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Abstract: In this paper, a hesitant probabilistic fuzzy multiple attribute group decision making is
studied. First, some Einstein operations on hesitant probability fuzzy elements such as the Einstein
sum, Einstein product, and Einstein scalar multiplication are presented and their properties are
discussed. Then, several hesitant probabilistic fuzzy Einstein aggregation operators, including the
hesitant probabilistic fuzzy Einstein weighted averaging operator and the hesitant probabilistic fuzzy
Einstein weighted geometric operator and so on, are introduced. Moreover, some desirable properties
and special cases are investigated. It is shown that some existing hesitant fuzzy aggregation operators
and hesitant probabilistic fuzzy aggregation operators are special cases of the proposed operators.
Further, based on the proposed operators, a new approach of hesitant probabilistic fuzzy multiple
attribute decision making is developed. Finally, a practical example is provided to illustrate the
developed approach.

Keywords: hesitant probabilistic fuzzy element (HPFE); Einstein operations; hesitant probabilistic
fuzzy Einstein aggregation operators; multiple attribute decision making (MADM).

1. Introduction

Decision making problems typically consist of finding the most desirable alternative(s) out of a
given set of alternatives. So far, there are applications of decision making into different disciplines,
such as railroad container terminal selection, pharmaceutical supplying, hospital service quality, and
so on [1–3]. Due to the increasing ambiguity and complexity of the socio-economic environment, it is
difficult to obtain accurate and sufficient data for practical decision making. Therefore, uncertainty
data needs to be addressed in the actual decision making process, and several other methodologies
and theories have been proposed. Among them, the fuzzy set theory [4] is excellent and has been
widely used in many areas of real life [5–8]. Since Zadeh [4] introduced the fuzzy set (FS) in 1965, many
researchers have developed extended forms of FS, such as the intuitive fuzzy set (IFS) [9], the type-2
fuzzy set [10], the type-n fuzzy set [10], the fuzzy multiset [11] and the fuzzy hesitant set (HFS) [12].
Among these, the HFS was broadly applied to the practical decision making process. In fact, the HFS
is widely used in decision making problems with the aim of resolving the difficulty of explaining
hesitation in the actual assessment. The main reason is that experts may face situations in which
people are hesitant to provide their preferences in the decision making process by allowing them
to prefer several possible values between 0 and 1. Torra [12] introduced some basic operations of
HFSs. Xia and Xu [13] defined the hesitant fuzzy element (HFE), which is the basic component of
the HFS, and proposed and investigated the score function and comparison law of HFEs as the basis
for its calculation and application. Li et al. [14] and Meng and Chen [15] proposed various distance
measures and some correlation coefficients for HFSs. They also investigated applications based on the

Information 2018, 9, 226; doi:10.3390/info9090226 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
http://dx.doi.org/10.3390/info9090226
http://www.mdpi.com/journal/information


Information 2018, 9, 226 2 of 28

distance measures and correlation coefficients. Over the past decade, there many researchers [16–23]
have studied the aggregation operators, one of the core issues of HFSs. Thus, many researchers have
worked hard to develop the HFS theory and have helped to develop it in uncertain decision making
problems [24–26].

However, there is one obvious weakness in the current approaches; namely, each of the possible
values in the HFE provided by the experts has the same weight. To overcome this weakness, Xu
and Zhou [27] proposed the hesitant probabilistic fuzzy set (HPFS) and hesitant probabilistic fuzzy
element (HPFE) developed by introducing probabilities to HFS and HFE respectively. For example,
experts evaluate a house’s “comfort” using an HFE (0.3, 0.4, 0.5) because they hesitate to evaluate
it. However, they believe that 0.4 is appropriate and 0.3 is less appropriate than the other values in
the HFE. Therefore, although the HFE (0.3, 0.4, 0.5) cannot fully represent the evaluation, the HPFE
(0.3|0.2, 0.4|0.5, 0.5|0.3) can present this issue vividly and is more convenient than HFE. Consequently,
the HPFS can overcome the defect of HFS to great extent, so it can remain the experts’ evaluation
information and describe their preferences better. In Ref. [27], the HPFE was combined with
weighted operators to develop basic weighted operators, such as hesitant probabilistic fuzzy weighted
average/geometric (HPFWA or HPFWG) operators and the hesitant probabilistic fuzzy ordered
weighted averaging/geometric (HPFOWA or HPFOWG) operators. Based on the perspective of the
aggregation operators, they established the consensus among decision makers in group decision
making. Zhang and Wu [28] investigated some operations of HPFE and applied them to multicriteria
decision making (MCDM). In another way, some scholars recently tried to solve the problem of HFSs.
Bedregal et al. [29] tried to use fuzzy multisets to improve the HFSs. This method has been worked out
to some extent. Wang and Li [30] proposed the picture hesitant fuzzy set to express the uncertainty and
complexity of experts’ opinions and applied them to solve diverse situations during MCDM processes.
Interval-valued HFSs have been used in the applications of group decision making in [31]. Multiple
attribute decision making (MADM) using the trapezoidal valued HFSs is discussed in [32]. Yu [33]
gave the concept of triangular hesitant fuzzy sets and used it for the solution of decision making
problems. Mahmood et al. [34] introduced the cubic hesitant fuzzy set and applied it to MCDM.

The study on aggregation operators to fuse hesitant probabilistic information is one of the core
issues in HPFS theory. The all aggregation operators introduced previously, such as the HPFWA,
HPFWG, HPFOWA, and HPFOWG operators, are based on the algebraic product and algebraic sum
of HPFEs, which are a pair of the special dual t-norm and t-conorm [35]. Although the algebraic
product and algebraic sum are the basic algebraic operations of HPFEs, they are not the only ones.
The Einstein product and Einstein sum are good alternatives to the algebraic product and algebraic
sum for structuring aggregation operators, respectively, and they have been used to aggregate the
intuitionistic fuzzy values or the HFEs by many researchers [21–23,36–38]. However, it seems that
in the literature, there has been little investigation on aggregation techniques using the Einstein
operations to aggregate hesitant probabilistic fuzzy information. Thus, it is meaningful to research
the hesitant probabilistic fuzzy information aggregation methods based on the Einstein operations.
In this paper, motivated by the works of Xu and Zhou [27] and Yu [21], we propose the hesitant
probabilistic fuzzy Einstein weighted aggregation operators with the help of Einstein operations, and
apply them to MADM under a hesitant probabilistic fuzzy environment. To do this, the remainder
of this paper is organized as follows: The following section recalls briefly some basic concepts and
notions related to the HPFSs and HPFEs. In Section 3, based on the hesitant probabilistic fuzzy
weighted aggregation operator and the Einstein operations, we propose the hesitant probabilistic fuzzy
Einstein weighted aggregation operators including the hesitant probabilistic fuzzy Einstein weighted
averaging/geometric (HPFEWA or HPFEWG) operators and the hesitant probabilistic fuzzy Einstein
ordered weighted averaging/geometric (HPFEOWA or HPFEOWG) operators. Section 4 develops an
approach to MADM with hesitant probabilistic fuzzy information based on the proposed operators.
An example is given to demonstrate the practicality and effectiveness of the proposed approach in
Section 4. Section 5 gives some concluding remarks.
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2. Hesitant Fuzzy Information with Probabilities

2.1. HPFS and HPFE

The HPFS and HPFE represent hesitant fuzzy information with the following probabilities.

Definition 1. [27] Let R be a fixed set, then an HPFS on R is expressed by a mathematical symbol:

HP =
{

h̄(γi|pi)|γi, pi
}

, (1)

where h̄(γi|pi) is a set of some elements (γi|pi) denoting the hesitant fuzzy information with probabilities to
the set HP, γi ∈ R, 0 ≤ γi ≤ 1, i = 1, 2, . . . , #h̄, where #h̄ is the number of possible elements in h̄(γi|pi),
pi ∈ [0, 1] is the hesitant probability of γi, and ∑#h̄

i=1 pi = 1.

For convenience, Xu and Zhou [27] called h̄(γi|pi) a HPFE, and HP the set of HPFSs. In addition,
they gave the following score function, deviation function, and comparison law to compare
different HPFEs.

Definition 2. [27] Let h̄(γi|pi) (i = 1, 2, , . . . , #h̄) be a HPFE, then
(1) s(h̄) = ∑#h̄

i=1 γi pi is called the score function of h̄(γi|pi), where #h̄ is the number of possible elements
in h̄(γi|pi);

(2) d(h̄) = ∑#h̄
i=1(γi − s(h̄))2 pi is called the deviation function of h̄(γi|pi), where s(h̄) = ∑#h̄

i=1 γi pi is
the score function of h̄(γi|pi), and #h̄ is the number of possible elements in h̄(γi|pi).

If all probabilities are equal, i.e., p1 = p2 = · · · = p#h̄, then the HPFE is reduced to the HFE. So,
in this case, the score function of the HPFE is consistent with that of the HFE.

Definition 3. [27] Let h̄1(γi|pi) (i = 1, 2, , . . . , #h̄1) and h̄2(γj|pj) (j = 1, 2, , . . . , #h̄2) be two HPFEs, s(h̄1)

and s(h̄2) are the score functions of h̄1 and h̄2, respectively, and d(h̄1) and d(h̄2) are the deviation functions of
h̄1 and h̄2, respectively, then

(1) If s(h̄1) < s(h̄2), then h̄1 is smaller than h̄2 which is denoted by h̄1 < h̄2;
(2) If s(h̄1) = s(h̄2), then

(a) If d(h̄1) > d(h̄2), then h̄1 is smaller than h̄2, denoted by h̄1 < h̄2;
(b) If d(h̄1) = d(h̄2), then h̄1 and h̄2 represent the same information, denoted by h̄1 = h̄2.

Some operations to aggregate HPFEs based on the operations of HFEs [12,13] are defined
as follows:

Definition 4. [27] Let h̄(γi|pi), h̄1(γ̇j| ṗj) and h̄2(γ̈k| p̈k) be three HPFEs, i = 1, 2, . . . , #h̄, j = 1, 2, . . . , #h̄1,
k = 1, 2, . . . , #h̄2, and λ > 0, then

(1) (h̄)c = ∪i=1,2,...,#h̄ {(1− γi)|pi};
(2) λh̄ = ∪i=1,2,...,#h̄

{
1− (1− γi)

λ|pi
}

;
(3) h̄λ = ∪i=1,2,...,#h̄

{
(γi)

λ|pi
}

;
(4) h̄1 ⊕ h̄2 = ∪j=1,2,...,#h̄1,k=1,2,...,#h̄2

{
(γ̇j + γ̈k − γ̇jγ̈k)| ṗj p̈k

}
;

(5) h̄1 ⊗ h̄2 = ∪j=1,2,...,#h̄1,k=1,2,...,#h̄2

{
γ̇jγ̈k| ṗj p̈k

}
.

Theorem 1. Let h̄(γi|pi), h̄1(γ̇j| ṗj) and h̄2(γ̈k| p̈k) be three HPFEs, i = 1, 2, . . . , #h̄, j = 1, 2, . . . , #h̄1,
k = 1, 2, . . . , #h̄2, λ > 0, λ1 > 0, and λ2 > 0, then

(1) h̄1 ⊕ h̄2 = h̄2 ⊕ h̄1;
(2) h̄⊕ (h̄1 ⊕ h̄2) = (h̄⊕ h̄1)⊕ h̄2;
(3) λ(h̄1 ⊕ h̄2) = (λh̄1)⊕ (λh̄2);
(4) λ1(λ2h̄) = (λ1λ2)h̄;
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(5) h̄1 ⊗ h̄2 = h̄2 ⊗ h̄1;
(6) h̄⊗ (h̄1 ⊗ h̄2) = (h̄⊗ h̄1)⊗ h̄2;
(7) (h̄1 ⊗ h̄2)

λ = h̄λ
1 ⊗ h̄λ

2 ;
(8) (h̄λ1)λ2 = h̄(λ1λ2).

Proof. We only prove (3) and the other are trivial or similar to (3).
(3) Since h̄1 ⊕ h̄2 = ∪j=1,2,...,#h̄1,k=1,2,...,#h̄2

{
γ̇j + γ̈k − γ̇jγ̈k| ṗj p̈k

}
, according to the operational

law (2) in Definition 4, we have

λ(h̄1 ⊕ h̄2) = ∪ j=1,2,...,#h̄1,
k=1,2,...,#h̄2

{
1−

(
1− (γ̇j + γ̈k − γ̇jγ̈k)

)λ ∣∣ ṗj p̈k

}
= ∪ j=1,2,...,#h̄1,

k=1,2,...,#h̄2

{
1−

(
(1− γ̇j)(1− γ̈k)

)λ ∣∣ ṗj p̈k

}
.

Since λh̄1 = ∪j=1,2,...,#h̄1

{
1− (1− γ̇j)

λ| ṗj
}

and λh̄2 = ∪k=1,2,...,#h̄2

{
1− (1− γ̇k)

λ| p̈k
}

, we have

(λh̄1)⊕ (λh̄2) = ∪ j=1,2,...,#h̄1,
k=1,2,...,#h̄2

{
1− (1− γ̇j)

λ + 1− (1− γ̇k)
λ − (1− (1− γ̇j)

λ)(1− (1− γ̇k)
λ)| ṗj p̈k

}
= ∪ j=1,2,...,#h̄1,

k=1,2,...,#h̄2

{
1− (1− γ̇j)

λ(1− γ̈k)
λ| ṗj p̈k

}
.

Hence, λ(h̄1 ⊕ h̄2) = (λh̄1)⊕ (λh̄2).

However, for an HPFE h̄(γi|pi), i = 1, 2, . . . , #h̄, λ1 > 0 and λ2 > 0, the operational laws
(λ1h̄)⊕ (λ2h̄) = (λ1 + λ2)h̄ and h̄λ1 ⊗ h̄λ2 = h̄(λ1+λ2) do not hold in general. To illustrate this case, we
give the following example.

Example 1. Let h̄(γi|pi) = (0.7|0.5, 0.2|0.5) and λ1 = λ2 = 1, then

(λ1h̄)⊕ (λ2h̄) = h̄⊕ h̄ = ∪i,j=1,2
{

γi + γj − γiγj|0.25
}

= (0.91|0.25, 0.76|0.25, 0.76|0.25, 0.36|0.25),

(λ1 + λ2)h̄ = 2h̄ = ∪i=1,2

{
1− (1− γi)

2|0.5
}
= (0.91|0.5, 0.36|0.5)

and s((λ1h̄) ⊕ (λ2h̄)) = 0.6975 > 0.635 = s((λ1 + λ2)h̄) and hence, (λ1h̄) ⊕ (λ2h̄) > (λ1 + λ2)h̄.
Similarly, we have s(h̄λ1 ⊗ h̄λ2) = 0.2025 < 0.265 = s(h̄(λ1+λ2)) and thus, h̄λ1 ⊗ h̄λ2 < h̄(λ1+λ2).

Based on Definition 4, in order to aggregate the HPFEs, Xu and Zhou [27] developed some hesitant
probabilistic fuzzy aggregation operators, as follows:

Definition 5. [27] Let h̄t (t = 1, 2, . . . , T) be a collection of HPFEs, w = (w1, w2, . . . , wT)
T be the weight

vector of h̄t with wt ∈ [0, 1], and ∑T
t=1 wt = 1, and pt be the probability of γt in the HPFE h̄t, then

(1) the hesitant probabilistic fuzzy weighted averaging (HPFWA) operator is

HPFWA(h̄1, h̄2, . . . , h̄T) = (w1h̄1)⊕ (w2h̄2)⊕ · · · ⊕ (wT h̄T)

= ∪γ1∈h̄1,γ2∈h̄2,...,γT∈h̄T

{
1−

T

∏
t=1

(1− γt)
wt
∣∣p1 p2 · · · pT

}
. (2)



Information 2018, 9, 226 5 of 28

(2) the hesitant probabilistic fuzzy weighted geometric (HPFWG) operator is

HPFWG(h̄1, h̄2, . . . , h̄T) = (h̄1)
w1 ⊗ (h̄2)

w2 ⊗ · · · ⊗ (h̄T)
wT

= ∪γ1∈h̄1,γ2∈h̄2,...,γT∈h̄T

{
T

∏
t=1

(γt)
wt
∣∣p1 p2 · · · pT

}
. (3)

Definition 6. [27] Let h̄t (t = 1, 2, . . . , T) be a collection of HPFEs, h̄σ(t) be the tth largest of h̄t

(t = 1, 2, . . . , T), and pσ(t) be the probability of γσ(t) in the HPFE h̄σ(t), then the following two aggregation
operators, which are based on the mapping HT

P → HP with an associated vector ω = (ω1, ω2, . . . , ωT)
T such

that ωt ∈ [0, 1] and ∑T
t=1 ωt = 1, are given by

(1) the hesitant probabilistic fuzzy ordered weighted averaging (HPFOWA) operator:

HPFOWA(h̄1, h̄2, . . . , h̄T) = (ω1h̄σ(1))⊕ (ω2h̄σ(2))⊕ · · · ⊕ (ωT h̄σ(T))

= ∪γσ(1)∈h̄σ(1),γσ(2)∈h̄σ(2),...,γσ(T)∈h̄σ(T)

{
1−

T

∏
t=1

(1− γσ(t))
wt
∣∣∣pσ(1)pσ(2) · · · pσ(T)

}
. (4)

(2) the hesitant probabilistic fuzzy ordered weighted geometric (HPFOWG) operator:

HPFOWG(h̄1, h̄2, . . . , h̄T) = (h̄σ(1))
ω1 ⊗ (h̄σ(2))

ω2 ⊗ · · · ⊗ (h̄σ(T))
ωT

= ∪γσ(1)∈h̄σ(1),γσ(2)∈h̄σ(2),...,γσ(T)∈h̄σ(T)

{
T

∏
t=1

(γσ(t))
wt
∣∣∣pσ(1)pσ(2) · · · pσ(T)

}
. (5)

2.2. Einstein Operations on HPFEs

It is well known that the t-norms and t-conorms are general concepts satisfying the requirements
of the conjunction and disjunction operators. Einstein operations include the Einstein sum (⊕ε) and
Einstein product (⊗ε) which are examples of t-conorms and t-norms, respectively. They were defined
by Klement et al. [35] as follows:

x⊗ε y =
xy

1 + (1− x)(1− y)
, x⊕ε y =

x + y
1 + xy

, x, y ∈ [0, 1].

Based on the above Einstein operations, we give the following new operations on HPFEs:

Definition 7. Let h̄(γi|pi), h̄1(γ̇j| ṗj) and h̄2(γ̈k| p̈k) be three HPFEs, i = 1, 2, . . . , #h̄, j = 1, 2, . . . , #h̄1,
k = 1, 2, . . . , #h̄2, and λ > 0, then

(1) h̄1 ⊕ε h̄2 = ∪j=1,2,...,#h̄1,k=1,2,...,#h̄2

{
γ̇j+γ̈k

1+γ̇jγ̈k

∣∣ ṗj p̈k

}
;

(2) h̄1 ⊗ε h̄2 = ∪j=1,2,...,#h̄1,k=1,2,...,#h̄2

{
γ̇jγ̈k

1+(1−γ̇j)(1−γ̈k)

∣∣ ṗj p̈k

}
;

(3) λ ·ε h̄ = ∪i=1,2,...,#h̄

{
(1+γi)

λ−(1−γi)
λ

(1+γi)λ+(1−γi)λ

∣∣pi

}
;

(4) h̄∧ελ = ∪i=1,2,...,#h̄

{
2γλ

i
(2−γi)λ+γλ

i

∣∣pi

}
.

Thus, the above four operations on the HPFEs can be suitable for the HPFSs. Moreover, some
relationships are discussed for the operations on HPFEs given in Definitions 4 and 7 as follows:

Theorem 2. Let h̄(γi|pi), h̄1(γ̇j| ṗj) and h̄2(γ̈k| p̈k) be three HPFEs, i = 1, 2, . . . , #h̄, j = 1, 2, . . . , #h̄1,
k = 1, 2, . . . , #h̄2, and λ > 0, then

(1) ((h̄)c)∧ελ = (λ ·ε h̄)c;
(2) λ ·ε (h̄)c = (h̄∧ελ)c;
(3) (h̄1)

c ⊕ε (h̄2)
c = (h̄1 ⊗ε h̄2)

c;
(4) (h̄1)

c ⊗ε (h̄2)
c = (h̄1 ⊕ε h̄2)

c.
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Proof. (1)

((h̄)c)∧ελ = ∪i=1,2,...,#h̄

{
2(1− γi)

λ

(2− (1− γi))λ + (1− γi)λ

∣∣∣pi

}
= ∪i=1,2,...,#h̄

{
2(1− γi)

λ

(1 + γi))λ + (1− γi)λ

∣∣∣pi

}
=

(
∪i=1,2,...,#h̄

{
(1 + γi)

λ − (1− γi)
λ

(1 + γi))λ + (1− γi)λ

∣∣∣pi

})c

= (λ ·ε h̄)c.

(2)

λ ·ε (h̄)c = ∪i=1,2,...,#h̄

{
(1 + (1− γi))

λ − (1− (1− γi))
λ

(1 + (1− γi))λ + (1− (1− γi))λ

∣∣∣pi

}
= ∪i=1,2,...,#h̄

{
1−

2γλ
i

(2− γi)λ + γλ
i

∣∣∣pi

}

=

(
∪i=1,2,...,#h̄

{
2γλ

i
(2− γi)λ + γλ

i

∣∣∣pi

})c

= (h̄∧ελ)c.

(3)

(h̄1)
c ⊕ε (h̄2)

c = ∪i=1,2,...,#h̄1

{
(1− γ̇j)| ṗj

}
⊕ε ∪i=1,2,...,#h̄2

{(1− γ̈k)| p̈k}

= ∪ j=1,2,...,#h̄1,
k=1,2,...,#h̄2

{
(1− γ̇j) + (1− γ̈k)

1 + (1− γ̇j)(1− γ̈k)

∣∣∣ ṗj p̈k

}

=

(
∪ j=1,2,...,#h̄1,

k=1,2,...,#h̄2

{
γ̇jγ̈k

1 + (1− γ̇j)(1− γ̈k)

∣∣∣ ṗj p̈k

})c

= (h̄1 ⊗ε h̄2)
c.

(4)

(h̄1)
c ⊗ε (h̄2)

c = ∪i=1,2,...,#h̄1

{
(1− γ̇j)| ṗj

}
⊗ε ∪i=1,2,...,#h̄2

{(1− γ̈k)| p̈k}

= ∪ j=1,2,...,#h̄1,
k=1,2,...,#h̄2

{
(1− γ̇j)(1− γ̈k)

1− γ̇jγ̈k

∣∣∣ ṗj p̈k

}

=

(
∪ j=1,2,...,#h̄1,

k=1,2,...,#h̄2

{
γ̇j + γ̈k

1 + γ̇jγ̈k

∣∣ ṗj p̈k

})c

= (h̄1 ⊕ε h̄2)
c.

Theorem 3. Let h̄(γi|pi), h̄1(γ̇j| ṗj) and h̄2(γ̈k| p̈k) be three HPFEs, i = 1, 2, . . . , #h̄, j = 1, 2, . . . , #h̄1,
k = 1, 2, . . . , #h̄2, λ > 0, λ1 > 0, and λ2 > 0, then

(1) h̄1 ⊕ε h̄2 = h̄2 ⊕ε h̄1;
(2) h̄⊕ε (h̄1 ⊕ε h̄2) = (h̄⊕ε h̄1)⊕ε h̄2;
(3) λ ·ε (h̄1 ⊕ε h̄2) = (λ ·ε h̄1)⊕ε (λ ·ε h̄2);
(4) λ1 ·ε (λ2 ·ε h̄) = (λ1λ2) ·ε h̄;
(5) h̄1 ⊗ε h̄2 = h̄2 ⊗ε h̄1;
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(6) h̄⊗ε (h̄1 ⊗ε h̄2) = (h̄⊗ε h̄1)⊗ε h̄2;
(7) (h̄1 ⊗ε h̄2)

∧ελ = h̄∧ελ
1 ⊗ε h̄∧ελ

2 ;
(8) (h̄∧ελ1)∧ελ2 = h̄∧ε(λ1λ2).

Proof. Since (1), (2), (5) and (6) are trivial, and (7) and (8) are similar to (3) and (4), respectively, we
only prove (3) and (4).

(3) Since h̄1⊕ε h̄2 = ∪j=1,2,...,#h̄1,k=1,2,...,#h̄2

{
γ̇j+γ̈k

1+γ̇jγ̈k

∣∣ ṗj p̈k

}
, by the operational law (3) in Definition 7,

we have

λ ·ε (h̄1 ⊕ε h̄2) =
⋃

j=1,2,...,#h̄1,
k=1,2,...,#h̄2


(

1 +
γ̇j+γ̈k

1+γ̇jγ̈k

)λ
−
(

1− γ̇j+γ̈k
1+γ̇jγ̈k

)λ

(
1 +

γ̇j+γ̈k
1+γ̇jγ̈k

)λ
+
(

1− γ̇j+γ̈k
1+γ̇jγ̈k

)λ

∣∣∣ ṗj p̈k


=

⋃
j=1,2,...,#h̄1,
k=1,2,...,#h̄2

{
(1 + γ̇j)

λ(1 + γ̈k)
λ − (1− γ̇j)

λ(1− γ̈k)
λ

(1 + γ̇j)λ(1 + γ̈k)λ + (1− γ̇j)λ(1− γ̈k)λ

∣∣∣ ṗj p̈k

}
.

Since λ ·ε h̄1 = ∪i=1,2,...,#h̄1

{
(1+γ̇j)

λ−(1−γ̇j)
λ

(1+γ̇j)λ+(1−γ̇j)λ

∣∣ ṗj

}
and λ ·ε h̄2 = ∪i=1,2,...,#h̄2

{
(1+γ̈k)

λ−(1−γ̈k)
λ

(1+γ̈k)λ+(1−γ̈k)λ

∣∣ p̈k

}
,

we have

(λ ·ε h̄1)⊕ε (λ ·ε h̄2) =
⋃

j=1,2,...,#h̄1,
k=1,2,...,#h̄2


(1+γ̇j)

λ−(1−γ̇j)
λ

(1+γ̇j)λ+(1−γ̇j)λ + (1+γ̈k)
λ−(1−γ̈k)

λ

(1+γ̈k)λ+(1−γ̈k)λ

1 +
(1+γ̇j)λ−(1−γ̇j)λ

(1+γ̇j)λ+(1−γ̇j)λ ·
(1+γ̈k)λ−(1−γ̈k)λ

(1+γ̈k)λ+(1−γ̈k)λ

∣∣∣ ṗj p̈k


=

⋃
j=1,2,...,#h̄1,
k=1,2,...,#h̄2

{
(1 + γ̇j)

λ(1 + γ̈k)
λ − (1− γ̇j)

λ(1− γ̈k)
λ

(1 + γ̇j)λ(1 + γ̈k)λ + (1− γ̇j)λ(1− γ̈k)λ

∣∣∣ ṗj p̈k

}
.

Hence λ ·ε (h̄1 ⊕ε h̄2) = (λ ·ε h̄1)⊕ε (λ ·ε h̄2).

(4) Since λ2 ·ε h̄ = ∪i=1,2,...,#h̄

{
(1+γi)

λ2−(1−γi)
λ2

(1+γi)
λ2+(1−γi)

λ2

∣∣pi

}
, then we have

λ1 ·ε (λ2 ·ε h̄) = ∪i=1,2,...,#h̄


(

1 + (1+γi)
λ2−(1−γi)

λ2

(1+γi)
λ2+(1−γi)

λ2

)λ1
−
(

1− (1+γi)
λ2−(1−γi)

λ2

(1+γi)
λ2+(1−γi)

λ2

)λ1

(
1 + (1+γi)

λ2−(1−γi)
λ2

(1+γi)
λ2+(1−γi)

λ2

)λ1
+
(

1− (1+γi)
λ2−(1−γi)

λ2

(1+γi)
λ2+(1−γi)

λ2

)λ1

∣∣∣pi


= ∪i=1,2,...,#h̄

{
(1 + γi)

(λ1λ2) − (1− γi)
(λ1λ2)

(1 + γi)(λ1λ2) + (1− γi)(λ1λ2)

∣∣∣pi

}
= (λ1λ2) ·ε h̄.

For an HPFE, h̄(γi|pi), i = 1, 2, . . . , #h̄, λ1 > 0, and λ2 > 0, the operational laws (λ1 ·ε h̄)⊕ε (λ2 ·ε
h̄) = (λ1 + λ2) ·ε h̄ and h̄∧ελ1 ⊗ε h̄∧ελ2 = h̄∧ε(λ1+λ2) do not hold in general. To illustrate this case, we
give the following example.

Example 2. Let h̄(γi|pi) = (0.3|0.5, 0.5|0.5) and λ1 = λ2 = 1, then

(λ1 ·ε h̄)⊕ε (λ2 ·ε h̄) = h̄⊕ε h̄ = ∪i,j=1,2

{
γi + γj

1 + γiγj

∣∣∣0.25

}
= (0.5505|0.25, 0.6957|0.25, 0.6957|0.25, 0.8|0.25),
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(λ1 + λ2) ·ε h̄ = 2 ·ε h̄ = ∪i=1,2

{
(1 + γi)

2 − (1− γi)
2

(1 + γi)2 + (1− γi)2

∣∣∣0.5
}

= (0.5505|0.5, 0.8|0.5).

Clearly, s((λ1 ·ε h̄)⊕ε (λ2 ·ε h̄)) = 0.6856 > 0.6752 = s((λ1 + λ2) ·ε h̄). Hence, (λ1 ·ε h̄)⊕ε (λ2 ·ε
h̄) < (λ1 + λ2) ·ε h̄. Similarly, we have s(h̄∧ελ1 ⊗ε h̄∧ελ2) = 0.2566 > 0.13 = s(h̄∧ε(λ1+λ2)) and thus
h̄∧ελ1 ⊗ε h̄∧ελ2 < h̄∧ε(λ1+λ2).

3. Some HPFE Weighted Aggregation Operators Based on Einstein Operation

One important issue is the question of how to extend Einstein operations to aggregate the HPFE
information provided by the decision makers. The optimal approach is weighted aggregation operators,
in which the widely used technologies are the weighted averaging (WA) operator, the ordered
weighted averaging (OWA) operator, and their extended forms [39,40]. Yu [21] proposed the
hesitant fuzzy Einstein weighted averaging (HFEWA) operator, the hesitant fuzzy Einstein ordered
weighted averaging (HFEOWA) operator, the hesitant fuzzy Einstein weighted geometric (HFEWG)
operator, and the hesitant fuzzy Einstein ordered weighted geometric (HFEOWG) operator based
on those operators. Similar to these hesitant fuzzy information aggregation operators, we propose
the corresponding hesitant probabilistic fuzzy Einstein weighted and ordered operators to aggregate
the HPFEs.

Definition 8. Let h̄t (t = 1, 2, . . . , T) be a collection of HPFEs; then, a hesitant probabilistic fuzzy Einstein
weighted averaging (HPFEWA) operator is a mapping HT

P → HP such that

HPFEWA(h̄1, h̄2, . . . , h̄T) = (w1 ·ε h̄1)⊕ε (w2 ·ε h̄2)⊕ε · · · ⊕ε (wT ·ε h̄T), (6)

where w = (w1, w2, . . . , wT)
T is the weight vector of h̄t (t = 1, 2, . . . , T) with wt ∈ [0, 1] and ∑T

t=1 wt = 1,

and pt is the probability of γt in HPFE h̄t. In particular, if w =
(

1
T , 1

T , . . . , 1
T

)T
, then the HPFEWA operator

is reduced to the hesitant probabilistic fuzzy Einstein averaging (HPFEA) operator:

HPFEA(h̄1, h̄2, . . . , h̄T) = (
1
T
·ε h̄1)⊕ε (

1
T
·ε h̄2)⊕ε · · · ⊕ε (

1
T
·ε h̄T). (7)

From Definitions 7 and 8, we can get the following result by using mathematical induction.

Theorem 4. Let h̄t (t = 1, 2, . . . , T) be a collection of HPFEs; then, their aggregated value obtained using the
HPFEWA operator is also a HPFE, and

HPFEWA(h̄1, h̄2, . . . , h̄T) =
⋃

γ1∈h̄1,γ2∈h̄2,...,γT∈h̄T

{
∏T

t=1(1 + γt)wt −∏T
t=1(1− γt)wt

∏T
t=1(1 + γt)wt + ∏T

t=1(1− γt)wt

∣∣∣p1 p2 · · · pT

}
, (8)

where w = (w1, w2, . . . , wT)
T is the weight vector of h̄t (t = 1, 2, . . . , T) with wt ∈ [0, 1] and ∑T

t=1 wt = 1,
and pt is the probability of γt in HPFE h̄t.

Proof. We prove Equation (8) by mathematical induction. For T = 2, since w1 ·ε h̄1 =

∪γ1∈h̄1

{
(1+γ1)

w1−(1−γ1)
w1

(1+γ1)
w1+(1−γ1)

w1

∣∣p1

}
and w2 ·ε h̄2 = ∪γ2∈h̄2

{
(1+γ2)

w2−(1−γ2)
w2

(1+γ2)
w2+(1−γ2)

w2

∣∣p2

}
, then

(w1 ·ε h̄1)⊕ε (w2 ·ε h̄2) =
⋃

γ1∈h̄1,γ2∈h̄2


(1+γ1)

w1−(1−γ1)
w1

(1+γ1)
w1+(1−γ1)

w1 + (1+γ2)
w2−(1−γ2)

w2

(1+γ2)
w2+(1−γ2)

w2

1 + (1+γ1)
w1−(1−γ1)

w1

(1+γ1)
w1+(1−γ1)

w1 ·
(1+γ2)

w2−(1−γ2)
w2

(1+γ2)
w2+(1−γ2)

w2

∣∣∣p1 p2


=

⋃
γ1∈h̄1,γ2∈h̄2

{
∏2

t=1(1 + γt)wt −∏2
t=1(1− γt)wt

∏2
t=1(1 + γt)wt + ∏2

t=1(1− γt)wt

∣∣∣p1 p2

}
.
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If Equation (8) holds for T = k, that is

(w1 ·ε h̄1)⊕ε (w2 ·ε h̄2)⊕ε · · · ⊕ε (wk ·ε h̄k)

=
⋃

γ1∈h̄1,γ2∈h̄2,...,γk∈h̄k

{
∏k

t=1(1 + γt)wt −∏k
t=1(1− γt)wt

∏k
t=1(1 + γt)wt + ∏k

t=1(1− γt)wt

∣∣∣p1 p2 · · · pk

}
,

then, when T = k + 1, according to the Einstein operations of HPFEs, we have

(w1 ·ε h̄1)⊕ε (w2 ·ε h̄2)⊕ε · · · ⊕ε (wk+1 ·ε h̄k+1)

=
(
(w1 ·ε h̄1)⊕ε (w2 ·ε h̄2)⊕ε · · · ⊕ε (wk ·ε h̄k)

)
⊕ε (wk+1 ·ε h̄k+1)

=
⋃

γ1∈h̄1,γ2∈h̄2,...,γk∈h̄k

{
∏k

t=1(1 + γt)wt −∏k
t=1(1− γt)wt

∏k
t=1(1 + γt)wt + ∏k

t=1(1− γt)wt

∣∣∣p1 p2 · · · pk

}

⊕ε

⋃
γk+1∈h̄k+1

{
(1 + γk+1)

wk+1 − (1− γk+1)
wk+1

(1 + γk+1)
wk+1 + (1− γk+1)

wk+1

∣∣pk+1

}

=
⋃

γ1∈h̄1,γ2∈h̄2,...,γk∈h̄k ,γk+1∈h̄k+1

{
∏k+1

t=1 (1 + γt)wt −∏k+1
t=1 (1− γt)wt

∏k+1
t=1 (1 + γt)wt + ∏k+1

t=1 (1− γt)wt

∣∣∣p1 p2 · · · pk pk+1

}
,

i.e., Equation (8) holds for T = k + 1. Hence, Equation (8) holds for all T. Thus,

HPFEWA(h̄1, h̄2, . . . , h̄T) =
⋃

γ1∈h̄1,γ2∈h̄2,...,γT∈h̄T

{
∏T

t=1(1 + γt)wt −∏T
t=1(1− γt)wt

∏T
t=1(1 + γt)wt + ∏T

t=1(1− γt)wt

∣∣∣p1 p2 · · · pT

}
,

which completes the proof of theorem.

Based on Theorem 4, we have basic properties of the HPFEWA operator, as follows:

Theorem 5. Let h̄t(γ
(t)
i |pt) (t = 1, 2, . . . , T) be a collection of HPFEs, w = (w1, w2, . . . , wT)

T be the weight
vector of h̄t (t = 1, 2, . . . , T) such that wt ∈ [0, 1] and ∑T

t=1 wt = 1, and pt be the corresponding probability of
γ
(t)
i in HPFE h̄t; then, we have the following:

(1) (Boundary):

h̄− ≤ HPFEWA(h̄1, h̄2, . . . , h̄T) ≤ h̄+, (9)

where h̄− = (min1≤t≤T minγt∈h̄t
γt|p1 p2 · · · pT) and h̄+ = (max1≤t≤T maxγt∈h̄t

γt|p1 p2 · · · pT).

(2) (Monotonicity): Let h̄∗t (γ̇
(t)
i |pt) (t = 1, 2, . . . , T) be a collection of HPFEs with #t = #h̄t = #h̄∗t for

t = 1, 2, . . . , T, w = (w1, w2, . . . , wT)
T be the weight vector of h̄∗t (t = 1, 2, . . . , T), such that wt ∈ [0, 1]

and ∑T
t=1 wt = 1, and pt is the probability of γ̇

(t)
i in HPFE h̄∗t . If γ

(t)
i ≤ γ̇

(t)
i for each i = 1, 2, . . . , #t,

t = 1, 2, . . . , T; then,

HPFEWA(h̄1, h̄2, . . . , h̄T) ≤ HPFEWA(h̄∗1 , h̄∗2 , . . . , h̄∗T). (10)

Proof. (1) Let f (x) = 1−x
1+x , x ∈ [0, 1], then f ′(x) = −2

(1+x)2 < 0, i.e., f (x) is a decreasing function. Let

max γt = max1≤t≤T maxγt∈h̄t
γt and min γt = min1≤t≤T minγt∈h̄t

γt. For any γt ∈ h̄t (t = 1, 2, . . . , T),
since minγt∈h̄t

γt ≤ γt ≤ maxγt∈h̄t
γt, then f (maxγt∈h̄t

γt) ≤ f (γt) ≤ f (minγt∈h̄t
γt), and so

1−max γt

1 + max γt
≤

1−maxγt∈h̄t
γt

1 + maxγt∈h̄t
γt
≤ 1− γt

1 + γt
≤

1−minγt∈h̄t
γt

1 + minγt∈h̄t
γt
≤ 1−min γt

1 + min γt
.
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Since w = (w1, w2, . . . , wT)
T is the weight vector of h̄t (t = 1, 2, . . . , T) with wt ∈ [0, 1] and

∑T
t=1 wt = 1, we have

T

∏
t=1

(
1−max γt

1 + max γt

)wt

≤
T

∏
t=1

(
1− γt

1 + γt

)wt

≤
T

∏
t=1

(
1−min γt

1 + min γt

)wt

.

Since ∏T
t=1

(
1−max γt
1+max γt

)wt
=

(
1−max γt
1+max γt

)∑T
t=1 wt

= 1−max γt
1+max γt

and ∏T
t=1

(
1−min γt
1+min γt

)wt
=(

1−min γt
1+min γt

)∑T
t=1 wt

= 1−min γt
1+min γt

, we get

1−max γt

1 + max γt
≤

T

∏
t=1

(
1− γt

1 + γt

)wt

≤ 1−min γt

1 + min γt

⇔ 2
1 + max γt

≤ 1 +
T

∏
t=1

(
1− γt

1 + γt

)wt

≤ 2
1 + min γt

⇔ 1 + min γt

2
≤ 1

1 + ∏T
t=1

(
1−γt
1+γt

)wt
≤ 1 + max γt

2

⇔ min γt ≤
2

1 + ∏T
t=1

(
1−γt
1+γt

)wt
− 1 ≤ max γt,

i.e.,

min γt ≤
∏T

t=1(1 + γt)wt −∏T
t=1(1− γt)wt

∏T
t=1(1 + γt)wt + ∏T

t=1(1− γt)wt
≤ max γt. (11)

Let HPFEWA(h̄1, h̄2, . . . , h̄T) = h̄(γi|p1 p2 · · · pT), i = 1, 2, . . . , #h̄, where #h̄ = #h̄1 × #h̄2 × · · · ×
#h̄T , h̄− = (min γt|p1 p2 · · · pT) and h̄+ = (max γt|p1 p2 · · · pT); then, Equation (11) is transformed into
the following form: min γt ≤ γi ≤ max γt for all i = 1, 2, . . . , #h̄. Thus, s(h̄−) = min γt p1 p2 · · · pT ≤
∑#h̄

i=1 γi p1 p2 · · · pT = s(h̄) and s(h̄) = ∑#h̄
i=1 γi p1 p2 · · · pT ≤ max γt p1 p2 · · · pT = s(h̄+).

If s(h̄−) < s(h̄) and s(h̄) < s(h̄+), then by Definition 3, we have h̄− < HPFEWA(h̄1, h̄2, . . . , h̄T) <

h̄+. If s(h̄) = s(h̄+), i.e., max γt = ∑#h̄
i=1 γi, then d(h̄) = ∑#h̄

i=1(γi − s(h̄))2 p1 p2 · · · pT =

(max γt − s(h̄))2 p1 p2 · · · pT = d(h̄+). In this case, in accordance with Definition 3, it follows that
HPFEWA(h̄1, h̄2, . . . , h̄T) = h̄+. If s(h̄) = s(h̄−), then similarly, we have HPFEWA(h̄1, h̄2, . . . , h̄T) = h̄−.

(2) Let f (x) = 1−x
1+x , x ∈ [0, 1]; then, f (x) is a decreasing function. If γ

(t)
i ≤ γ̇

(t)
i for each

i = 1, 2, . . . , #t, t = 1, 2, . . . , T; then, f (γ(t)
i ) ≥ f (γ̇(t)

i ), for each i = 1, 2, . . . , #t, t = 1, 2, . . . , T, i.e.,
1−γ

(t)
i

1+γ
(t)
i

≥ 1−γ̇
(t)
i

1+γ̇
(t)
i

, for each i = 1, 2, . . . , #t, t = 1, 2, . . . , T. For any γ
(t)
i ∈ h̄t (t = 1, 2, . . . , T), since

w = (w1, w2, . . . , wT)
T is the weight vector of h̄t (t = 1, 2, . . . , T) such that wt ∈ [0, 1], t = 1, 2, . . . , T

and ∑T
t=1 wt = 1, we have(

1− γ
(t)
i

1 + γ
(t)
i

)wt

≥
(

1− γ̇
(t)
i

1 + γ̇
(t)
i

)wt

, t = 1, 2, . . . , T.
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Then,

T

∏
t=1

(
1− γ

(t)
i

1 + γ
(t)
i

)wt

≥
T

∏
t=1

(
1− γ̇

(t)
i

1 + γ̇
(t)
i

)wt

⇔ 1 +
T

∏
t=1

(
1− γ

(t)
i

1 + γ
(t)
i

)wt

≥ 1 +
T

∏
t=1

(
1− γ̇

(t)
i

1 + γ̇
(t)
i

)wt

⇔ 1

1 + ∏T
t=1

(
1−γ

(t)
i

1+γ
(t)
i

)wt
≤ 1

1 + ∏T
t=1

(
1−γ̇

(t)
i

1+γ̇
(t)
i

)wt

⇔ 2

1 + ∏T
t=1

(
1−γ

(t)
i

1+γ
(t)
i

)wt
− 1 ≤ 2

1 + ∏T
t=1

(
1−γ̇

(t)
i

1+γ̇
(t)
i

)wt
− 1,

i.e.,

∏T
t=1(1 + γ

(t)
i )wt −∏T

t=1(1− γ
(t)
i )wt

∏T
t=1(1 + γ

(t)
i )wt + ∏T

t=1(1− γ
(t)
i )wt

≤ ∏T
t=1(1 + γ̇

(t)
i )wt −∏T

t=1(1− γ̇
(t)
i )wt

∏T
t=1(1 + γ̇

(t)
i )wt + ∏T

t=1(1− γ̇
(t)
i )wt

. (12)

Let HPFEWA(h̄1, h̄2, . . . , h̄T) = h̄(γi|p1 p2 · · · pT) and HPFEWA(h̄∗1 , h̄∗2 , . . . , h̄∗T) =

h̄∗(γ̇i|p1 p2 · · · pT), where i = 1, 2, . . . , #, and # = #1 × #2 × · · · × #T is the number of possible elements
in h̄(γi|p1 p2 · · · pT) and h̄∗(γ̇i|p1 p2 · · · pT), respectively, then the Equation (12) is transformed into the
form γi ≤ γ̇i (i = 1, 2, . . . , #). Thus, s(h̄) = ∑#

i=1 γi p1 p2 · · · pT ≤ ∑#
i=1 γ̇i p1 p2 · · · pT = s(h̄∗).

If s(h̄) < s(h̄∗), then, according to Definition 3, we have HPFEWA(h̄1, h̄2, . . . , h̄T) <

HPFEWA(h̄∗1 , h̄∗2 , . . . , h̄∗T). If s(h̄) = s(h̄∗), i.e., ∑#
i=1 γi = ∑#

i=1 γ̇i, then d(h̄) = ∑#
i=1(γi −

s(h̄))2 p1 p2 · · · pT = ∑#
i=1(γ̇i− s(h̄∗))2 p1 p2 · · · pT = d(h̄∗). In this case, based on Definition 3, it follows

that HPFEWA(h̄1, h̄2, . . . , h̄T) = HPFEWA(h̄∗1 , h̄∗2 , . . . , h̄∗T).

However, the HPFEWA operator does not satisfy the idempotency. To illustrate this, we give the
following example.

Example 3. Let h̄1 = h̄2 = (0.3|0.5, 0.7|0.5), and w = (0.2, 0.8)T is the weight vector h̄t (t = 1, 2); then,

HPFEWA(h̄1, h̄2) = ∪γ1∈h̄1,γ2∈h̄2

{
∏2

t=1(1 + γt)wt −∏2
t=1(1− γt)wt

∏2
t=1(1 + γt)wt + ∏2

t=1(1− γt)wt

∣∣p1 p2

}
= (0.3|0.25, 0.398|0.25, 0.639|0.25, 0.7|0.25)

and thus HPFEWA(h̄1, h̄2) 6= (0.3|0.5, 0.7|0.5).

Based on the HPFWG operator and Einstein operation, we developed the hesitant probabilistic
fuzzy Einstein weighted geometric operator as follows:

Definition 9. Let h̄t (t = 1, 2, . . . , T) be a collection of HPFEs; then, the hesitant probabilistic fuzzy Einstein
weighted geometric (HPFEWG) operator is a mapping (HT

P → HP) such that

HPFEWG(h̄1, h̄2, . . . , h̄T) = h̄∧εw1
1 ⊗ε h̄∧εw2

2 ⊗ε · · · ⊗ε h̄∧εwT
T , (13)
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where w = (w1, w2, . . . , wT)
T is the weight vector of h̄t (t = 1, 2, . . . , T) with wt ∈ [0, 1] and ∑T

t=1 wt = 1,

and pt is the probability of γt in HPFE h̄t. In particular, if w =
(

1
T , 1

T , . . . , 1
T

)T
, then the HPFEWG operator

is reduced to the hesitant probabilistic fuzzy Einstein geometric (HPFEG) operator:

HPFEG(h̄1, h̄2, . . . , h̄T) = h̄∧ε
1
T

1 ⊗ε h̄∧ε
1
T

2 ⊗ε · · · ⊗ε h̄∧ε
1
T

T . (14)

Theorem 6. Let h̄t (t = 1, 2, . . . , T) be a collection of HPFEs; then, their aggregated value obtained using the
HPFEWG operator is also a HPFE and

HPFEWG(h̄1, h̄2, . . . , h̄T) =
⋃

γ1∈h̄1,γ2∈h̄2,...,γT∈h̄T

{
2 ∏T

t=1 γwt
t

∏T
t=1(2− γt)wt + ∏T

t=1 γwt
t

∣∣∣p1 p2 · · · pT

}
, (15)

where w = (w1, w2, . . . , wT)
T is the weight vector of h̄t (t = 1, 2, . . . , T) with wt ∈ [0, 1] and ∑T

t=1 wt = 1,
and pt is the probability of γt in HPFE h̄t.

Proof. We prove Equation (15) by mathematical induction on T. When T = 2, since h̄∧εw1
1 =

∪γ1∈h̄1

{
2γ

w1
1

(2−γ1)
w1+γ

w1
1

∣∣p1

}
and h̄∧εw2

2 = ∪γ2∈h̄2

{
2γ

w2
2

(2−γ2)
w2+γ

w2
2

∣∣p2

}
, we have

h̄∧εw1
1 ⊗ε h̄∧εw2

2 =
⋃

γ1∈h̄1,γ2∈h̄2


2γ

w1
1

(2−γ1)
w1+γ

w1
1
· 2γ

w2
2

(2−γ2)
w2+γ

w2
2

1 +
(

1− 2γ
w1
1

(2−γ1)
w1+γ

w1
1

)(
1− 2γ

w2
2

(2−γ2)
w2+γ

w2
2

)∣∣∣p1 p2


=

⋃
γ1∈h̄1,γ2∈h̄2

{
2 ∏2

t=1 γwt
t

∏2
t=1(2− γt)wt + ∏2

t=1 γwt
t

∣∣∣p1 p2

}
.

Assume that Equation (15) holds for T = k, i.e.,

h̄∧εw1
1 ⊗ε h̄∧εw2

2 ⊗ε · · · ⊗ε h̄∧εwk
k =

⋃
γ1∈h̄1,γ2∈h̄2,··· ,γk∈h̄k

{
2 ∏k

t=1 γwt
t

∏k
t=1(2− γt)wt + ∏k

t=1 γwt
t

∣∣∣p1 p2 · · · pk

}
.

In accordance with the Einstein operational laws of HPFEs for T = k + 1, we have

h̄∧εw1
1 ⊗ε h̄∧εw2

2 ⊗ε · · · ⊗ε h̄∧εwk+1
k+1 =

(
h̄∧εw1

1 ⊗ε h̄∧εw2
2 ⊗ε · · · ⊗ε h̄∧εwk

k

)
⊗ε h̄∧εwk+1

k+1

=
⋃

γ1∈h̄1,γ2∈h̄2,...,γk∈h̄k

{
2 ∏k

t=1 γwt
t

∏k
t=1(2− γt)wt + ∏k

t=1 γwt
t

∣∣∣p1 p2 · · · pk

}

⊗ε

⋃
γk+1∈h̄k+1

{
2γ

wk+1
k+1

(2− γk+1)
wk+1 + γ

wk+1
k+1

∣∣pk+1

}

=
⋃

γ1∈h̄1,γ2∈h̄2,...,γk∈h̄k ,γk+1∈h̄k+1

{
2 ∏k+1

t=1 γwt
t

∏k+1
t=1 (2− γt)wt + ∏k+1

t=1 γwt
t

∣∣∣p1 p2 · · · pk pk+1

}
,

i.e., Equation (15) holds for T = k + 1. Then, Equation (15) holds for all T. Hence, we complete the
proof of the theorem.

Based on Theorem 6, we have basic properties of the HPFEWG operator, as follows:
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Theorem 7. Let h̄t(γ
(t)
i |pt) (t = 1, 2, . . . , T) be a collection of HPFEs, w = (w1, w2, . . . , wT)

T be the weight
vector of h̄t (t = 1, 2, . . . , T) such that wt ∈ [0, 1] and ∑T

t=1 wt = 1, and pt be the corresponding probability of
γ
(t)
i in HPFE h̄t. Then, we have the following.

(1) (Boundary):

h̄− ≤ HPFEWG(h̄1, h̄2, . . . , h̄T) ≤ h̄+, (16)

where h̄− = (min1≤t≤T minγt∈h̄t
γt|p1 p2 · · · pT) and h̄+ = (max1≤t≤T maxγt∈h̄t

γt|p1 p2 · · · pT).

(2) (Monotonicity): Let h̄∗t (γ̇
(t)
i |pt) (t = 1, 2, . . . , T) be a collection of HPFEs with #t = #h̄t = #h̄∗t for

t = 1, 2, . . . , T, w = (w1, w2, . . . , wT)
T be the weight vector of h̄∗t (t = 1, 2, . . . , T) such that wt ∈ [0, 1]

and ∑T
t=1 wt = 1, and pt be the probability of γ̇

(t)
i in HPFE h̄∗t . If γ

(t)
i ≤ γ̇

(t)
i for each i = 1, 2, . . . , #t,

t = 1, 2, . . . , T, then

HPFEWG(h̄1, h̄2, . . . , h̄T) ≤ HPFEWG(h̄∗1 , h̄∗2 , . . . , h̄∗T). (17)

Proof. (1) Let g(x) = 2−x
x , x ∈ (0, 1]; then, g′(x) = −2

x2 < 0, i.e., g(x) is a decreasing function. Let
max γt = max1≤t≤T maxγt∈h̄t

γt and min γt = min1≤t≤T minγt∈h̄t
γt. For any γt ∈ h̄t (t = 1, 2, . . . , T),

since minγt∈h̄t
γt ≤ γt ≤ maxγt∈h̄t

γt; then, g(maxγt∈h̄t
γt) ≤ g(γt) ≤ g(minγt∈h̄t

γt), and so

2−max γt

max γt
≤

2−maxγt∈h̄t
γt

maxγt∈h̄t
γt

≤ 2− γt

γt
≤

2−minγt∈h̄t
γt

minγt∈h̄t
γt

≤ 2−min γt

min γt
.

Since w = (w1, w2, . . . , wT)
T is the weight vector of h̄t (t = 1, 2, . . . , T) with wt ∈ [0, 1] and

∑T
t=1 wt = 1, we have

T

∏
t=1

(
2−max γt

max γt

)wt

≤
T

∏
t=1

(
2− γt

γt

)wt

≤
T

∏
t=1

(
2−min γt

min γt

)wt

.

Since ∏T
t=1

(
2−max γt

max γt

)wt
=

(
2−max γt

max γt

)∑T
t=1 wt

= 2−max γt
max γt

and ∏T
t=1

(
2−min γt

min γt

)wt
=(

2−min γt
min γt

)∑T
t=1 wt

= 2−min γt
min γt

, we obtain

2−max γt

max γt
≤

T

∏
t=1

(
2− γt

γt

)wt

≤ 2−min γt

min γt
⇔ 2

max γt
≤ 1 +

T

∏
t=1

(
2− γt

γt

)wt

≤ 2
min γt

⇔ min γt

2
≤ 1

1 + ∏T
t=1

(
2−γt

γt

)wt
≤ max γt

2

⇔ min γt ≤
2

1 + ∏T
t=1

(
2−γt

γt

)wt
≤ max γt,

i.e.,

min γt ≤
2 ∏T

t=1 γwt
t

∏T
t=1(2− γt)wt + ∏T

t=1 γwt
t
≤ max γt. (18)

Let HPFEWG(h̄1, h̄2, . . . , h̄T) = h̄(γi|p1 p2 · · · pT), i = 1, 2, . . . , #h̄, where #h̄ = #h̄1 × #h̄2 ×
· · · × #h̄T , h̄− = (min γt|p1 p2 · · · pT) and h̄+ = (max γt|p1 p2 · · · pT). Then, Equation (18) is
transformed into the following forms: min γt ≤ γi ≤ max γt for all i = 1, 2, . . . , #h̄. Thus,
s(h̄−) = min γt p1 p2 · · · pT ≤ ∑#h̄

i=1 γi p1 p2 · · · pT = s(h̄) and s(h̄) = ∑#h̄
i=1 γi p1 p2 · · · pT ≤

max γt p1 p2 · · · pT = s(h̄+). If s(h̄−) < s(h̄) and s(h̄) < s(h̄+). Then, based on Definition 3,
we have h̄− < HPFEWG(h̄1, h̄2, . . . , h̄T) < h̄+. If s(h̄) = s(h̄+), i.e., max γt = ∑#h̄

i=1 γi, then
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d(h̄) = ∑#h̄
i=1(γi − s(h̄))2 p1 p2 · · · pT = (max γt − s(h̄))2 p1 p2 · · · pT = d(h̄+). In this case, based on

Definition 3, it follows that HPFEWG(h̄1, h̄2, . . . , h̄T) = h̄+. If s(h̄) = s(h̄−). Then, similarly, we have
HPFEWG(h̄1, h̄2, . . . , h̄T) = h̄−.

(2) Let g(x) = 2−x
x , x ∈ (0, 1]; then, g(x) is a decreasing function. If γ

(t)
i ≤ γ̇

(t)
i for each

i = 1, 2, . . . , #t, t = 1, 2, . . . , T, then g(γ(t)
i ) ≥ g(γ̇(t)

i ), for each i = 1, 2, . . . , #t, t = 1, 2, . . . , T, i.e.,
2−γ

(t)
i

γ
(t)
i

≥ 2−γ̇
(t)
i

γ̇
(t)
i

, for each i = 1, 2, . . . , #t, t = 1, 2, . . . , T. For any γ
(t)
i ∈ h̄t (t = 1, 2, . . . , T), since

w = (w1, w2, . . . , wT)
T is the weight vector of h̄t (t = 1, 2, . . . , T) such that wt ∈ [0, 1], t = 1, 2, . . . , T

and ∑T
t=1 wt = 1, we have(

2− γ
(t)
i

γ
(t)
i

)wt

≥
(

2− γ̇
(t)
i

γ̇
(t)
i

)wt

, i = 1, 2, . . . , #t, t = 1, 2, . . . , T.

Then,

T

∏
t=1

(
2− γ

(t)
i

γ
(t)
i

)wt

≥
T

∏
t=1

(
2− γ̇

(t)
i

γ̇
(t)
i

)wt

⇔ 1 +
T

∏
t=1

(
2− γ

(t)
i

γ
(t)
i

)wt

≥ 1 +
T

∏
t=1

(
2− γ̇

(t)
i

γ̇
(t)
i

)wt

⇔ 1

1 + ∏T
t=1

(
2−γ

(t)
i

γ
(t)
i

)wt
≤ 1

1 + ∏T
t=1

(
2−γ̇

(t)
i

γ̇
(t)
i

)wt

⇔ 2

1 + ∏T
t=1

(
2−γ

(t)
i

γ
(t)
i

)wt
− 1 ≤ 2

1 + ∏T
t=1

(
2−γ̇

(t)
i

γ̇
(t)
i

)wt
− 1,

i.e.,

2 ∏T
t=1(γ

(t)
i )wt

∏T
t=1(2− γ

(t)
i )wt + ∏T

t=1(γ
(t)
i )wt

≤
2 ∏T

t=1(γ
(t)
i )wt

∏T
t=1(2− γ

(t)
i )wt + ∏T

t=1(γ
(t)
i )wt

. (19)

Let HPFEWG(h̄1, h̄2, . . . , h̄T) = h̄(γi|p1 p2 · · · pT) and HPFEWG(h̄∗1 , h̄∗2 , . . . , h̄∗T) =

h̄∗(γ̇i|p1 p2 · · · pT), where i = 1, 2, . . . , #, and # = #1 × #2 × · · · × #T is the number of possible elements
in h̄(γi|p1 p2 · · · pT) and h̄∗(γ̇i|p1 p2 · · · pT), respectively. Then, the Equation (19) is transformed into
the form γi ≤ γ̇i (i = 1, 2, . . . , #). Thus, s(h̄) = ∑#

i=1 γi p1 p2 · · · pT ≤ ∑#
i=1 γ̇i p1 p2 · · · pT = s(h̄∗). If

s(h̄) < s(h̄∗), then based on Definition 3, HPFEWG(h̄1, h̄2, . . . , h̄T) < HPFEWG(h̄∗1 , h̄∗2 , . . . , h̄∗T).
If s(h̄) = s(h̄∗), i.e., ∑#

i=1 γi = ∑#
i=1 γ̇i, then d(h̄) = ∑#

i=1(γi − s(h̄))2 p1 p2 · · · pT =

∑#
i=1(γ̇i − s(h̄∗))2 p1 p2 · · · pT = d(h̄∗). In this case, based on Definition 3, it follows that

HPFEWG(h̄1, h̄2, . . . , h̄T) = HPFEWG(h̄∗1 , h̄∗2 , . . . , h̄∗T).

If all probabilities of values in each HPFE are equal, i.e., p1 = p2 = · · · = p#h̄t
(t = 1, 2, . . . , T),

then the HPFE is reduced to the HFE. In this case, the score function of the HPFEWA (resp. HPFEWG)
operator is consistent with that of the HFEWA (resp. HFEWG) operator [21]. So, we can conclude
that the HPFEWA (resp. HPFEWG) operator is reduced to the HFEWA (resp. HFEWG) operator [21].
In order to analyze the relationship between the HPFEWA (resp. HPFEWG) operator and the HPFWA
(resp. HPFWG) operator [27], we introduce the following lemma.

Lemma 1. [41,42] Let xi > 0, wi > 0, i = 1, 2, . . . , N, and ∑N
i=1 wi = 1, then ∏N

i=1 xwi
i ≤ ∑N

i=1 wixi, with
equality if and only if x1 = x2 = · · · = xN .

Theorem 8. If h̄t (t = 1, 2, . . . , T) are a collection of HPFEs and w = (w1, w2, . . . , wT)
T is the weight vector

of h̄t, with wt ∈ [0, 1] and ∑T
t=1 wt = 1, and pt is the probability of γt in HPFE h̄t, then

(1) HPFEWA(h̄1, h̄2, . . . , h̄T) ≤ HPFWA(h̄1, h̄2, . . . , h̄T);
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(2) HPFEWG(h̄1, h̄2, . . . , h̄T) ≥ HPFWG(h̄1, h̄2, . . . , h̄T).

Proof. (1) For any γt ∈ h̄t (t = 1, 2, . . . , T), based on Lemma 1, we obtain the inequality ∏T
t=1(1 +

γt)wt + ∏T
t=1(1− γt)wt ≤ ∑T

t=1 wt(1 + γt) + ∑T
t=1 wt(1− γt) = 2, and then

∏T
t=1(1 + γt)wt −∏T

t=1(1− γt)wt

∏T
t=1(1 + γt)wt + ∏T

t=1(1− γt)wt
= 1− 2 ∏T

t=1(1− γt)wt

∏T
t=1(1 + γt)wt + ∏T

t=1(1− γt)wt
≤ 1−

T

∏
t=1

(1− γt)
wt .

Hence, we can obtain the inequality

⋃
γ1∈h̄1,γ2∈h̄2,...,γT∈h̄T

{
∏T

t=1(1 + γt)wt −∏T
t=1(1− γt)wt

∏T
t=1(1 + γt)wt + ∏T

t=1(1− γt)wt

}
≤ (20)

⋃
γ1∈h̄1,γ2∈h̄2,...,γT∈h̄T

{
1−

T

∏
t=1

(1− γt)
wt

}
.

Let HPFEWA(h̄1, h̄2, . . . , h̄T) = h̄(γi|pi) and HPFWA(h̄1, h̄2, . . . , h̄T) = h̄∗(γ∗i |pi), i = 1, 2, . . . #,
where # = #h̄ = #h̄∗ is the number of possible elements in h̄(γi|pi) and h̄∗(γ̇i|pi), respectively. Then,
Equation (21) is transformed into the form γi ≤ γ∗i (i = 1, 2, . . . , #). According to s(h̄) = ∑#h̄

i=1 γi pi, we
have HPFEWA(h̄1, h̄2, . . . , h̄T) ≤ HPFWA(h̄1, h̄2, . . . , h̄T).

(2) For any γt ∈ h̄t (t = 1, 2, . . . , T), bsed on Lemma 1, we have ∏T
t=1(2− γt)wt + ∏T

t=1 γwt
t ≤

∑T
t=1 wt(2− γt) + ∑T

t=1 wtγt = 2, and then

2 ∏T
t=1 γwt

t

∏T
t=1(2− γt)wt + ∏T

t=1 γwt
t
≥

T

∏
t=1

γwt
t .

Hence, similarly to (1), we have HPFEWG(h̄1, h̄2, . . . , h̄T) ≥ HPFWG(h̄1, h̄2, . . . , h̄T).

Example 4. Let h̄1 = (0.5|0.5, 0.6|0.5) and h̄2 = (0.1|0.2, 0.3|0.3, 0.4|0.5) be two HPFEs and w = (0.6, 0.4)T

be the weight vector of them. Then, based on Equation (8), the aggregated value from the HPFEWA operator is

HPFEWA(h̄1, h̄2) = (w1 ·ε h̄1)⊕ε (w2 ·ε h̄2)

=
⋃

γ1∈h̄1,γ2∈h̄2

{
∏2

t=1(1 + γt)wt −∏2
t=1(1− γt)wt

∏2
t=1(1 + γt)wt + ∏2

t=1(1− γt)wt

∣∣∣p1 p2

}
= {0.3537|0.1, 0.4247|0.15, 0.4614|0.25, 0.4268|0.1, 0.4928|0.15, 0.5265|0.25}.

If we use the HPFWA operator (Equation (2)) to aggregate two HPFEs, then we have

HPFWA(h̄1, h̄2) = (w1h̄1)⊕ (w2h̄2)

=
⋃

γ1∈h̄1,γ2∈h̄2

{
1−

2

∏
t=1

(1− γt)
wt
∣∣∣p1 p2

}
= {0.3675|0.1, 0.4280|0.15, 0.4622|0.25, 0.4467|0.1, 0.4996|0.15, 0.5296|0.25}.

Then, s(HPFEWA(h̄1, h̄2)) = 0.4627 and s(HPFWA(h̄1, h̄2)) = 0.4685, and thus,
HPFEWA(h̄1, h̄2) < HPFWA(h̄1, h̄2).



Information 2018, 9, 226 16 of 28

On the other hand, based on Equation (15), the aggregated value by HPFEWG operator is

HPFEWG(h̄1, h̄2) = h̄∧εw1
1 ⊗ε h̄∧εw2

2

=
⋃

γ1∈h̄1,γ2∈h̄2

{
2 ∏2

t=1 γwt
t

∏2
t=1(2− γt)wt + ∏2

t=1 γwt
t

∣∣∣p1 p2

}
= {0.2748|0.1, 0.4108|0.15, 0.4581|0.25, 0.3126|0.1, 0.4622|0.15, 0.5135|0.25}.

If we use the HPFWG operator (Equation (3)) to aggregate two HPFEs, then we get

HPFWG(h̄1, h̄2) = (h̄1)
w1 ⊗ (h̄2)

w2

=
⋃

γ1∈h̄1,γ2∈h̄2

{
2

∏
t=1

(γt)
wt
∣∣p1 p2

}
= {0.2627|0.1, 0.4076|0.15, 0.4573|0.25, 0.2930|0.1, 0.4547|0.15, 0.5102|0.25}.

It is clear that HPFEWG(h̄1, h̄2) > HPFWG(h̄1, h̄2).

Theorem 9. If h̄t (t = 1, 2, . . . , T) are a collection of HPFEs, w = (w1, w2, . . . , wT)
T is the weight vector of

h̄t with wt ∈ [0, 1] and ∑T
t=1 wt = 1, and pt is the probability of γt in HPFE h̄t. Then,

(1) HPFEWA((h̄1)
c, (h̄2)

c, . . . , (h̄T)
c) = (HPFEWG(h̄1, h̄2, . . . , h̄T))

c;
(2) HPFEWG((h̄1)

c, (h̄2)
c, . . . , (h̄T)

c) = (HPFEWA(h̄1, h̄2, . . . , h̄T))
c.

Proof. Since (2) is similar (1), we only prove (1).

HPFEWA((h̄1)
c, (h̄2)

c, . . . , (h̄T)
c)

=
⋃

γ1∈h̄1,γ2∈h̄2,...,γT∈h̄T

{
∏T

t=1(1 + (1− γt))wt −∏T
t=1(1− (1− γt))wt

∏T
t=1(1 + (1− γt))wt + ∏T

t=1(1− (1− γt))wt

∣∣∣p1 p2 · · · pT

}

=
⋃

γ1∈h̄1,γ2∈h̄2,...,γT∈h̄T

{
1− 2 ∏T

t=1 γwt
t

∏T
t=1(2− γt)wt + ∏T

t=1 γwt
t

∣∣∣p1 p2 · · · pT

}
= (HPFEWG(h̄1, h̄2, . . . , h̄T))

c.

Theorem 8 shows that (1) the values aggregated by the HPFEWA operator are not larger than
those obtained by the HPFWA operator. That is to say, the HPFEWA operator reflects the decision
maker’s pessimistic attitude rather than the HPFWA operator in the aggregation process; and (2)
the values aggregated by the HPFWG operator are not larger than those obtained by the HPFEWG
operator. Thus, the HPFEWG operator reflects the decision maker’s optimistic attitude rather than
the HPFWG operator in the aggregation process. Moreover, we developed the following ordered
weighted operators based on the HPFOWA operator [27] and the HPFOWG operator [27] to aggregate
the HPFEs.

Let h̄t (t = 1, 2, . . . , T) be a collection of HPFEs, h̄σ(t) be the tth largest of h̄t (t = 1, 2, . . . , T),
and pσ(t) be the probability of γσ(t) in the HPFE h̄σ(t); then, we have the following two aggregation
operators, which are based on the mapping HT

P → HP with an associated vector ω = (ω1, ω2, . . . , ωT)
T ,

such that ωt ∈ [0, 1] and ∑T
t=1 ωt = 1:

(1) The hesitant probabilistic fuzzy Einstein ordered weighted averaging (HPFEOWA) operator is

HPFEOWA(h̄1, h̄2, . . . , h̄T) = (ω1 ·ε h̄σ(1))⊕ε (ω2 ·ε h̄σ(2))⊕ε · · · ⊕ε (ωT ·ε h̄σ(T))

=
⋃

γσ(1)∈h̄σ(1),γσ(2)∈h̄σ(2),...,γσ(T)∈h̄σ(T)

{
∏T

t=1(1+γσ(t))
ωt−∏T

t=1(1−γσ(t))
ωt

∏T
t=1(1+γσ(t))

ωt+∏T
t=1(1−γσ(t))

ωt

∣∣∣pσ(1)pσ(2) · · · pσ(T)

}
. (21)
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(2) The hesitant probabilistic fuzzy Einstein ordered weighted geometric (HPFEOWG) operator is

HPFEOWG(h̄1, h̄2, . . . , h̄T) = (h̄∧εω1
σ(1) )⊗ε (h̄

∧εω2
σ(2) )⊗ε · · · ⊗ε (h̄

∧εωT
σ(T) )

=
⋃

γσ(1)∈h̄σ(1),γσ(2)∈h̄σ(2),...,γσ(T)∈h̄σ(T)

{
2 ∏T

t=1 γ
ωt
σ(t)

∏T
t=1(2−γσ(t))

ωt+∏T
t=1 γ

ωt
σ(t)

∣∣∣pσ(1)pσ(2) · · · pσ(T)

}
. (22)

Example 5. Let h̄1 = (0.5|0.5, 0.6|0.5) and h̄2 = (0.1|0.2, 0.3|0.3, 0.4|0.5) be two HPFEs, and suppose that
the associated aggregated vector is ω = (0.55, 0.45)T . Based on Definition 3, the score values of h̄1 and h̄2 are
s(h̄1) = 0.55 and s(h̄2) = 0.31. Since s(h̄1) > s(h̄2); then,

h̄σ(1) = h̄1 = (0.5|0.5, 0.6|0.5), h̄σ(2) = h̄2 = (0.1|0.2, 0.3|0.3, 0.4|0.5).

Based on Equation (21), the aggregated values by the HPFEOWA operator are

HPFEOWA(h̄1, h̄2) = (ω1 ·ε h̄σ(1))⊕ε (ω2 ·ε h̄σ(2))

= {0.3340|0.1, 0.4023|0.1, 0.4148|0.15, 0.4564|0.25, 0.4781|0.15, 0.5167|0.25}.

On the other hand, based on Equation (22), the aggregated values by the HPFEOWG operator are

HPFEOWG(h̄1, h̄2) = (h̄∧εω1
σ(1) )⊗ε (h̄

∧εω2
σ(2) )

= {0.2937|0.1, 0.2859|0.1, 0.4005|0.15, 0.4466|0.15, 0.4530|0.25, 0.5033|0.25}.

In the following section, we look at the HPFEOWA and HPFEOWG operators for some special
cases of the associated vector ω.

(1) If ω = (1, 0, . . . , 0)T , then

HPFEOWA(h̄1, h̄2, . . . , h̄T) = h̄σ(1) = max{h̄i},
HPFEOWG(h̄1, h̄2, . . . , h̄n) = h̄σ(1) = max{h̄t}.

(2) If ω = (0, 0, . . . , 1)T , then

HPFEOWA(h̄1, h̄2, . . . , h̄T) = h̄σ(T) = min{h̄t},
HPFEOWG(h̄1, h̄2, . . . , h̄T) = h̄σ(T) = min{h̄t}.

(3) If ωs = 1, wt = 0, s 6= t, then

h̄σ(T) ≤ HPFEOWA(h̄1, h̄2, . . . , h̄T) = h̄σ(s) ≤ h̄σ(1),

h̄σ(T) ≤ HPFEOWG(h̄1, h̄2, . . . , h̄T) = h̄σ(s) ≤ h̄σ(1),

where h̄σ(s) is the sth largest h̄t (t = 1, 2, . . . , T).
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(4) If ω = ( 1
T , 1

T , . . . , 1
T )

T , then

HPFEOWA(h̄1, h̄2, . . . , h̄T)

=
⋃

γσ(1)∈h̄σ(1),γσ(2)∈h̄σ(2),...,γσ(T)∈h̄σ(T)

∏T
t=1(1 + γσ(t))

1
T −∏T

t=1(1− γσ(t))
1
T

∏T
t=1(1 + γσ(t))

1
T + ∏T

t=1(1− γσ(t))
1
T

∣∣∣pσ(1)pσ(2) · · · pσ(T)


=

⋃
γ1∈h̄1,γ2∈h̄2,...,γT∈h̄T

{
∏T

t=1(1 + γt)
1
T −∏T

t=1(1− γt)
1
T

∏T
t=1(1 + γt)

1
T + ∏T

t=1(1− γt)
1
T

∣∣∣p1 p2 · · · pT

}
= HPFEA(h̄1, h̄2, . . . , h̄T),

HPFEOWA(h̄1, h̄2, . . . , h̄T)

=
⋃

γσ(1)∈h̄σ(1),γσ(2)∈h̄σ(2),...,γσ(T)∈h̄σ(T)


2 ∏T

t=1 γ
1
T
σ(t)

∏T
t=1(2− γσ(t))

1
T + ∏T

t=1 γ
1
T
σ(t)

∣∣∣pσ(1)pσ(2) · · · pσ(T)


=

⋃
γ1∈h̄1,γ2∈h̄2,...,γT∈h̄T

 2 ∏T
t=1 γ

1
T
t

∏T
t=1(2− γt)

1
T + ∏T

t=1 γ
1
T
t

∣∣∣p1 p2 · · · pT


= HPFEG(h̄1, h̄2, . . . , h̄T),

i.e., the HPFEOWA (resp. HPFEOWG) operator is reduced to HPFEA (resp. HPFEG) operator.

Similar to Theorems 8 and 9, the above ordered weighted operators have the relationship below.

Theorem 10. If h̄t (t = 1, 2, . . . , T) is a collection of HPFEs, ω = (ω1, ω2, . . . , ωT)
T is the associated vector

of the aggregation operator such that ωt ∈ [0, 1] and ∑T
t=1 ωt = 1. Then,

(1) HPFEOWA(h̄1, h̄2, . . . , h̄T) ≤ HPFOWA(h̄1, h̄2, . . . , h̄T);
(2) HPFEOWG(h̄1, h̄2, . . . , h̄T) ≥ HPFOWG(h̄1, h̄2, . . . , h̄T).

Theorem 11. If h̄t (t = 1, 2, . . . , T) is a collection of HPFEs, ω = (ω1, ω2, . . . , ωT)
T is the associated vector

of the aggregation operator, such that ωt ∈ [0, 1] and ∑T
t=1 ωt = 1. Then,

(1) HPFEOWA((h̄1)
c, (h̄2)

c, . . . , (h̄T)
c) = (HPFEOWG(h̄1, h̄2, . . . , h̄T))

c;
(2) HPFEOWG((h̄1)

c, (h̄2)
c, . . . , (h̄T)

c) = (HPFEOWA(h̄1, h̄2, . . . , h̄T))
c.

Clearly, the fundamental characteristic of the HPFEWA and HPFEWG operators is that they
consider the importance of each given HPFE, whereas the fundamental characteristic of the HPFEOWA
and HPFEOWG operators is the weighting of the ordered positions of the HPFEs instead of weighting
the given HPFEs themselves. By combining the advantages of the HPFEWA (resp. HPFEWG) and
HPFEOWA (resp. HPFEOWG) operators, in the following text, we develop some hesitant probabilistic
fuzzy hybrid aggregation operators that weight both the given HPFEs and their ordered positions.

Let h̄t (t = 1, 2, . . . , T) be a collection of HPFEs, w = (w1, w2, . . . , wT)
T be the weight vector of h̄t

with wt ∈ [0, 1] and ∑T
t=1 wt = 1, and pt be the probability of γt in the HPFE h̄t. Then, we have the

following two aggregation operators which are based on the mapping HT
P → HP with an associated

vector ω = (ω1, ω2, . . . , ωT)
T , such that ωt ∈ [0, 1] and ∑T

t=1 ωt = 1:
(1) The hesitant probabilistic fuzzy Einstein hybrid averaging (HPFEHA) operator is

HPFEHA(h̄1, h̄2, . . . , h̄T) = (ω1 ·ε ḣσ(1))⊕ε (ω2 ·ε ḣσ(2))⊕ε · · · ⊕ε (ωT ·ε ḣσ(T))

=
⋃

γ̇σ(1)∈ḣσ(1),γ̇σ(2)∈ḣσ(2),...,γ̇σ(T)∈ḣσ(T)

{
∏T

t=1(1+γ̇σ(t))
ωt−∏T

t=1(1−γ̇σ(t))
ωt

∏T
t=1(1+γ̇σ(t))

ωt+∏T
t=1(1−γ̇σ(t))

ωt

∣∣∣ ṗσ(1) ṗσ(2) · · · ṗσ(T)

}
, (23)
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where ḣσ(t) is the tth largest of the weighted HPFEs ḣt = Twt ·ε h̄t (t = 1, 2, . . . , T), T is the balancing
coefficient, and ṗσ(t) be the probability of γ̇σ(t) in the HPFE ḣσ(t).

(2) The hesitant probabilistic fuzzy Einstein hybrid geometric (HPFEHG) operator is

HPFEHG(h̄1, h̄2, . . . , h̄T) = (ḧ∧εω1
σ(1) )⊗ε (ḧ

∧εω2
σ(2) )⊗ε · · · ⊗ε (ḧ

∧εωT
σ(T) )

=
⋃

γ̈σ(1)∈ḧσ(1),γ̈σ(2)∈ḧσ(2),...,γ̈σ(T)∈ḧσ(T)

{
2 ∏T

t=1 γ̈
ωt
σ(t)

∏T
t=1(2−γ̈σ(t))

ωt+∏T
t=1 γ̈

ωt
σ(t)

∣∣∣ p̈σ(1) p̈σ(2) · · · p̈σ(T)

}
, (24)

where ḧσ(t) is the tth largest of the weighted HPFEs ḧt = h̄∧εTwt
t (t = 1, 2, . . . , T), T is the balancing

coefficient, and p̈σ(t) is the probability of γ̈σ(t) in the HPFE ḧσ(t).
Especially, if w = ( 1

T , 1
T , . . . , 1

T )
T , then ḣt = ḧt = h̄t (t = 1, 2, . . . , T). In this case, the

HPFEHA (resp. HPFEHG) operator is reduced to the HPFEOWA (resp. HPFEOWG) operator.

If ω = ( 1
T , 1

T , . . . , 1
T )

T , then since 1
T ·ε ḣt = 1

T ·ε (Twt ·ε h̄t) = ∪γt∈h̄t

{
(1+γt)

wt−(1−γt)
wt

(1+γt)wt+(1−γt)wt

∣∣∣pt

}
and

ḧ∧ε
1
T

t = (h̄∧εTwt
t )∧ε

1
T = ∪γt∈h̄t

{
2γ

wt
t

(2−γt)wt+γ
wt
t

∣∣∣pt

}
, we have

HPFEHA(h̄1, h̄2, . . . , h̄T) = (
1
T
·ε ḣσ(1))⊕ε (

1
T
·ε ḣσ(2))⊕ε · · · ⊕ε (

1
T
·ε ḣσ(T))

=
⋃

γ1∈h̄1,γ2∈h̄2,...,γT∈h̄T

{
∏T

t=1(1 + γt)wt −∏T
t=1(1− γt)wt

∏T
t=1(1 + γt)wt + ∏T

t=1(1− γt)wt

∣∣∣p1 p2 · · · pT

}
= HPFEWA(h̄1, h̄2, . . . , h̄T),

HPFEHG(h̄1, h̄2, . . . , h̄T) = (ḧ∧ε
1
T

σ(1))⊗ε (ḧ
∧ε

1
T

σ(2))⊗ε · · · ⊗ε (ḧ
∧ε

1
T

σ(T))

=
⋃

γ1∈h̄1,γ2∈h̄2,...,γT∈h̄T

{
2 ∏T

t=1 γwt
t

∏T
t=1(2− γt)wt + ∏T

t=1 γwt
t

∣∣∣p1 p2 · · · pT

}
= HPFEWG(h̄1, h̄2, . . . , h̄T),

i.e., the HPFEHA (resp. HPFEHG) operator is reduced to the HPFEWA (resp. HPFEWG) operator.

Example 6. Let h̄1 = (0.5|0.5, 0.6|0.5) and h̄2 = (0.1|0.2, 0.3|0.3, 0.5|0.5) be two HPFEs. Suppose that the
weight vector of them is w = (0.63, 0.37)T , and the aggregation associated vector is ω = (0.3, 0.7)T . Then,

ḣ1 =

(
(1 + 0.5)2×0.63 − (1− 0.5)2×0.63

(1 + 0.5)2×0.63 + (1− 0.5)2×0.63

∣∣0.5,
(1 + 0.6)2×0.63 − (1− 0.6)2×0.63

(1 + 0.6)2×0.63 + (1− 0.6)2×0.63

∣∣0.5
)

= (0.5993|0.5, 0.7031|0.5),

ḣ2 =

(
(1 + 0.1)2×0.37 − (1− 0.1)2×0.37

(1 + 0.1)2×0.37 + (1− 0.1)2×0.37

∣∣0.2,
(1 + 0.3)2×0.37 − (1− 0.3)2×0.37

(1 + 0.3)2×0.37 + (1− 0.3)2×0.37

∣∣0.3,

(1 + 0.5)2×0.37 − (1− 0.5)2×0.37

(1 + 0.5)2×0.37 + (1− 0.5)2×0.37

∣∣0.2
)

= (0.7411|0.2, 0.2251|0.3, 0.3851|0.5)

and s(ḣ1) = 0.6512 and s(ḣ2) = 0.4083. Since s(ḣ1) > s(ḣ2), we have

ḣσ(1) = ḣ1 = (0.5993|0.5, 0.7031|0.5), ḣσ(2) = ḣ2 = (0.7411|0.2, 0.2251|0.3, 0.3851|0.5).
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From Equation (23), we have

HPFEHA(h̄1, h̄2) = (ω1 ·ε ḣσ(1))⊕ε (ω2 ·ε ḣσ(2))

=
⋃

γ̇σ(1)∈ḣσ(1),γ̇σ(2)∈ḣσ(2)

{
∏2

t=1(1 + γ̇σ(t))
ωt −∏2

t=1(1− γ̇σ(t))
ωt

∏2
t=1(1 + γ̇σ(t))

ωt + ∏2
t=1(1− γ̇σ(t))

ωt

∣∣∣ ṗσ(1) ṗσ(2)

}

= {0.3715|0.15, 0.4175|0.15, 0.4557|0.25, 0.4977|0.25, 0.7037|0.1, 0.7302|0.1}.

On the other hand,

ḧ1 =

(
2× 0.52×0.63

(2− 0.5)2×0.63 + 0.52×0.63

∣∣0.5,
2× 0.62×0.63

(2− 0.6)2×0.63 + 0.62×0.63

∣∣0.5
)

= (0.4007|0.5, 0.5117|0.5),

ḧ2 =

(
2× 0.12×0.37

(2− 0.1)2×0.37 + 0.12×0.37

∣∣0.2,
2× 0.32×0.37

(2− 0.3)2×0.37 + 0.32×0.37

∣∣0.3,
2× 0.52×0.37

(2− 0.5)2×0.37 + 0.52×0.37

∣∣0.5
)

= (0.2033|0.2, 0.4339|0.3, 0.6145|0.5)

and since s(ḧ1) = 0.4562 > 0.4465 = s(ḧ2), we have ḧσ(1) = ḧ1 and ḧσ(2) = ḧ2. From Equation (24),
we have

HPFEHG(h̄1, h̄2) = (ḧ∧εω1
σ(1) )⊗ε (ḧ

∧εω2
σ(2) )

=
⋃

γ̈σ(1)∈ḧσ(1),γ̈σ(2)∈ḧσ(2)

 2 ∏2
t=1 γωt

σ(t)

∏2
t=1(2− γσ(t))

ωt + ∏2
t=1 γωt

σ(t)

∣∣∣ p̈σ(1) p̈σ(2)


= {0.2512|0.1, 0.2728|0.1, 0.4237|0.15, 0.4563|0.25, 0.5441|0.15, 0.5825|0.25}.

4. An Approach to MADM with Hesitant Probabilistic Fuzzy Information

In this section, we utilize the proposed aggregation operators to develop an approach for MADM
with hesitant probabilistic fuzzy information.

Let X = {x1, x2, . . . , xn} be a set of n alternatives and G = {g1, g2, . . . , gm} be a set of m attributes
whose weight vector is w = (w1, w2, . . . , wm)T , satisfying wi > 0 (i = 1, 2, . . . , m) and ∑m

i=1 wi = 1,
where wi denotes the importance degree of attribute gi. Suppose the decision makers provide the
evaluating values that the alternatives xj (i = 1, 2, . . . , n) satisfy the attributes gi (j = 1, 2, . . . , m)
represented by the HPFEs h̄ij(γij|pij) (i = 1, 2, . . . , m; j = 1, 2, . . . , n). All of these HPFEs are contained
in the hesitant probabilistic fuzzy decision matrix D =

(
h̄ij(γij|pij)

)
m×n (see Table 1).

Table 1. Hesitant probabilistic fuzzy decision matrix (D).

x1 x2 · · · xn

g1 h̄11(γ11|p11) h̄12(γ12|p12) · · · h̄1n(γ1n|p1n)
g2 h̄21(γ21|p21) h̄22(γ22|p22) · · · h̄2n(γ11|p2n)
...

...
...

. . .
...

gm h̄m1(γm1|pm1) h̄m2(γm2|pm2) · · · h̄mn(γmn|pmn)

The following steps can be used to solve the MADM problem under the hesitant probabilistic
fuzzy environment and obtain an optimal alternative.

Step 1: Obtain the normalized hesitant probabilistic fuzzy decision matrix. In general, the attribute
set (G) can be divided two subsets, G1 and G2, where G1 and G2 are the set of benefit attributes and
cost attributes, respectively. If all of the attributes are of the same type, then the evaluation values do
not need normalization, whereas if there are benefit attributes and cost attributes in MADM, in such
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cases, we may transform the evaluation values of cost type into the evaluation values of the benefit
type by the following normalization formula:

r̄ij(βij|pij) =

{
h̄ij, i ∈ G1

h̄c
ij, i ∈ G2,

(25)

where h̄c
ij = ∪γij∈h̄ij

{(1− γij)|pij} is the complement of h̄ij. Then, we obtain the normalized hesitant

probabilistic fuzzy decision matrix H =
(
r̄ij(βij|pij)

)
m×n (see Table 2).

Table 2. Normalized hesitant probabilistic fuzzy decision matrix (H).

x1 x2 · · · xn

g1 r̄11(β11|p11) r̄12(β12|p12) · · · r̄1n(β1n|p1n)
g2 r̄21(β21|p21) r̄22(β22|p22) · · · r̄2n(β11|p2n)
...

...
...

. . .
...

gm r̄m1(βm1|pm1) r̄m2(βm2|pm2) · · · r̄mn(βmn|pmn)

Step 2: Compute the overall assessment of alternatives. Utilize the HPFEWA operator

r̄j = HPFEWA(r̄1j, r̄2j, . . . , r̄mj)

=
⋃

β1j∈r̄1j ,β2j∈r̄2j ,...,βmj∈r̄mj

{
∏m

i=1(1 + βij)
wi −∏m

i=1(1− βij)
wi

∏m
i=1(1 + βij)wi + ∏m

i=1(1− βij)wi

∣∣∣p1j p2j · · · pmj

}
(26)

or the HPFEWG operator

r̄j = HPFEWG(r̄1j, r̄2j, . . . , r̄mj)

=
⋃

β1j∈r̄1j ,β2j∈r̄2j ,...,βmj∈r̄mj

{
2 ∏m

i=1(βij)
wi

∏m
i=1(2− βij)wi + ∏m

i=1(βij)wi

∣∣∣p1j p2j · · · pmj

}
(27)

to aggregate all the evaluating values r̄ij (1 = 1, 2, . . . , m) of the jth column and get the overall rating
value r̄j corresponding to the alternative (xj (j = 1, 2, . . . , n)).

Step 3: Rank the order of all alternatives. Utilize the method in Definition 3 to rank the overall
rating values r̄j (j = 1, 2, . . . , n). Rank all the alternatives( xj (j = 1, 2, . . . , n)) in accordance with r̄j
(j = 1, 2, . . . , n) in descending order, and finally, select the most desirable alternative(s) with the largest
overall evaluation value(s).

Step 4: End.

In the above-mentioned procedure, the HPFEWA (or HPFEWG) operator is utilized to aggregate
the evaluating values of each alternative with respect to a collection of the attributes to rank and
select the alternative(s). So we give a detail illustration of the decision making procedure with a
propulsion/manoeuvring system selection problem.

Example 7. The propulsion/manoeuvring system selection is based on a study that was conducted
for the selection of propulsion/manoeuvring system of a double ended passenger ferry to operate
across the Bosphorus in Istanbul with the aim of reducing the journey time in highly congested seaway
traffic (adopted from Ölçer and Odabaşi [43] and Wang and Liu [37]).

The propulsion/manoeuvring system alternatives are given as the set of alternatives X =

{x1, x2, x3}. (1) x1 is the conventional propeller and high lift rudder; (2) x2 is the Z drive; and
(3) x3 is the cycloidal propeller. The selection decision is made on the basis of one objective and seven
subjective attributes, which are the following: (1) g1 is the investment cost; (2) g2 is the operating cost;
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(3) g3 is the manoeuvrability; (4) g4 is the propulsive power requirement; (5) g5 is the reliability.; (6) g6

is the propulsive power requirement; and (7) g7 is the propulsive arrangement requirement. Note that
the attributes are cost attributes, except for attributes g3 and g5, and the corresponding weight vector
is w = (0.15, 0.2, 0.3, 0.2, 0.15)T .

Assume that the decision makers use the linguistic terms shown in Table 3 to represent the
evaluating values of the alternatives with respect to different attributes, respectively, and they provide
their linguistic decision matrices (D) as listed in Tables 4.

Table 3. Linguistic terms and their corresponding hesitant probabilistic fuzzy elements (HPFEs).

Linguistic Terms HPFEs

Very low (VL) (0|0.7, 0.1|0.3)
Low (L) (0.15|0.6, 0.25|0.4)

Medium low (ML) (0.3|0.6, 0.4|0.4)
Medium (M) (0.45|0.5, 0.55|0.5)

Medium high (MH) (0.6|0.45, 0.7|0.55)
High (H) (0.75|0.4, 0.85|0.6)

Very high (VH) (0.9|0.4, 1|0.6)

Table 4. Linguistic decision matrix (D).

x1 x2 x3

g1 ML M H
g2 M ML H
g3 MH M MH
g4 H H L
g5 MH MH M
g6 H M M
g7 L MH MH

Step 1: Based on Tables 3 and 4, we can get the hesitant probabilistic fuzzy decision matrix
D =

(
h̄ij
)

7×3 (see Table 5).

Table 5. Hesitant probabilistic fuzzy decision matrix (D).

x1 x2 x3

g1 (0.3|0.6, 0.4|0.4) (0.45|0.5, 0.55|0.5) (0.75|0.4, 0.85|0.6)
g2 (0.45|0.5, 0.55|0.5) (0.3|0.6, 0.4|0.4) (0.75|0.4, 0.85|0.6)
g3 (0.6|0.45, 0.7|0.55) (0.45|0.5, 0.55|0.5) (0.6|0.45, 0.7|0.55)
g4 (0.75|0.4, 0.85|0.6) (0.75|0.4, 0.85|0.6) (0.15|0.6, 0.25|0.4)
g5 (0.6|0.45, 0.7|0.55) (0.6|0.45, 0.7|0.55) (0.45|0.5, 0.55|0.5)
g6 (0.75|0.4, 0.85|0.6) (0.45|0.5, 0.55|0.5) (0.45|0.5, 0.55|0.5)
g7 (0.15|0.6, 0.25|0.4) (0.6|0.45, 0.7|0.55) (0.6|0.45, 0.7|0.55)

Then, considering that the attributes are cost attributes, except for attributes g3 and g5, based
on Equation (25), the hesitant probabilistic fuzzy decision matrix (D) can be transformed into the
following normalized hesitant probabilistic fuzzy decision matrix: H =

(
r̄ij
)

7×3 (see Table 6).
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Table 6. Normalized hesitant probabilistic fuzzy decision matrix (H).

x1 x2 x3

g1 (0.6|0.4, 0.7|0.6) (0.45|0.5, 0.55|0.5) (0.15|0.6, 0.25|0.4)
g2 (0.45|0.5, 0.55|0.5) (0.6|0.4, 0.7|0.6) (0.15|0.6, 0.25|0.4)
g3 (0.6|0.45, 0.7|0.55) (0.45|0.5, 0.55|0.5) (0.6|0.45, 0.7|0.55)
g4 (0.15|0.6, 0.25|0.4) (0.15|0.6, 0.25|0.4) (0.75|0.4, 0.85|0.6)
g5 (0.6|0.45, 0.7|0.55) (0.6|0.45, 0.7|0.55) (0.45|0.5, 0.55|0.5)
g6 (0.15|0.6, 0.25|0.4) (0.45|0.5, 0.55|0.5) (0.45|0.5, 0.55|0.5)
g7 (0.75|0.4, 0.85|0.6) (0.3|0.55, 0.4|0.45) (0.3|0.55, 0.4|0.45)

Step 2: Utilize the decision information given in matrix H and the HPFEWA operator (26) to
derive the overall rating values (r̄j) of the alternative xj (j = 1, 2, 3):

r̄1 =
{

0.4953|0.0243, 0.5148|0.0297, 0.5109|0.0162, 0.5299|0.0198, 0.5337|0.0297, 0.5521|0.0363,

0.5484|0.0198, 0.5664|0.0242, 0.5152|0.0243, 0.5341|0.0297, 0.5304|0.0162, 0.5489|0.0198,

0.5525|0.0297, 0.5704|0.0363, 0.5669|0.0198, 0.5843|0.0242, 0.5148|0.0365, 0.5337|0.0446,

0.5299|0.0243, 0.5484|0.0297, 0.5521|0.0446, 0.5700|0.0545, 0.5664|0.0297, 0.5839|0.0363,

0.5341|0.0365, 0.5525|0.0446, 0.5489|0.0243, 0.5669|0.0297, 0.5704|0.0446, 0.5878|0.0545,

0.5843|0.0297, 0.6013|0.0363
}

,

r̄2 =
{

0.4550|0.0270, 0.4754|0.0330, 0.4713|0.0180, 0.4914|0.0220, 0.4862|0.0270, 0.5059|0.0330,

0.5019|0.0180, 0.5212|0.0220, 0.4821|0.0405, 0.5019|0.0495, 0.4980|0.0270, 0.5174|0.0330,

0.5123|0.0405, 0.5313|0.0495, 0.5275|0.0270, 0.5461|0.0330, 0.4707|0.0270, 0.4908|0.0330,

0.4868|0.0180, 0.5065|0.0220, 0.5013|0.0270, 0.5206|0.0330, 0.5168|0.0180, 0.5357|0.0220,

0.4974|0.0405, 0.5168|0.0495, 0.5129|0.0270, 0.5319|0.0330, 0.5270|0.0405, 0.5456|0.0495,

0.5419|0.0270, 0.5601|0.0330
}

,

r̄3 =
{

0.4840|0.0324, 0.4992|0.0324, 0.5261|0.0486, 0.5404|0.0486, 0.5230|0.0396, 0.5374|0.0396,

0.5629|0.0594, 0.5764|0.0594, 0.4997|0.0216, 0.5146|0.0216, 0.5410|0.0324, 0.5550|0.0324,

0.5379|0.0264, 0.5520|0.0264, 0.5769|0.0396, 0.5902|0.0396, 0.4958|0.0216, 0.5108|0.0216,

0.5373|0.0324, 0.5514|0.0324, 0.5342|0.0264, 0.5484|0.0264, 0.5734|0.0396, 0.5867|0.0396,

0.5114|0.0144, 0.5260|0.0144, 0.5519|0.0216, 0.5657|0.0216, 0.5489|0.0176, 0.5628|0.0176,

0.5873|0.0264, 0.6002|0.0264
}

.

Step 3: Calculate the score values of the overall rating values (r̄j) of the alternatives (xj (j = 1, 2, 3)):

s(r̄1) = 0.5533, s(r̄2) = 0.5110, s(r̄3) = 0.5473.

Since s(r̄1) > s(r̄3) > s(r̄2), the ranking order of the alternatives xj (j = 1, 2, 3) is

x1 � x3 � x2.

Therefore, the best alternative is x1.
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If we utilize the HPFEWG operator (27) in Step 2 to get the overall rating values (r̄j) of the
alternatives (xj (j = 1, 2, 3)), we obtain

r̄1 =
{

0.4426|0.0243, 0.4545|0.0297, 0.4828|0.0162, 0.4955|0.0198, 0.4666|0.0297, 0.4790|0.0363,

0.5083|0.0198, 0.5215|0.0242, 0.4613|0.0243, 0.4736|0.0297, 0.5027|0.0162, 0.5127|0.0198,

0.4860|0.0297, 0.4987|0.0363, 0.5289|0.0198, 0.5423|0.0242, 0.4545|0.0365, 0.4667|0.0446,

0.4955|0.0243, 0.5084|0.0297, 0.4790|0.0446, 0.4916|0.0545, 0.5215|0.0297, 0.5348|0.0363,

0.4726|0.0365, 0.4861|0.0446, 0.5157|0.0243, 0.5290|0.0297, 0.4987|0.0446, 0.5117|0.0545,

0.5423|0.0297, 0.5560|0.0363
}

,

r̄2 =
{

0.4100|0.0270, 0.4213|0.0330, 0.4481|0.0180, 0.4602|0.0220, 0.4367|0.0270, 0.4485|0.0330,

0.4766|0.0180, 0.4892|0.0220, 0.4250|0.0405, 0.4366|0.0495, 0.4641|0.0270, 0.4765|0.0330,

0.4525|0.0405, 0.4646|0.0495, 0.4933|0.0270, 0.5062|0.0330, 0.4232|0.0270, 0.4347|0.0330,

0.4622|0.0180, 0.4745|0.0220, 0.4505|0.0270, 0.4626|0.0330, 0.4913|0.0180, 0.5041|0.0220,

0.4386|0.0405, 0.4505|0.0495, 0.4786|0.0270, 0.4912|0.0330, 0.4666|0.0405, 0.4790|0.0495,

0.5084|0.0270, 0.5215|0.0330
}

,

r̄3 =
{

0.3890|0.0324, 0.4017|0.0324, 0.4022|0.0486, 0.4152|0.0486, 0.4109|0.0396, 0.4241|0.0396,

0.4246|0.0594, 0.4382|0.0594, 0.4257|0.0216, 0.4393|0.0216, 0.4398|0.0324, 0.4537|0.0324,

0.4491|0.0264, 0.4632|0.0264, 0.4638|0.0396, 0.4782|0.0396, 0.4163|0.0216, 0.4297|0.0216,

0.4302|0.0324, 0.4439|0.0324, 0.4393|0.0264, 0.4532|0.0264, 0.4538|0.0396, 0.4680|0.0396,

0.4549|0.0144, 0.4691|0.0144, 0.4697|0.0216, 0.4843|0.0216, 0.4794|0.0176, 0.49421|0.0176,

0.4948|0.0264, 0.5098|0.0264
}

.

Then, we calculate the scores of the overall rating values r̄j of the alternatives:

s(r̄1) = 0.4968, s(r̄2) = 0.4621, s(r̄3) = 0.4429.

Since s(r̄1) > s(r̄2) > s(r̄3), the ranking order of the alternatives xj (j = 1, 2, 3) is

x1 � x2 � x3.

Then, the best alternative is also x1.

In order to compare the performance with the existing operators, in the following text, the HPFWA
operator (2) and HPFWG operator (3) proposed by Xu and Zhou [27] are used to computing the overall
rating values. If we first utilize the HPFWA operator (2) presented in Step 2, then we get the overall
rating values r̄j of the alternatives (xj (j = 1, 2, 3)):

r̄1 =
{

0.5043|0.0243, 0.5252|0.0297, 0.5165|0.0162, 0.5369|0.0198, 0.5453|0.0297, 0.5645|0.0363,

0.5566|0.0198, 0.5753|0.0242, 0.5238|0.0243, 0.5439|0.0297, 0.5356|0.0162, 0.5552|0.0198,

0.5632|0.0297, 0.5817|0.0363, 0.5740|0.0198, 0.5920|0.0242, 0.5252|0.0365, 0.5453|0.0446,

0.5369|0.0243, 0.5565|0.0297, 0.5645|0.0446, 0.5829|0.0545, 0.5753|0.0297, 0.5932|0.0363,

0.5439|0.0365, 0.5632|0.0446, 0.5552|0.0243, 0.5739|0.0297, 0.5817|0.0446, 0.5993|0.0545,

0.5920|0.0297, 0.6092|0.0363
}

,
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r̄2 =
{

0.4632|0.0270, 0.4859|0.0330, 0.4765|0.0180, 0.4986|0.0220, 0.4946|0.0270, 0.5159|0.0330,

0.5071|0.0180, 0.5279|0.0220, 0.4933|0.0405, 0.5147|0.0495, 0.5058|0.0270, 0.5267|0.0330,

0.5229|0.0405, 0.5430|0.0495, 0.5347|0.0270, 0.5543|0.0330, 0.4792|0.0270, 0.5012|0.0330,

0.4920|0.0180, 0.5135|0.0220, 0.5096|0.0270, 0.5303|0.0330, 0.5217|0.0180, 0.5419|0.0220,

0.5083|0.0405, 0.5291|0.0495, 0.5205|0.0270, 0.5407|0.0330, 0.5370|0.0405, 0.5566|0.0495,

0.5485|0.0270, 0.5675|0.0330
}

,

r̄3 =
{

0.5027|0.0324, 0.5175|0.0324, 0.5510|0.0486, 0.5643|0.0486, 0.5439|0.0396, 0.5574|0.0396,

0.5882|0.0594, 0.6004|0.0594, 0.5150|0.0216, 0.5294|0.0216, 0.5621|0.0324, 0.5751|0.0324,

0.5552|0.0264, 0.5684|0.0264, 0.5984|0.0396, 0.6103|0.0396, 0.5120|0.0216, 0.5264|0.0216,

0.5594|0.0324, 0.5724|0.0324, 0.5524|0.0264, 0.5656|0.0264, 0.5958|0.0396, 0.6078|0.0396,

0.5240|0.0144, 0.5381|0.0144, 0.5702|0.0216, 0.5810|0.0216, 0.5634|0.0176, 0.5764|0.0176,

0.6058|0.0264, 0.6175|0.0264
}

.

Then, the scores of the overall rating values (r̄j (j = 1, 2, 3)) are s(r̄1) = 0.5630, s(r̄2) = 0.5202, and
s(r̄3) = 0.5672, and so, the ranking order of the alternatives (xj (j = 1, 2, 3)) is x3 � x1 � x2. Thus, the
best alternative is x3.

Next, if we utilize the HPFWG operator (3) presented in Step 2, we get the overall rating values
(r̄j) of the alternatives xj (j = 1, 2, 3):

r̄1 =
{

0.4293|0.0243, 0.4393|0.0297, 0.4754|0.0162, 0.4866|0.0198, 0.4496|0.0297, 0.4601|0.0363,

0.4979|0.0198, 0.5096|0.0242, 0.4469|0.0243, 0.4573|0.0297, 0.4949|0.0162, 0.5065|0.0198,

0.4680|0.0297, 0.4790|0.0363, 0.5183|0.0198, 0.5305|0.0242, 0.4393|0.0365, 0.4496|0.0446,

0.4866|0.0243, 0.4980|0.0297, 0.4601|0.0446, 0.4709|0.0545, 0.5096|0.0297, 0.5216|0.0363,

0.4573|0.0365, 0.4680|0.0446, 0.5065|0.0243, 0.5184|0.0297, 0.4790|0.0446, 0.4902|0.0545,

0.5305|0.0297, 0.5429|0.0363
}

,

r̄2 =
{

0.3995|0.0270, 0.4089|0.0330, 0.4425|0.0180, 0.4529|0.0220, 0.4243|0.0270, 0.4342|0.0330,

0.4699|0.0180, 0.4809|0.0220, 0.4120|0.0405, 0.4217|0.0495, 0.4563|0.0270, 0.4670|0.0330,

0.4375|0.0405, 0.4478|0.0495, 0.4846|0.0270, 0.4960|0.0330, 0.4117|0.0270, 0.4214|0.0330,

0.4560|0.0180, 0.4667|0.0220, 0.4373|0.0270, 0.4475|0.0330, 0.4843|0.0180, 0.4956|0.0220,

0.4246|0.0405, 0.4345|0.0495, 0.4703|0.0270, 0.4813|0.0330, 0.4509|0.0405, 0.4615|0.0495,

0.4994|0.0270, 0.5111|0.0330
}

,

r̄3 =
{

0.3699|0.0324, 0.3812|0.0324, 0.3792|0.0486, 0.3908|0.0486, 0.3874|0.0396, 0.3992|0.0396,

0.3972|0.0594, 0.4093|0.0594, 0.4097|0.0216, 0.4222|0.0216, 0.4200|0.0324, 0.4329|0.0324,

0.4291|0.0264, 0.4422|0.0264, 0.4399|0.0396, 0.4534|0.0396, 0.3994|0.0216, 0.4116|0.0216,

0.4095|0.0324, 0.4220|0.0324, 0.4183|0.0264, 0.4311|0.0264, 0.4289|0.0396, 0.4420|0.0396,

0.4423|0.0144, 0.4559|0.0144, 0.4535|0.0216, 0.4674|0.0216, 0.4633|0.0176, 0.4774|0.0176,

0.4750|0.0264, 0.4895|0.0264
}

.
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Then, the scores of the overall rating values (r̄j (j = 1, 2, 3)) are s(r̄1) = 0.4817, s(r̄2) = 0.4501, and
s(r̄3) = 0.4210, and so the ranking order of the alternatives (xj (j = 1, 2, 3)) is x1 � x2 � x3. Thus, the
best alternative is x1.

The relative comparison of the methods using different operators proposed by Xu and Zhou [27] is
shown in Table 7. From Table 7, we can see that the obtained overall rating values of the alternatives are
different with each of the four operators, respectively, and then, the ranking orders of the alternatives
also are different. Each of the methods using different hesitant probabilistic fuzzy operators has
its advantages and disadvantages, and none of them always perform better than the others in any
situation. It depends on how we look at things, and not on how they are themselves.

Table 7. Comparison of overall rating values and ranking orders of alternatives.

Aggregation Operator Overall Rating Values Ranking Orders

HPFWA operator [27] s(r̄1) = 0.5630, s(r̄2) = 0.5202, s(r̄3) = 0.5672 x3 � x1 � x2
HPFWG operator [27] s(r̄1) = 0.4817, s(r̄2) = 0.4501, s(r̄3) = 0.4210 x1 � x2 � x3

HPFEWA operator s(r̄1) = 0.5533, s(r̄2) = 0.5110, s(r̄3) = 0.5473 x1 � x3 � x2
HPFEWG operator s(r̄1) = 0.4968, s(r̄2) = 0.4621, s(r̄3) = 0.4429 x1 � x2 � x3

Consequently, the use of different hesitant probabilistic fuzzy aggregation operators reflects the
decision maker’s pessimistic (or optimistic) attribute. For example, the proposed HPFEWA operator
shows that the decision maker has a more pessimistic attribute than the HPFWA operator [27], and the
proposed HPFEWG operator shows that the decision maker has a more optimistic attribute than the
HPFWG operator [27] in the aggregation process.

5. Conclusions

The hesitant probabilistic fuzzy MADM is an important research topic in HPFS theory and decision
science with uncertain information. Information aggregation is one of the core issues. Based on the
Einstein operational rules of HPFEs, in this paper, we developed a series of hesitant probabilistic fuzzy
Einstein aggregation operators, including the HPFEWA, HPFEWG, HPFEOWA, HPFEOWG, HPFEHA,
and HPFEHG operators. Some basic properties of the proposed aggregation operators, such as
boundedness and monotonicity, and the relationships between them were investigated. We compared
the proposed operators with the existing hesitant probabilistic fuzzy aggregation operators proposed
by Xu and Zhou [27] and presented corresponding relations. These proposed hesitant probabilistic
Einstein aggregation operators provide a fine supplement to the existing work on HPFSs. Based on the
HPFEWA and HPFEWG operators, a new method for MADM was developed in hesitant probabilistic
fuzzy environments. A practical example was provided to illustrate the hesitant probabilistic fuzzy
MADM process. Through a comparison between the proposed method with the previously proposed
hesitant probabilistic fuzzy MADM method [27], we showed some advantages of the proposed hesitant
probabilistic fuzzy MADM method.

This paper only considered decision makers with equl weights in the decision making process,
but further studies on unequal weights are needed. Moreover, research using other operations, such as
Hamacher and Frank t-conoms and t-norms instead of the Einstein t-conorm and t-norm, should be
discussed in future studies.
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