of pattern recognition [7,8],
medical imaging [9,10], Electronic Intelligence (ELINT) systems [11], classification and identification of
radar signal (i.e., Specific Emitter Identification method—SEI method) [12], fractal analysis [13], SAR
technologies, and in the process of construction of database for ELINT/ESM battlefield systems [14],
image processing [15],remote sensing [16,17], and biomedical research [18–21].

Though KNN classification has several benefits, there are still some issues to be resolved. The first
matter is that KNN classification performance is affected by existing outliers, especially in small
training sample-size situations [22]. This implies that one has to pay attention in selecting a suitable
value for neighborhood size k [23]. Firstly, to overcome the influence of outliers, a local mean-based
k nearest neighbor (LMKNN) classifier has been introduced in [3]. As LMKNN shows significant
performance in response to existing outliers, its concept further applies to distance metric learning [24],
group-based classification [6], and discriminant analysis [25]. Pseudo nearest neighbor is another
favorable classifier for outliers based on both distance weights as well as local means [26,27]. These
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classifiers are more robust for existing outliers during classification but are still sensitive to small
sample sizes because of noisy and imprecise samples [2,28].

The second matter is finding a suitable distance metric to evaluate the distance between the query
sample and training sample, which helps in classification decisions. In order to increase the classification
performance of KNN, a number of local and global feature weighting-based distance metrics methods
have been developed [29,30]. But these methods ignore the correlation between all training samples;
thus, finding an accurate distance metric is considered an important task for KNN classification.

The third matter is that KNN does not consider both properties of a given neighborhood.
The concept of neighborhood states (a) neighbors should be as close to query sample as possible, and
(b) neighbors should be placed symmetrically around the query sample as possible [24]. The second
property is an outcome of the first in the asymptotic cases, but in some practical situations, the
geometrical information can become more important than the actual distances incorrectly classifying a
query sample [31]. In fact, several alternative neighborhood methods have been successively applied
to classification problems, which endeavor to conquer the practical issues in KNN to some extent. For
example, the surrounding neighborhood-nearest centroid neighbor (NCN) was successfully derived
for finite sample-size situations, and its extensions, KNCN [5] and LMKNCN [4], achieve adequate
performance. Despite these methods surpassing KNN classification, there are still some issues, like
overestimating the importance of some neighbors, and the assumption that k centroid neighbors have
an identical weight, thereby giving rise to unreliable classification decisions [4,5,32,33].

Bearing in mind the superiorities of KNCN and LMKNN, we are motivated to further improve
the classification performance of KNN, especially in small sample-size situations. We propose a
non-parametric framework for nearest neighbor classification, called A New Nearest Centroid Neighbor
Classifier Based on K Local Means Using Harmonic Mean Distance. In our proposed method, the class
label with a nearest local centroid-mean vector is assigned to a query sample using the harmonic
mean distance as the corresponding similarity measure. The main contributions of LMKHNCN are
given below:

• Efficient classification considers not only the distance proximity of k nearest neighbors, but also
takes their symmetrical allocation around the query sample into account.

• The proposed framework includes local centroid mean vectors of k nearest neighbors in each class,
effectively showing robustness to existing outliers.

• Finally, using Harmonic mean distance as a distance metric, it accounts for more reliable local
means in different classes, making the proposed method less sensitive to parameter k.

• Extensive experiments on real world datasets show that our non-parametric framework has better
classification accuracy compared to traditional KNN based classifiers.

The rest of this paper is organized as follows. Section 2 briefly summarizes the related work
and the motivations for the proposed classifier. In Section 3, we propose a new framework ideology,
and show different feature considerations. To verify the proposed method, extensive experiments are
conducted to verify the superiority of the proposed method compared to other competitive KNN-based
classifiers using twenty-six UCI and KEEL real-world datasets. We present experimental results in
Section 4 and draw conclusions in Section 5.

2. Related Work

In this section, we will give a brief review of the KNN-based algorithms used in our framework,
and the idea behind the usage of harmonic mean distance as a similarity measure.

2.1. LMKNN Classifier

The KNN classifier is a very famous and simple non-parametric technique in pattern classification.
But its classification is easily affected by existing outliers, particularly in small sample-size situations.
As an extension of KNN, a local mean-based k nearest neighbor (LMKNN) classifier was developed [3]
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to overcome the negative effect of outliers. The basic concept of the LMKNN classifier is to compute
local mean vectors of k nearest neighbors from each class to classify the query sample. Let TS ={

pi ∈ Rd
}N

i=1
be a training sample of given d-dimensional feature space, where N is the total number

of training samples, and ci ∈ {c1, c2, . . . , cM} denotes the class label for pi with M number of classes.

TR =
{

pij ∈ Rd
}Ni

j=1
denotes a subset in TS from the class ci with the number of the training samples

Ni. LMKNN uses following the steps to classify a query sample x ∈ Rd to class c:

Step 1. Search the k nearest neighbors from the set TR of each class ci for the query pattern x. Let

TRNN
k (x) = {pNN

ij ∈ Rd}k

j=1
be the set of KNNs for x in the class ci using the Euclidean

distance metric d
(

x, pNN
ij

)
, where k ≤ Ni.

d
(

x, pNN
ij

)
=

√
(x, pNN

ij )
T
(x, pNN

ij ) (1)

Step 2. Calculate the local mean vector lmNN
ik from the class ci, using the set TRNN

k (x).

lmNN
ik =

1
k

K

∑
j=1

pNN
ij (2)

Step 3. Assign x to class c if the distance between the local mean vector for c and the query sample in
Euclidean space is minimum.

c = argmin
ci

d
(

x, lmNN
ik

)
(3)

Note that the LMKNN is the same as the 1-NN classifier when k = 1. The meaning of K is totally
different in LMKNN than KNN. KNN chooses k nearest neighbors from whole training samples,
whereas LMKNN uses local mean vector of k nearest neighbors in each class. LMKNN aims at
finding the class with the closest local region to the query sample. Therefore, using local mean vectors
effectively overcomes the negative effect of outliers, especially in small sample sizes.

2.2. Harmonic Mean Distance

A distance metric is the distance function used to compute the distance between query samples
and k nearest neighbors, which helps in classification decisions. The classification performance of the
KNN-based classifiers relies heavily on the distance metric used [34–38]. The conventional distance
metric used in KNN-based classification is Euclidean Distance, which assumes the data has a Gaussian
isotropic distribution. However, if the neighborhood size k is high, the assumption of isotropic
distribution is often inappropriate. Therefore, it is very sensitive to neighborhood size k. Many
global and local distances metric learning [28,36] have been proposed to improve the performance of
KNN-based classifiers. In addition, a harmonic mean distance metric was introduced in the multi-local
means-based k-harmonic nearest neighbor (MLMKHNN) classifier [30]. Its classification performance
is less sensitive to parameter k and focuses more on reliable local mean vectors. Due to the performance
attained by using harmonic mean distance metric, we employ it in our proposed method.

The basic concept of harmonic mean distance is to take the sum of the harmonic average of
the Euclidean distances between one given data point and each data point in another point group.
In our proposed classifier, harmonic mean distance is used to compute the distance between query
sample and each local centroid mean vector to classify the given query sample. For example, if x is

the query sample and TRNCN
k (x) = {pNCN

ij ∈ Rd}k

j=1
is set of its k nearest centroid neighbors from

training sample TS = {TS =
{

pi ∈ Rd
}N

i=1
, then the harmonic mean distance HMDS (x, {pNCN

ij }k

j=1
) is

computed as:
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HMDS(x, {pNCN
ij }k

j=1
) =

k

∑k
j=1

1
d(x,{pNCN

ij }k

j=1
)

(4)

where d(·) is the Euclidian distance between query sample x and its k nearest centroid neighbors

and
k
∑

j=1

1
d(x,{pNCN

ij }k

j=1
)

is the harmonic average of Euclidian distances. Using harmonic mean distances

considers neighbors with close distance to query sample.

2.3. KNCN Classifier

KNCN is one of the most famous surrounding nearest centroid neighbor classifier [31]. Unlike
KNN, KNCN classification considers both distance proximity and symmetrical placements of the
nearest neighbors to the query sample. It has been empirically found that KNCN is an effective method

in finite sample-size situations. Let TS =
{

pi ∈ Rd
}N

i=1
be a training sample and ci ∈ {c1, c2, . . . ,

cM} denotes the class label for pi with M number of classes. The centroid of a given set of points
Z =

(
z1, z2, . . . , zq

)
can be calculated:

Zc
q =

1
q

q

∑
i=1

Zi (5)

For a given query sample x, its unknown class c can be predicted by KNCN using the steps below:

Step 1. Search k-nearest centroid neighbors of x from TS using NCN concept,

TRNCN
k (x) =

{
pNCN

ij ∈ Rd
}k

j=1
(6)

Step 2. Assign x to the class c, which is most frequently represented by the centroid neighbors in the
set TRNCN

k (X) (resolve ties randomly).

c = argmaxcj ∑pNCN
ij ∈TRNCN

k (x) δ
(

cj = cNCN
n

)
(7)

where cNCN
n is the class label for the nth centroid neighbor pNCN

in , and δ(cj = cNCN
n ), the

Kronecker delta function, takes a value of one if cj = cNCN
n = , and zero otherwise.

3. The Proposed LMKHNCN Method

3.1. Motivation of LMKHNCN

KNN based classifiers have issues of sensitivity to neighborhood size k, especially in small
sample-size situations, which usually have outliers. In the LMKNN classifier, Mitani and Hamamoto
have tried to overcome the problem of existing outliers by introducing local mean vectors in each
class. These local mean vectors depend heavily upon the neighborhood size k that shows their own
class. Even though LMKNN overcomes the outliers problem, its classification performance is more
sensitive to the value of neighborhood size k. If the value of k employed is fixed for each class, it may
lead to high sensitivity of local mean vectors to the value of k. Also, smallervalues of k providein
sufficient classification information, as well as largerk values; can easily takes the outliers in the k
nearest neighbors. On the other hand, for uniform k values, it ignores the difference of local sample
distribution in different classes and tends to misclassify.

Additionally, according to the concept of neighborhood, nearest neighbors should follow
distance-based closeness, and consider spatial distribution in the training set. But KNN-based classifiers
only consider distance-based proximity, while in some practical situations, spatial proximity is also
important. Thus, to completely follow the concept of neighborhood, a nearest centroid neighbor NCN
has been introduced. Furthermore, a k-nearest centroid neighborhood KNCN classifier tries to consider



Information 2018, 9, 234 5 of 16

both distance-based proximity and the geometrical distribution of k neighbors to classify a query sample
in their training set. The KNCN method achieves better performance in prototype-based classification.
However, although KNCN always outperforms KNN, it still has some issues to be resolved, such as
estimations of the importance of some neighbors which are not close to the query sample leading to
misclassification. Also, like KNN, KNCN makes the inappropriate assumption that k centroid neighbors
which have an identical weight can easily tie votes in making classification decisions.

In view of these issues, we were motivated to propose a new nearest centroid neighbor classifier
based on k local means using harmonic mean distance. In our proposed classifier, we integrate the
supremacies of LMKNN and KNCN classifiers by employing harmonic mean distance as a similarity
measure. Firstly, computing the local centroid mean vectors of the k nearest neighbors in each class
uses not only the distance nearness, but also considers the symmetrical distribution of the neighbors.
Clearly, the local centroid mean vectors in each class have different distances to query samples and
have different levels of importance in classification decisions. In other words, our focus should be on
the values of k that can find a closer local subclass for the different values of k in each class. Therefore,
we used harmonic mean distance metric as a similarity measure between local centroid mean vectors
and query samples. Finally, the query sample is classified with class that has the minimum harmonic
distance to the query sample. The proposed method reflects on the local centroid mean vectors for
classification, therefore making it more robust to outliers, especially in small sample-size situations.
Additionally, harmonic mean distance focuses on more consistent local centroid mean vectors in
classification decision; this makes it less sensitive to neighborhood size k. The rationale behind the
proposed (LMKHNCN), which is a new version of KNN classifier, is described below.

3.2. Description of LMKHNCN

Let TS =
{

pi ∈ Rd
}N

i=1
be a training set of a given d-dimensional feature space, where N is the

total number of training samples, and ci ∈ {c1, c2, . . . , cM} denotes the class label for pi with M number

of classes. TR = {TR =
{

pij ∈ Rd
}Ni

j=1
denotes a subset in TS from the class c1 with the number of

the training samples Ni. In our proposed LMKHNCN classifier, for a given query sample x ∈ Rd, its
classification is done by following steps:

Step 1: Find the set of KNCNs TRNCN
k (x) from the set TS of each class ci for the query sample x,

TRNCN
k (x) =

{
pNCN

ij ∈ Rd
}k

j=1
(8)

using NCN criterion. Note that the value of k ≤ Ni.
Step 2: Compute the local centroid mean vector lcmNCN

ik from each class ci using the set TRNCN
k (x)

lcmNCN
ik =

1
k

K

∑
j=1

pNCN
ij (9)

Step 3: Calculate the harmonic mean distance HMDS (x, lcmNCN
ik ) between x and each local centroid

mean vector uNCN
ik .

HMDS
(

x, lcmNCN
ik

)
=

k

∑k
i=1

1
d(x,lcmNCN

ik )

(10)

Step 4: Classify x to the class c, which has the minimum harmonic mean distance between its local
centroid mean vector and the query sample x.

c = argminci
HMDS

(
x, lcmNCN

ik

)
(11)

It is to be noted that when k = 1, uNCN
ik has only one local centroid mean vector, and a harmonic

mean distance which is nearly the same as ED, which degrades to LMKNN. It shows the same
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classification performance as 1-NN. The proposed LMKHNCN classifier is summarized in Algorithm 1
using pseudo code.

Algorithm 1. The proposed MLM-KHNN classifier.

Input:
x: a query sample, k: the neighborhood size.

TS =
{

pi ∈ Rd
}N

i=1
: a training set, N1, . . . , NM: the number of training samples in TS.

TR =
{

pij ∈ Rd
}Ni

j=1
: class cj training set with Nj training samples.

M: the number of classes, c1, c2, . . . , cM: class labels in TS,
N1, N2, . . . , NM N: the number of training samples in TS.
Output:
c: the classification result of query sample x.
Procedures:
Step 1: Calculate the distances of training samples in each class ci to x.

for j = 1 to Ni do

d
(

x, pNCN
ij

)
=

√(
x, pNCN

ij

)T(
x, pNCN

ij

)
end for

Step 2: Find the first nearest centroid neighbor of x in each class ci, say pNCN
i1

[min_index,min_dist] = min(d(x, pij))
pNCN

i1 = pmin_index
Set RNCN

i (x) = {pNCN
i1 ∈ Rm}

Step 3: Search k nearest centroid neighbors of x except the first one, TRNCN
k (x) =

{
pNCN

ij ∈ Rd
}k

j=1
, in each class ci.

for j = 2 to k do
Set Si(x) = TR − RNCN

i (x)

Si(x) =
{

pil ∈ Rd
}Li(p)

l=1
, Li(x) = length(Si(x))

Compute the sum of the previous j − 1 nearest centroid neighbors.

sumNCN
i (x) =

j−1
∑

r=1
pNCN

ir

Calculate the centroids in the set Si for x.
for l = 1 to Li(x) do

pc
il = 1/j (pil + sumNCN

i (x))

dc
il(x, pc

il) =
√(

x− pc
il
)
T
(
x− pc

il
)

end for
Find the jth nearest centroid neighbor.

[min_indexNCN, min_distNCN] = min(dc
il(x, pc

il))
pNCN

ij = xmin_indexNCN
Add pNCN

ij to the set RNCN
i .

end for
Set TRNCN

k (x) = RNCN
i (x).

Step 4: Calculate the k-local centroid mean vector lcmNCN
ik in set TRNCN

k (x) for each class ci.

lcmNCN
ik = 1/r

r
∑

j=1
pNCN

ij

Step 5: Compute the harmonic mean distance HMDS(x,lcmNCN
ik ) between x and local centroid mean vector lcmNCN

ik for
each class ci,

for j = 1 to M do

HMD(x, lcmNCN
ik ) = k/

k
∑

r=1
1/d(x, lcmNCN

ik )

end for
Step 6: Assign x to the class c with a minimum harmonic mean distance.

c = argminciHMDS(x, lcmNCN
ik )

3.3. Comparison with Traditional KNN Based Classifiers

To intuitively explain the distinction of the proposed LMKHNCN method from four
state-of-the-art methods (KNN, KNCN, LMKNN and LMKNCN), an informatics comparison is shown
in Table 1. Comparisons are stated based on considerations while computing nearest neighbors, local
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means, type of nearest neighbors, and distance similarity used. KNN used only distance proximity
to find nearest neighbors and Euclidean distance for classification. KNCN considered both distance
nearness as well as geometrical allocation while allocating nearest centroid neighbors and classifiers,
using ED as a similarity measure. LMKNN is the same as KNN, although it uses Local means of
nearest neighbors. LMKNCN combines both KNCN and LMKNN, using Euclidean distance to given
weights to local centroid mean vectors. Hence, to reduce sensitivity to k and make it more robust to
outliers, LMKHNCN considers both distance proximity as well as symmetrical distribution to classify
a query sample into the class of a local centroid mean vector which has the minimum harmonic mean
distance to the query sample.

Table 1. Comparison of KNN, KNCN, LMKNN, LMKNCN, and LMKHNCN classifiers in terms
of different feature considerations. The symbols ‘

√
’and ‘×’, respectively indicate the presence and

absence of different features.

Classifier Distance
Proximity

Spatial
Distribution Local Mean Used Type of Nearest

Neighbors
Distance

Similarity

KNN
√

× × NN E D
KNCN

√ √
× NCN E D

LMKNN
√

× Local mean of NNs NN E D
LMKNCN

√ √
Local mean of NCNs NCN E D

LMKHNCN
√ √

Local mean of NCNs NCN H M D

4. Experiment Results and Discussion

In this section we first describe the evaluation metrics and datasets used. Next, we briefly describe
the experimental procedure and analyze the various results.

4.1. Performance Evaluation

To authenticate the classification behavior of the proposed classifier in depth, we conduct sets of
experiments on twenty-six real data sets and compare the results of the proposed LMKHNCN classifier
with the standard KNN classifier and state-of-the-art classifiers. As mentioned in [39], predictions
were classified into four groups: true positive (TP) i.e., when classifier correctly identified the class
of the query sample, similarly false positive (FP) i.e., incorrectly identified, true negative (TN) i.e.,
correctly rejected and false negative (FN) i.e., incorrectly rejected. The classification performance is
evaluated by considering the following three metrics: the lowest error rate and the corresponding
value of k, sensitivity to the neighborhood size k, and distance between local (centroid) mean vector
and query sample.

In pattern classification, the error rate is one of the most effective measures to estimate the
performance of algorithms. The error rate of the data distribution is the probability that an instance is
misclassified by a classifier that knows the true class probabilities, given the predictors. For a multi
classifier, the error rate can be calculated as follows:

Errorrate = 1− TP + TN
TP + TN + FP + FN

(12)

To better evaluate the sensitivity of the proposed classifier to the neighborhood size k, comparative
experiments of the classification performance with varying neighborhood size k are also conducted.
Sensitivity in terms of predictors is calculated as:

Sensitivity =
TP

TP + FN
(13)

The distance metric used strongly influenced the classification performance of the KNN-based
classifiers. Classification is done with minimum distance between local mean vectors and query
samples. In our proposed method, minimum harmonic mean distance (HMD) is used to classify the
query sample, which can be calculated from Equation (4).
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4.2. Description of the Datasets

Twenty-six real-world datasets are taken from the KEEL [40] and UCI machine-learning
repositories [41], which are databases concerning diabetic, hill valley, ilpd, plrx, phoneme, sonar,
transfusion, bank note, cardiography, sensor, qualitative, winequalityred, steel plates, forest types,
balance scale, bands, seeds, vehicle, wine, glass, mice, wdbc, thyroid, and ring. They hold quite
different characteristics in terms of number of features, instances, and classes, as described in Table 1.
Among twenty-six real-world datasets, there are nine with two-classes; the others are multiclass
classification tasks. To comprehensively validate the proposed method, we choose datasets with
sample sizes characterized by a wide range, i.e., varying from 182 to 7400. Our goal is to tackle
problems with small training sample-size situations, so we randomly selected a training set from each
dataset that contained approximately 30% of the data. The rest were chosen as testing data, as shown
in Table 2.

Table 2. Dataset description of twenty-six real-world datasets from UCI and KEEL repository.

DATASET SAMPLES ATTRIBUTES CLASSES TESTING SET

DIABTIC 1151 20 2 68
HILL VALLEY 1212 101 2 150

ILPD 583 10 2 69
PLRX 182 13 2 65
WPBC 198 32 2 58

TRANSFUSION 748 5 2 155
BANK NOTE 1372 5 2 3315

CARDIOCOGRAPHY 10 2126 22 10 176
THYROID 7200 22 3 2400
SENSOR 5456 5 4 26

QUALITATIVE
BANKKRUPTCY 250 7 3 60

WDBC 569 31 2 169
PHONEME 5406 6 2 60

SONAR 208 60 2 66
WINEQUALITYRED 1599 12 4 76

STEEL PLATES 1941 28 7 65
FOREST TYPES 523 28 4 112

BALANCE SCALE 625 5 3 96
RING 7400 21 2 125

BANDS 365 20 2 78
SEEDS 210 8 3 99

VEHICLE1812 846 18 4 282
WINE 178 14 3 59
GLASS 214 11 2 53
MICE 1080 72 8 117

4.3. Experimental Procedure

As mentioned earlier, twenty-six real-world datasets are used for our experiments.
The environment for the experiments is MATLAB version 8.3.0.532 (R2014a) on intel® Core™ i5-6500
CPU @3.2 GHz, DELL machine with 4.0 GB RAM. For effective performance, experiments are repeated
10 times, and we obtain 10 different training-test sample sets through 10-fold cross-validation technique
in terms of error rate. To establish the superiority of the proposed classifier, its performance is
compared to KNN, and its state-of-the-art variants such as KNCN, LMNN and LMKNCN. The value
of neighborhood size k is preset in the interval of step size 1, ranging from 1 to 15, and the optimal
value on each dataset that corresponds to lowest error rate is considered within that interval. The final
outcome is achieved by averaging ten classification error rates with 95% confidence; the best results are
in boldface in Table 3. Thus, to analyze the experimental results on each real-world data set, the lowest
error rate with the corresponding standard deviations and values of k is considered as the best outcome,
as shown in Table 3.
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Table 3. The lowest error rates (%) of each classifier with the corresponding standard deviation and values of k on twenty-six real-world data sets (the best outcome is
marked in bold-face on each data set).

DATASET KNN LMKNN KNCN LMKNCN LMKHNCN

DIABTIC 34.08 ± 0.0169 [13] 33.91 ± 0.0158 [14] 31.18 ± 0.0256 [10] 30.48 ± 0.0231 [15] 30.32 ± 0.0237 [14]
HILL VALLEY 40.67 ± 0.0193 [1] 39.23 ± 0.0112 [2] 40.67 ± 0.0426 [1] 30.17 ± 0.0270 [9] 25.77 ± 0.0425 [16]
ILPD 29.85 ± 0.0212 [10] 30.36 ± 0.0171 [14] 30.26 ± 0.0199 [16] 29.03 ± 0.0176 [14] 28.77 ± 0.0221 [13]
PLRX 36.75 ± 0.0154 [1] 36.75 ± 0.0237 [1] 36.75 ± 0.0154 [1] 36.75 ± 0.0159 [1] 35 ± 0.0134 [15]
PHONEME 12.08 ± 0.0183 [1] 12.08 ± 0.0112 [1] 12.08 ± 0.0124 [1] 12.08 ± 0.0290 [1] 11.75 ± 0.0137 [2]
SONAR 17.42 ± 0.0606 [1] 16.36 ± 0.0170 [2] 16.97 ± 0.0398 [7] 14.7 ± 0.0255 [4] 12.88 ± 0.0123 [4]
TRANSFUSION 22.69 ± 0.0137 [7] 23.38 ± 0.0095 [4] 22.15 ± 0.0140 [15] 22.15 ± 0.0119 [12] 21.54 ± 0.0144 [16]
BANK NOTE 0.25 ± 0.0038 [1] 0.20 ± 0.0029 [2] 0.13 ± 0.0029 [3] 0.0009 ± 0.0008 [2] 0.0001 ±0.0008 [4]
CARDIOCOGRAPHY 29.13 ± 0.092 [1] 29.12 ± 0.0124 [1] 27.55 ± 0.0048 [11] 26.95 ± 0.0183 [3] 23.28 ± 0.0152 [5]
THYROID 7.44 ± 0.0123 [12] 7.53 ± 0.0105 [16] 7.24 ± 0.0130 [9] 7.30 ± 0.0098 [5] 7.38 ± 0.0097 [13]
SENSOR 3.22 ± 0.0100 [1] 3.22 ± 0.0072 [1] 2.99 ± 0.0012 [5] 2.7 ± 0.0021 [5] 2.34 ± 0.0022 [7]
QUALITATIVE 0.33 ± 0.0030 [3] 0.33 ± 0.0023 [2] 0.33 ± 0.0028 [5] 0.33 ± 0.0023 [3] 0.33 ± 0.0023 [5]
WINEQUALITYRED 40.8 ± 0.0209 [1] 40.8 ± 0.01169 [1] 40.8 ± 0.0127 [1] 40.8 ± 0.0134 [1] 35.39 ± 0.0161 [15]
WDBC 5.81 ± 0.0075 [10] 5.81 ± 0.0080 [3] 5.13 ± 0.0117 [14] 4.75 ± 0.0076 [16] 5.0 ± 0.0076 [5]
STEEL PLATES 50.66 ± 0.0353 [13] 54.07 ± 0.0151 [10] 49.92 ± 0.0378 [16] 52.66 ± 0.0207 [15] 47.43 ± 0.0376 [16]
FOREST TYPES 10.06 ± 0.0074 [4] 9.45 ± 0.0090 [8] 9.5 ± 0.0099 [11] 9.28 ± 0.0073 [10] 9.06 ± 0.0076 [16]
BALANCE SCALE 15.06 ± 0.0711 [16] 10.94 ± 0.0684 [10] 11.89 ± 0.0858 [16] 9.94 ± 0.0682 [4] 9.06 ± 0.0719 [16]
RING 26.32 ± 0.0623 [1] 10.23 ± 0.0783 [3] 5.39 ± 0.1063 [4] 7.94 ± 0.0740 [2] 7.58 ± 0.0809 [3]
BANDS 34.08 ± 0.0247 [1] 33.68 ± 0.0276 [2] 34.08 ± 0.0221 [1] 34.08 ± 0.0117 [1] 31.2 ± 0.0083 [2]
SEEDS 7.07 ± 0.0071 [1] 6.59 ± 0.0101 [2] 6.83 ± 0.0058 [15] 6.83 ± 0.0113 [3] 5.61 ± 0.0126 [4]
VEHICLE1812 36.11 ± 0.0189 [1] 33..39 ± 0.0189 [2] 31.97 ± 0.0132 [10] 31.24 ± 0.0181 [3] 31.11 ± 0.0119 [12]
Wine 27.29 ± 0.0150 [1] 25.42 ± 0.0101 [9] 22.71 ± 0.0196 [14] 21.02 ± 0.0191 [11] 19.49 ± 0.0224 [16]
WPBC1 29.31±0.0164 [12] 31.55 ± 0.0084 [7] 29.14 ± 0.0166 [11] 28.28 ± 0.0160 [9] 28.45 ± 0.0162 [11]
GLASS 20.56 ± 0.0307 [1] 18.32 ± 0.0197 [2] 20.56 ± 0.0161 [1] 19.72 ± 0.0141 [2] 17.78 ± 0.0131 [3]
MICE 3.72 ± 0.0638 [1] 3.58 ± 0.01380 [2] 3.72 ± 0.0080 [1] 3.25 ± 0.0312 [2] 3 ± 0.0041 [3]
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4.4. Analyzing the Error Rates Results with Corresponding K Value

The experimental comparison results are shown in Table 3, by means of the lowest error rate with
the corresponding standard deviations and values of k on each real-world data set. As revealed by the
classification results, the proposed LMKHNCN classifier performs better than the other comparative
methods in almost all twenty-six real-world data sets. This is because the concept of local centroid
mean vector and harmonic mean distance similarity used in the proposed method makes it focus
on more reliable local mean vectors with smaller distances to the unknown samples in each class.
From the experimental results in Table 3, two interesting facts can be observed: the first is that the error
rate of proposed method is somewhat similar to LMKNCN in most dataset cases, because of deploying
same concept of integrating KNCN and LMKNN methods; second, the optimal performance of the
proposed method is superior to that of KNCN in most cases, which may be attributed to using the
local mean vector for each class. Consequently, the proposed classifier is superior to other competitive
KNN classifiers.

4.5. Results of the Sensitivity to the Neighborhood Size K

To justify the proposed method in terms of sensitivity of the classification performance to the
parameter k, experiments have been done on the stated twenty-six real-world datasets in terms of
error rates of different classifiers corresponding to neighborhood size k ranging from 1to 15, as shown
in Figure 1. From the comparative results, we recognized that the proposed LMKHNCN method
has a lower error rate than other classifiers, with different k values for most of the cases. Also, it is
detectable that when the value of k is relatively large, the proposed classifier significantly outperforms
comparative classifiers. Furthermore, from the graph outcomes, we can observe that the classification
error rates of LMKNCN vary with smaller k values of k but become almost stable with larger k values
in most cases. But in the case of KNN and LMKNN, it almost continues to increase when values
of k increase, which shows that their classification performance is sensitive to neighborhood size
k. This strongly indicates that the proposed LMKHNCN method is more robust compared to other
methods in most cases, and that its classification performance is less sensitive to neighborhood size k.
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Figure 1. The error rates of each classifier corresponding to value of neighborhood size k on twenty-six
real world datasets.

4.6. Analyzing the Effect of Distance on Classification Performance

We have analyzed the distances between a local (centroid) mean vector and a given query sample
from Balance Scale data set for different values of k particularly in LMKNN, LMKNCN and LMKHNCN
classifiers. The query sample taken from class 3 and different distances results are recorded, as shown
in Table 4. Classification is done according to the minimum distance between query sample and local
(centroid) mean vector. However, from Table 3, it is to be noted that LMKNN and LMKNCN wrongly
classified the given query sample when k = 2,3,4,5 and when k = 2,3,5 respectively. As already stated,
the query sample does not belong to class 1; thus, the distance difference from class 1 increases as the
value of k increases for all classifiers. We have also observed that the local (centroid)mean vector of
LMKNN for class 3 becomes more distant from the query sample as k increases, while in LMKHNCN
it extends close to the query sample. But in case of LMKHNCN, for k = 1,2,3,4,5, the local (centroid)
mean vectors for class 3 are nearer to the query sample than for class 2 with correct classification.
Accordingly, the distance results evidently prove the excellence of the proposed LMKHNCN method.

Table 4. The distances between a query sample and the local (centroid)mean vector of each class for
values of k, and the classification results on Balance scale data set (1, 2, 3 denote the class labels and
symbols ‘

√
’and ‘×’, respectively, indicate the right and wrong classification. The smallest distances

with a nearest local mean vector for each k value among three classes are in bold-faces).

k Classifier Class 1 Class 2 Class 3 Classification Result

1
LMKNN 2.247 1.714 1.000 3

√

LMKNCN 2.247 1.714 1.000 3
√

LMKHNCN 2.247 1.714 1.000 3
√

2
LMKNN 2.414 1.091 1.523 2 ×

LMKNCN 2.414 1.054 1.423 2 ×
LMKHNCN 2.202 1.032 0.837 3

√

3
LMKNN 2.941 1.742 1.774 2 ×

LMKNCN 2.941 1.125 2.333 2 ×
LMKHNCN 2.854 1.121 1.047 3

√

4
LMKNN 3.173 1.436 1.754 1 ×

LMKNCN 3.112 1.247 0.250 3
√

LMKHNCN 3.061 1.061 0.000 3
√

5
LMKNN 4.166 1.314 1.846 2 ×

LMKNCN 4.087 1.194 1.283 2 ×
LMKHNCN 4.021 1.020 0.000 3

√

4.7. Analyzing the Computational Complexity

The most important goal for pattern classification is to help attenuate the problem of computation
complexities so as to improve the performance of algorithms. In this section, a complexity analysis of
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online computations in the classification stage for LMKNCN and proposed LMKHNCN classifiers
are discussed.

Let NTS denote the number of the training samples, Nj denote the number of training samples
in class cj, p the feature dimensionality, M the number of classes, and k the neighborhood size.
As mentioned in Section 2.1 for the LMKNN classifier, the classification stage consists of three main
steps. The first is to search for the k nearest neighbors in each class based on the Euclidean distance,
the multiplications and sum operations are all equal to O(N1 p + N2 p + . . . + NM p), which can also
be abbreviated to O(NTS p). Additionally, the comparisons are O(N1k + N2k + . . . + NMk), which
are equal to O(NTSk). The second step is to compute the local mean vector of each class, which
requires O(Mpk) sum operations. The third and final step assigns the query sample to the class with
the smallest distance between its local mean and the given query and is characterized by O(Mp)

multiplications and sum operations, whereas the class label is determined with O(M) comparisons.
Thus, the total computational complexity of the LMKNN rule is O(2NTS p + NTSk + Mpk + 2Mp + M).
For the proposed LMKHNCN classifier, its classification stage consists of four steps. The first two steps
are almost same as with LMKNCN but using both distance closeness as well as spatial distribution.
At the third step, the harmonic mean distance between the query x and each local centroid mean
vector is calculated for each class, which requires O(Mpk) multiplications and O(Mpk + Mk) sum
operations, as illustrated in Equation (10). Then, in the final step, the proposed method classifies the
query sample to the class with the minimum harmonic mean distance to the given query with O(M)

comparisons. Thus, the total computational complexity of the LMKHNCN rule is O(2NTS p + NTSk +
3Mpk + 2Mp + Mk + M). From the above analysis, it can be seen that the increased computation costs
of the proposed method are O

(
2Mp + Mk

)
> 0. Since the number of classes M and the neighborhood

size k are usually much smaller than the value of the training sample size NTS, this means that the
computational differences are rather small. Therefore, the computational differences between the
LMKHNCN classifier and the LMKNN classifier are very small.

5. Conclusions

In this paper, we proposed a new KNN based classifier which allows capturing of classification
with local centroid mean vectors by considering the nearness as well as spatial distribution of the k
neighbors of each class. It uses the harmonic mean distance as similarity measure, which acknowledges
the more reliable local centroid mean vectors that have smaller distances to the query sample. The goal
of the proposed method is to overcome the sensitivity of parameter k and reduce the influence of
outliers especially in KNCN and LMKNN. To evaluate the performance of the proposed method,
extensive experiments on twenty-six real world datasets have been performed in terms of error rate.
When compared with KNN, KNCN, LMKNN, and LMKNCN, the proposed method significantly
enhances the classification performance, with lower error rates, which demonstrates its robustness
to outliers and reduced sensitivity to neighborhood size k. Furthermore, it was shown that when
compared with the traditional LMKNN rule, computational differences are very small. In future,
we will apply LMKHNCN method to different real-time applications.
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