
 information

Article

Skeleton to Abstraction: An Attentive Information
Extraction Schema for Enhancing the Saliency of
Text Summarization

Xiujuan Xiang 1,2,3, Guangluan Xu 1,2,3,*, Xingyu Fu 1,2,3, Yang Wei 2,3, Li Jin 2,3 and Lei Wang 2,3

1 University of Chinese Academy of Sciences, No. 19 (A), Yuquan Road, Shijingshan District, Beijing 100049,
China; xiangxiujuan16@mails.ucas.ac.cn (X.X.); fuxingyu07@mails.ucas.ac.cn (X.F.)

2 Institute of Electronics, Chinese Academy of Sciences, No. 19, North Fourth Ring West Road, Haidian
District, Beijing 100190, China; weiyang_tj@outlook.com (Y.W.); jinlimails@gmail.com (L.J.);
wanglei19@yeah.net (L.W.)

3 Key Laboratory of Spatial Information Processing and Applied System Technology, Chinese Academy of
Sciences, No. 19, North Fourth Ring West Road, Haidian District, Beijing 100190, China

* Correspondence: gluanxu@mail.ie.ac.cn; Tel.: +86-1881-0211-693

Received: 14 July 2018; Accepted: 28 August 2018; Published: 29 August 2018
����������
�������

Abstract: Current popular abstractive summarization is based on an attentional encoder-decoder
framework. Based on the architecture, the decoder generates a summary according to the full text
that often results in the decoder being interfered by some irrelevant information, thereby causing the
generated summaries to suffer from low saliency. Besides, we have observed the process of people
writing summaries and find that they write a summary based on the necessary information rather
than the full text. Thus, in order to enhance the saliency of the abstractive summarization, we propose
an attentive information extraction model. It consists of a multi-layer perceptron (MLP) gated unit
that pays more attention to the important information of the source text and a similarity module to
encourage high similarity between the reference summary and the important information. Before
the summary decoder, the MLP and the similarity module work together to extract the important
information for the decoder, thus obtaining the skeleton of the source text. This effectively reduces the
interference of irrelevant information to the decoder, therefore improving the saliency of the summary.
Our proposed model was tested on CNN/Daily Mail and DUC-2004 datasets, and achieved a 42.01
ROUGE-1 f-score and 33.94 ROUGE-1, recall respectively. The result outperforms the state-of-the-art
abstractive model on the same dataset. In addition, by subjective human evaluation, the saliency of
the generated summaries was further enhanced.

Keywords: recurrent neural network (RNN); abstractive text summarization; information extraction;
attention mechanism; semantic relevance; saliency of summarization

1. Introduction

With the rapid development of Internet technology, people are exposed to vast amounts of text
information every day such as news, blogs, reports, papers, etc. When we are faced with a large
amount of disorganized information, quickly and accurately locating the required information becomes
a problem to be solved. Automatic text summarization provides an efficient solution to this task. Text
summarization can create a shorter version containing the main idea of the source text automatically.
We can judge whether an article is interesting to us based on the shorter version. This can greatly
reduce the time consumed in retrieving information.

Text summarization is generally divided into two branches, namely, extractive and abstractive.
Extractive summarization selects some sentences from the source text to compose a summary.

Information 2018, 9, 217; doi:10.3390/info9090217 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
http://www.mdpi.com/2078-2489/9/9/217?type=check_update&version=1
http://dx.doi.org/10.3390/info9090217
http://www.mdpi.com/journal/information

Information 2018, 9, 217 2 of 19

Abstractive summarization is based on the semantics of the source text to generate novel sentences
as the summary. Abstractive summarization is thus more difficult than copying sentences from the
source text, and most of the work in the past has been focused on extractive summarization [1–4].

However, in recent years, abstractive summarization based on deep learning has also made great
progress. The current popular abstractive model is mostly carried out under the framework of encoder
and decoder. In order to improve the accuracy of the decoder, Bahdanau et al. [5] added an attention
mechanism to the encoder-decoder framework and produced state-of-the-art performance in machine
translation (MT). Due to the similarities between MT and text summarization, the subsequent text
summarization follows the model of MT. Under the framework, the encoder reads the source text
and understands the semantics of the text, the decoder generates summary words, and the attention
mechanism is responsible for aligning the input and the output information to make the output more
reliable. Despite the similarities, abstractive summarization is a very different problem from MT. The
decoder must receive all contents of the source text in MT, however, in text summarization, the decoder
only needs the important information from the source text to generate a summary. Humans also write
summaries like this. Before the summary is generated, the important information is first extracted,
and then during the process of writing a summary, only the important information is considered.
A good summary should be concise and have high saliency, namely, containing more key information.
However, based on the current abstractive model, the summary generation is based on all contents of
the source text. Under this condition, when the source text contains plenty of information irrelevant to
the summary, the encoder cannot correctly represent the semantics of the text. This means that the
decoder is influenced by this irrelevant information, thereby resulting in the saliency of the summary
declining. As shown in Figure 1, the generated summary has poor saliency.

Information 2018, 9, x FOR PEER REVIEW 2 of 18

Abstractive summarization is based on the semantics of the source text to generate novel sentences
as the summary. Abstractive summarization is thus more difficult than copying sentences from the
source text, and most of the work in the past has been focused on extractive summarization [1–4].

However, in recent years, abstractive summarization based on deep learning has also made
great progress. The current popular abstractive model is mostly carried out under the framework of
encoder and decoder. In order to improve the accuracy of the decoder, Bahdanau et al. [5] added an
attention mechanism to the encoder-decoder framework and produced state-of-the-art performance
in machine translation (MT). Due to the similarities between MT and text summarization, the
subsequent text summarization follows the model of MT. Under the framework, the encoder reads
the source text and understands the semantics of the text, the decoder generates summary words,
and the attention mechanism is responsible for aligning the input and the output information to
make the output more reliable. Despite the similarities, abstractive summarization is a very different
problem from MT. The decoder must receive all contents of the source text in MT, however, in text
summarization, the decoder only needs the important information from the source text to generate a
summary. Humans also write summaries like this. Before the summary is generated, the important
information is first extracted, and then during the process of writing a summary, only the important
information is considered. A good summary should be concise and have high saliency, namely,
containing more key information. However, based on the current abstractive model, the summary
generation is based on all contents of the source text. Under this condition, when the source text
contains plenty of information irrelevant to the summary, the encoder cannot correctly represent the
semantics of the text. This means that the decoder is influenced by this irrelevant information,
thereby resulting in the saliency of the summary declining. As shown in Figure 1, the generated
summary has poor saliency.

Figure 1. An example of abstractive text summarization. Green font is the key information in the
source text. Red font is the key information obtained by current abstractive model.

Based on the above discussion, in order to reduce the interference of the irrelevant information
for the decoder, thereby improving the saliency of generated summary, this paper proposes an
attentive information extraction model. This model is also proposed with reference to the way that
humans write summaries. During the process of people writing a summary, they first read and
understand the source text; then they will outline the important information and filter the
information that is useless to the summary; next, they compare the important information with true
semantics to ensure that the outlined information is correct; finally, they will write summaries. The
current attentional encoder-decoder model is able to read and understand the source text as well as
write a summary. However, preliminarily outlining the important information and ensuring the
correctness of important information have not been realized. Thus, we firstly use an extra attention
mechanism, namely, a multi-layer perceptron (MLP) network, to obtain the important information
after the encoder and before the decoder. The important information is the skeleton of the source

Figure 1. An example of abstractive text summarization. Green font is the key information in the
source text. Red font is the key information obtained by current abstractive model.

Based on the above discussion, in order to reduce the interference of the irrelevant information for
the decoder, thereby improving the saliency of generated summary, this paper proposes an attentive
information extraction model. This model is also proposed with reference to the way that humans
write summaries. During the process of people writing a summary, they first read and understand
the source text; then they will outline the important information and filter the information that is
useless to the summary; next, they compare the important information with true semantics to ensure
that the outlined information is correct; finally, they will write summaries. The current attentional
encoder-decoder model is able to read and understand the source text as well as write a summary.
However, preliminarily outlining the important information and ensuring the correctness of important
information have not been realized. Thus, we firstly use an extra attention mechanism, namely, a
multi-layer perceptron (MLP) network, to obtain the important information after the encoder and
before the decoder. The important information is the skeleton of the source text. Furthermore, the

Information 2018, 9, 217 3 of 19

semantic information between the reference summary and the source text is consistent, so we calculate
semantic similarity scores between the reference summary and the extracted important information
to ensure the correctness of the extracted information. In order to further enhance the ability of the
MLP network, we maximize the similarity score to encourage high semantic similarity between the
reference summary and the source text. As one of the targets of the abstractive model is to maximize
the probability of target words, we think the decoder has good writing ability. We skip the decoder to
maximize the score so that the encoder’s semantic expression capabilities and the ability of the MLP
network to extract information are improved as much as possible without affecting the ability of the
decoder writing a summary. Our model extracts the important information before the decoder and the
decoder generates summaries according to the important information. It cannot be influenced by the
irrelevant information, therefore it can capture the main idea of the source text more completely and
accurately, thus the saliency of the summary is higher.

We conduct experiments on the CNN/Daily Mail and DUC-2004 datasets. Our model achieved a
42.01 ROUGE-1 f-score and 33.94 ROUGE-1 recall, respectively, and outperformed the state-of-the-art
abstractive model on the same datasets. In addition, by anonymous and subjective human evaluation,
the saliency of the summary generated by our model was further enhanced. The readability of the
summary generated by our model was stronger than the baseline model.

2. Related Work

The current abstractive model was carried out based on an encoder-decoder model [6]. This model
was originally used in the field of MT. In order to improve the accuracy of the decoder, Bahdanau
et al. [5] added the attention mechanism to the model and obtained state-of-the-art results in MT.
Due to the strong similarity between text summarization and MT tasks, the current popular text
summarization models mostly followed this structure.

In the early days of text summarization studies, most of the work was done around extractive
summarization [1–4,7–9]. However, in recent years, the study of text summarization mainly focused
on abstractive summarization. Rush et al. [10] proposed a data-driven network model to generate
summaries. They used the convolutional neural network (CNN) to encode the source text and used a
neural language model to decode a summary. State-of-the-art results were obtained on the DUC-2004
and Gigawords datasets. In an extension of this work, Chopra et al. [11] used Recurrent neural network
(RNN) instead of the neural language model in the decoder, resulting in further improvement in the
datasets. As RNN can better represent serialized data, Nallapati et al. [12] implemented both the
encoder and the decoder using a RNN and constructed a multi-sentence summarization of the dataset
CNN/Daily Mail.

Under the framework of an attentional encoder and decoder, researchers began to solve the
problem of repeatability, poor readability, and out-of-vocabulary (OOV) words. Vinyals et al. [13] used
the pointer mechanism in the encoder-decoder network model to solve the OOV problem. Experiments
have proved that the mechanism can achieve good results. Gu et al. [14], Gulcehre et al. [15], and
Nallapati et al. [12] also adopted the pointer mechanism on abstractive summarization to solve the
OOV problem. See et al. [16] used a similar mechanism to generate summaries. In order to solve
the problem of repeatability, the coverage mechanism [17] was introduced. Experiments achieved
state-of-the-art results on the CNN/Daily Mail datasets. Suzuki et al. [18] mitigated the repeatability
of summaries by evaluating the upper bound frequency of each target word in the encoder and
controlling the output word in the decoder. Nema et al. [19] dealt with the sentences input into the
model so that they were orthogonal to each other, thereby reducing the repeatability of the generated
summaries. Li et al. [20] added latent structured information to the decoder and introduced an editing
vector [21] to edit the generated summary, thereby enhancing the readability of the summary. Recently,
Paulus et al. [22] applied reinforcement learning (RL) to generate a summary and adopted the attention
mechanism inside the decoder.

Information 2018, 9, 217 4 of 19

In addition, Xu [23] used a multi-layer perceptron (MLP) model inside the encoder to predict
the weight of each sentence in the source text. This model reduced the interference of irrelevant
sentences when generating summaries. Zhou et al. [24] also adopted a MLP model after the encoder
to weaken the irrelevant information and improve the model performance. Ma et al. [25] added
a similarity comparison module between the generated summaries and the original text after the
decoder to improve the semantic relevance of the summary. Ma et al. [26] combined text sentiment
classification with text summarization tasks and proposed a hierarchical end-to-end model with a
highway network, which achieved good experimental results on the Amazon online review dataset. In
another experiment by Ma et al. [27], they proposed a supervised learning model to improve the ability
of encoder text representation, thereby improving the result of summarization. Hsu et al. [28] combined
extractive and abstractive summarization to generate a summary, this improved the informativity and
readability of summaries. Lin et al. [29] controlled the information flow from encoder to decoder to
improve the semantic relevance of the summary. Li et al. [30] also combined extractive with abstractive
models to generate summaries and improve the informativity of the summary. Celikyilmaz et al. [31]
presented deep communicating agents in an encoder-decoder architecture to address the challenges
of representing a long document for abstractive summarization. Under the conditions of solving the
problem of OOV words and repeatability, our model refers to the idea of Zhou et al. [24], adopting an
extra attention mechanism to extract the important information. In order to ensure the correctness of
the extracted information and enhance the ability of extra attention mechanisms, we calculate semantic
similarity between the reference summary and the extracted information, and maximize the similarity
score to encourage high similarity between the reference summary and the extracted information.
Experiments show that our model outperformed the state-of-the-art abstractive model and the saliency
of the summary generated by our model was further enhanced.

3. Proposed Model

In this section, we will introduce our proposed model in detail. In Section 3.1, we introduce the
flow diagram of our model. In Section 3.2, we make an overview of the various parts of the model. In
Section 3.3, we describe every part of the model in detail.

3.1. Model Flow Diagram

The flow diagram of our model is shown in Figure 2.

Information 2018, 9, x FOR PEER REVIEW 4 of 18

sentences when generating summaries. Zhou et al. [24] also adopted a MLP model after the encoder
to weaken the irrelevant information and improve the model performance. Ma et al. [25] added a
similarity comparison module between the generated summaries and the original text after the
decoder to improve the semantic relevance of the summary. Ma et al. [26] combined text sentiment
classification with text summarization tasks and proposed a hierarchical end-to-end model with a
highway network, which achieved good experimental results on the Amazon online review dataset.
In another experiment by Ma et al. [27], they proposed a supervised learning model to improve the
ability of encoder text representation, thereby improving the result of summarization. Hsu et al. [28]
combined extractive and abstractive summarization to generate a summary, this improved the
informativity and readability of summaries. Lin et al. [29] controlled the information flow from
encoder to decoder to improve the semantic relevance of the summary. Li et al. [30] also combined
extractive with abstractive models to generate summaries and improve the informativity of the
summary. Celikyilmaz et al. [31] presented deep communicating agents in an encoder-decoder
architecture to address the challenges of representing a long document for abstractive
summarization. Under the conditions of solving the problem of OOV words and repeatability, our
model refers to the idea of Zhou et al. [24], adopting an extra attention mechanism to extract the
important information. In order to ensure the correctness of the extracted information and enhance
the ability of extra attention mechanisms, we calculate semantic similarity between the reference
summary and the extracted information, and maximize the similarity score to encourage high
similarity between the reference summary and the extracted information. Experiments show that
our model outperformed the state-of-the-art abstractive model and the saliency of the summary
generated by our model was further enhanced.

3. Proposed Model

In this section, we will introduce our proposed model in detail. In Section 3.1, we introduce the
flow diagram of our model. In Section 3.2, we make an overview of the various parts of the model. In
Section 3.3, we describe every part of the model in detail.

3.1. Model Flow Diagram

The flow diagram of our model is shown in Figure 2.

Figure 2. The flow diagram of our model. At the training stage, the Generated Summary in the
figure does not exist. Our target is to train an abstractive model, namely, the part drawn by the blue
dotted line. At the test stage, our input is only the source text and the part represented by the red
dotted line does not exist, the output is the summary generated using the abstractive model.

Figure 2. The flow diagram of our model. At the training stage, the Generated Summary in the figure
does not exist. Our target is to train an abstractive model, namely, the part drawn by the blue dotted
line. At the test stage, our input is only the source text and the part represented by the red dotted line
does not exist, the output is the summary generated using the abstractive model.

Information 2018, 9, 217 5 of 19

The input of the model is the source text and the output is the generated summary. Firstly, the
source text is embedded into a series of word vectors. Next, these word vectors are encoded to achieve
the reading and understanding of the source text. Then, we adopt an extra attention mechanism
after the encoder to obtain the important information for generating the summary, thereby reducing
the interference of useless information to the decoder. At the training stage, in order to improve the
performance of important information extraction, we compare the semantics of the reference summary
with the semantics of the important information to obtain the consine similarity score. Note that the
reference summary does not exist at the test stage. Finally, the decoder generates summaries according
to the important information.

3.2. Model Overview

The concrete architecture of our model is shown in Figure 3. It mainly consists of five parts:
source text encoder, extra attention, consine similarity module, reference summary encoder and
summary decoder.

Information 2018, 9, x FOR PEER REVIEW 5 of 18

The input of the model is the source text and the output is the generated summary. Firstly, the
source text is embedded into a series of word vectors. Next, these word vectors are encoded to
achieve the reading and understanding of the source text. Then, we adopt an extra attention
mechanism after the encoder to obtain the important information for generating the summary,
thereby reducing the interference of useless information to the decoder. At the training stage, in
order to improve the performance of important information extraction, we compare the semantics of
the reference summary with the semantics of the important information to obtain the consine
similarity score. Note that the reference summary does not exist at the test stage. Finally, the decoder
generates summaries according to the important information.

3.2. Model Overview

The concrete architecture of our model is shown in Figure 3. It mainly consists of five parts:
source text encoder, extra attention, consine similarity module, reference summary encoder and
summary decoder.

Figure 3. Our proposed model. Before the decoder, an extra attention mechanism is used to extract
important information and compare the similarity of the reference summary and the extracted
information to ensure the correctness of the necessary information. In order to enhance the ability of
the extra attention mechanism in extracting information, the similarity score is fed back to the
network, skipping the decoder.

The text encoder uses a bidirectional long short term memory network (Bi-LSTM) to read and
represent the source text. It maps the source text to the semantic vector space, forming a series of
semantic vectors. After the text encoder, we use the extra attention mechanism to measure the
importance of each word in the source text. The extra attention mechanism is a MLP network. At
each time step, the output of MLP is a weight vector that represents the importance of the word for
the text. Then, we use these weight vectors to weigh the hidden states and form a series of new
semantic vectors. These vectors represent the important information of the source text. Next, we also
use Bi-LSTM to encode the reference summary. We compare the cosine similarity between the
semantic of the reference summary and the semantic of the important information to ensure the
correctness of the extracted information input into the decoder. In order to enhance the ability of the
extra attention mechanism, we provide a similarity score to the encoder and MLP to maximize it.
Lastly, the model adopts unidirectional LSTM to decode the important information and generate
summaries. During the generation of summaries, we also use traditional attention mechanisms to
provide different attention scores for different parts of the source text at different time steps.

Figure 3. Our proposed model. Before the decoder, an extra attention mechanism is used to extract
important information and compare the similarity of the reference summary and the extracted
information to ensure the correctness of the necessary information. In order to enhance the ability of
the extra attention mechanism in extracting information, the similarity score is fed back to the network,
skipping the decoder.

The text encoder uses a bidirectional long short term memory network (Bi-LSTM) to read and
represent the source text. It maps the source text to the semantic vector space, forming a series
of semantic vectors. After the text encoder, we use the extra attention mechanism to measure the
importance of each word in the source text. The extra attention mechanism is a MLP network. At each
time step, the output of MLP is a weight vector that represents the importance of the word for the
text. Then, we use these weight vectors to weigh the hidden states and form a series of new semantic
vectors. These vectors represent the important information of the source text. Next, we also use
Bi-LSTM to encode the reference summary. We compare the cosine similarity between the semantic
of the reference summary and the semantic of the important information to ensure the correctness of
the extracted information input into the decoder. In order to enhance the ability of the extra attention
mechanism, we provide a similarity score to the encoder and MLP to maximize it. Lastly, the model
adopts unidirectional LSTM to decode the important information and generate summaries. During the
generation of summaries, we also use traditional attention mechanisms to provide different attention
scores for different parts of the source text at different time steps.

Information 2018, 9, 217 6 of 19

3.3. Model Details

In this section, we will introduce our model in detail. We divided our model into five parts
in Section 3.2. Since extra attention and similarity modules work together to extract the useful
information and filter the irrelevant information, we can merge them into an attentive information
extraction module. Our model has three large blocks, namely, text encoder, attentive information
extraction and summary decoder. The text encoder reads and understands the source text. Attentive
information extraction is responsible for extracting the important information for summary generation.
The summary decoder writes the summary words.

3.3.1. Text Encoder

The text encoder imitates the process of human reading and understanding the source text. This
part is responsible for mapping the source text to the semantic vector space and forming a series of
semantic vectors. As RNN can better represent the serialized data, the encoder is implemented using
RNN. However, the general RNN has the problem of long-short-term dependence and vanishing
gradient, thus we adopted the variant LSTM (http://colah.github.io/posts/2015-08-Understanding-
LSTMs/).

In order to obtain more complete and accurate vector representations of the source text, we used
Bi-LSTM to encode it. Forward LSTM reads word vectors from left to right, resulting in a series of

hidden states (
→
h1,
→
h2,
→
h3, . . . ,

→
hn). Backward LSTM reads the word vector in the opposite direction, and

obtains a series of hidden states (
←
h1,

←
h2,

←
h3, . . . ,

←
hn). n is the length of the source text.

→
hi = LSTM(xi,

→
hi−1) (1)

←
hi = LSTM(xi,

←
hi+1) (2)

We concatenate
→
hi and

←
hi to represent hi, i.e., hi = [

→
hi,
←
hi], xi represents the i-th word in the source

text. hi is the semantics of all contents before the i-th word in the source text.

3.3.2. Attentive Information Extraction

Although the architecture of text summarization borrows from machine translation (MT), it is
a very different problem from MT. In MT, the decoder must fully receive all the information from
the source text. In summarization, the effective information of the text is enough for the decoder.
However, the current abstractive model generates a summary based on all contents in the source text,
which causes the encoder to not correctly represent the text. This makes the information that has been
inputted into the decoder imprecise. In this case, the generated summary will not be accurate. This
situation is not what we expect. In addition, we observed the process of humans writing a summary.
They will outline important information in the text before writing a summary, which can reduce the
interference of useless information to the decoder. Thus, we refer to humans writing summaries and
propose an attentive information extraction model to solve the problem.

After the text encoder, the network will generate a series of hidden states (h1, h2, h3, . . . , hn). In

order to completely and accurately represent the entire text H, we concatenate
→
hn with

←
h1 to obtain it.

H = [
→
hn;
←
h1] (3)

In order to extract the important information, we apply an extra attention mechanism. Here, we
introduce a weight vector gi. It represents the importance of the i-th word for the full text. H and hi are

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Information 2018, 9, 217 7 of 19

input into a MLP to obtain gi. Then, hi and gi will carry out dot product operations to get h′i, which
represents the extracted information at time step i.

gi = σ(Ws.H + Vi.hi + b) (4)

h′i = hi � gi (5)

where Ws, Vi and b are learnable parameters.
⊙

is dot product operation.
After information extraction, the important information of the source text is strengthened

and the unnecessary or useless information is weakened or ignored. We add these new states
(h′1, h′2, h′3, . . . , h′n) to represent the semantics of the source text, namely Vs. It will be inputted
into the decoder to generate summaries.

Vs =
n

∑
i=1

h′i (6)

We extract important information to the decoder after MLP, but we cannot guarantee the
correctness of extracted information. As the semantics of the reference summaries and source texts
are consistent, we compare the semantics of reference summaries with the source text to ensure the
extracted information’s semantic correctness. We refer to the encoder of the source text and also use
Bi-LSTM to encode the reference summary, and add all hidden states to represent its semantics Vt.

→
ri = LSTM(wi,

→
ri−1) (7)

←
ri = LSTM(wi,

←
ri+1) (8)

ri = [
→
ri ,
←
ri] (9)

Vt =
s

∑
i=1

ri (10)

where s is the length of the reference summary and ri is the semantics of all contents before the i-th
word in the reference summary.

Here, we adopt cosine similarity to measure the semantic similarity between the reference
summary and the source text. This will tell us whether extracted information is correct or not. The
similarity score is larger, the extracted information is more accurate.

cos(Vs, Vt) =
Vs.Vt

‖Vs‖.‖Vt‖
(11)

In order to improve the information extraction ability of MLP, the similarity score is fed back to
the network. In the training process, we maximize the score to encourage the high semantic similarity
score between the reference summary and the extracted information. In our model, we minimize the
negative log likelihood of the similarity.

losss = − log(cos(Vs, Vt)) (12)

As the current summarization model’s target function is to maximize the possibility of the
target word, namely, minimizing its negative log likelihood, we believe that the decoder has good
writing skills.

losst = −logP(W∗t) (13)

Information 2018, 9, 217 8 of 19

where W∗t is the target word. Therefore, in order not to affect the decoder’s writing ability, we feed
the similarity score back to the encoder and MLP, skipping the decoder. The final loss function is as
follows:

loss =
1
m

m

∑
t=0

losst + λ.losss (14)

where λ is a hyper-parameter and m is the length of the generated summary.

3.3.3. Summary Decoder

We use the unidirectional LSTM to generate summaries after the text encoder and attentive
information extraction. We use Vs (in Section 3.3.2) to initialize the LSTM hidden state. It represents all
important information in the source text.

st = LSTM(st−1, yt) (15)

s0 = Vs (16)

where st and yt are the hidden state and the input of LSTM at time step t, respectively.
During the process of decoding, we also use traditional attention mechanisms to pay attention to

different parts of the important information at different time steps.

et
i = VT .tanh

(
Wh.h′i + Wt.st + bt

i
)

(17)

at = so f tmax
(
et) (18)

ct =
n

∑
i=1

at
i .h
′
i (19)

where Wh, Wt, V and bt
i are learnable parameters, at

i is the attention score at time t to the i-th word in
the source text, and ct is the context vector at time t. Finally, in order to solve OOV words and the
repeatability of summaries, we also use pointer and coverage mechanisms [16]. Now, the attention
score is calculated as follows:

ct
i =

t′=t−1

∑
t′=0

at′
i (20)

et
i = vT .tanh

(
Wh.h′i + Wt.St + Wc.ct

i + bi
)

(21)

where ct
i is the sum of the attention scores before time t. We will penalize the model when it repeatedly

attends to the same location of the source text, namely, minimize the minimum of the sum of the
attention scores of the i-th word so far and the attention score of the i-th word at the current moment.
Thus part of the loss function losst is changed as follows:

losst = −logP(W∗t) + µ.min
(
at

i , ct
i
)

(22)

where µ is a hyper-parameter.

4. Experiment

In this section, we will introduce our experiments in detail, including the datasets we used, the
implementation details and the evaluation metrics.

4.1. Datasets

We trained our model on the CNN/Daily Mail dataset [12,32]. This is a news dataset that contains
312,085 documents with multi-sentence summaries. Through statistics, each text contains an average
of 766 words spanning 29.74 sentences and the corresponding summary contains 53 words spanning

Information 2018, 9, 217 9 of 19

3.72 sentences. We follow the same pre-processing method described in See et al. [16] to process our
datasets. The large size of the dataset makes the process of training very slow. Thus we filtered out texts
longer than 500. Eventually, we had 70,065 training pairs, 3806 validation pairs and 3212 test pairs.

In addition, we also tested our model on the DUC-2004 dataset for tasks 1 and 2 [33]. Although
DUC 2004 is old, DUC-2004 contains many manual abstracts generated by an expert. It provides
a standard dataset for summarization. Thus it is used widely in academic research and industrial
applications. Since most past works were evaluated based on DUC 2004, we also used it to evaluate
our model. However, it is too small to train neural networks, so we only used it to test our model.
The corpus contains 500 documents. Each document has four manual reference summaries and each
reference summary contains 75 bytes on average.

4.2. Experiment Details

All our experiments are implemented based on python3 and tensorlow1.2.0. In Table 1, we show
our model parameters at the training stage.

Table 1. Our model parameters at the training stage. Max_enc_steps and Max_dec_steps are the
allowed maximum length of the source text input encoder and the generated summary, respectively.

Model Parameters Values

Hidden dimension 256
Embedding dimension 128

Vocabulary size 50K
Max_enc_steps 400
Max_dec_steps 100

Batch size 16
Beam size 4

Learning rate 0.15
µ 1
λ 0.001

We set all hidden state sizes to 256 and word embedding sizes to 128. The vocabulary size was
50,000. Before the model is trained, we did not pre-train the word vectors. We randomly initialized the
word vectors at the beginning of training process. We fixed the maximum length of input text at 400.
In addition, the length of reference summary was 53 on average, so we set the maximum length of
the generated summaries to 100. Besides, when we tested our model on DUC-2004, we changed the
maximum length of the generated summaries to 25, because the reference summary contained 75 bytes
on average. The batch size was 16. We adopted the beam search algorithm to generate summaries
and set the beam size to four; thus the batch size was also changed to four at the test stage. We used
AdaGrad [34] to optimize our model and its learning rate, the initial accumulator value was 0.15 and
0.1, respectively. The hyper-parameter λ and µ were set to 0.001 and 1, respectively.

At the end of training, the loss of seq2seq, namely, losst (in Section 3.3.2) converged to about
2.6 from an initial value of about 7.0, and the coverage loss converged to 0.2 from an initial value of
about 0.5.

4.3. Evaluation Metrics

1. ROUGE

We evaluated our model using ROUGE [35]. ROUGE is a common evaluation metric in text
summarization. It measures the overlap of lexical units between reference summaries and generated

Information 2018, 9, 217 10 of 19

summaries, such as unigrams, bigrams and longest common subsequence. The calculation of ROUGE
is as follows:

ROUGE− N =
∑s∈{re f erence summaries} ∑gramn Countmatch(gramn)

∑s∈{re f erence summaries} ∑gramn Count(gramn)
(23)

where N represents the length of n-gram, {re f erence summaries} is the reference summary,
Countmatch(gramn) is the number of n-grams co-occurring in the reference summaries and generated
summaries, and Count(gramn) is the number of n-grams in reference summaries. For the CNN/Daily
Mail dataset, we calculated ROUGE F1 (https://blog.csdn.net/u014380165/article/details/77493978).
However, for the DUC-2004 dataset, because most works were evaluated in the past based on ROUGE
recall and the official DUC metric is also ROUGE recall, we also used it to evaluate our model.

2. Human evaluation

For text summarization, to some extent, ROUGE only evaluates literal similarity between the
reference summary and the generated summary. For the saliency of the generated summaries, there
is no suitable way to evaluate them automatically. Thus, in order to evaluate the saliency of the
summaries generated by our model, we randomly selected some examples for visual evaluation. We
compared the summary generated by our model and See et al. [16] in terms of informativity. The
summary containing more key information had higher saliency.

In addition, in order to make the evaluation experiment more representative, we randomly picked
more examples. Each example contains three parts, namely, the reference summary, the summary
generated by the model of See et al. [16] and the summary generated by our model. We assigned them
to three different human evaluators to score each summary. The saliency scoring criteria are shown in
Table 2. Finally, we collected the results of different human evaluators and calculated the mean value.
Note that during the process we did not tell them which summary was generated by our model and
which summary was generated by the model of See et al. [16]. We only told them which summary was
the reference summary.

Table 2. Saliency scoring criteria. Relevance indicates the informativity of the summary by the model
(our model or See et al. [16] model). Score is from 0 to 5 and higher scores are better. Higher score
indicates higher saliency.

Relevance Score

No relevance 0
Little relevance 1

A little relevance 2
Relevance 3

A lot of relevance 4
Great relevance 5

Besides, for the text summarization, readability is also an important indication for evaluation of
the quality of the summarization. Thus we also randomly selected some examples and assigned them
to three different evaluators to evaluate the readability of the summaries. We mainly evaluated the
syntax and the grammar of the summary. The three evaluators scored each summary according to the
syntax and the grammar. The scoring details are shown in Table 3. Similarly, we calculated the mean
value of the three evaluators as the final readability result. Note, our readability evaluation process
was also anonymous.

https://blog.csdn.net/u014380165/article/details/77493978

Information 2018, 9, 217 11 of 19

Table 3. Readability Scoring Criteria. Higher score indicates stronger readability. Score is from 1 to 5
and higher scores are better.

Syntax Grammar Score

Very Poor Very Bad 1
Poor Bad 2

Barely Acceptable Barely Acceptable 3
Good Good 4

Very good Very Good 5

3. Weigh heat map

We visualized the weight vector obtained by MLP, namely, gi (in Section 3.3.2), to check whether
our model extracted important information before the decoder. However, because gi is a high
dimensional vector, it is difficult to visualize it directly. In order to visualize it, we converted it
to a scalar. As we all know, the biggest relevance appears between themselves. Thus, we calculated the
weight vector between the source text and the source text as the gold vector. Then, we calculated the
Euclidean distance between the gold vector and the weight vector at each time step. With this, we can
convert a high dimensional weight vector to a scalar. The concrete calculation is as follows:

G = σ(Ws.H + Vi.H + b) (24)

ai =

√√√√ k

∑
i=1

(G− gi)
2 (25)

where G is the gold vector, k is the dimension of the weight vector and ai represents the scalar
corresponding to gi. H is the source text (in Section 3.3.2). We will visualize the ai to represent the
weight heat map.

5. Results and Discussion

In this section, we report the ROUGE F1, ROUGE recall for the CNN/Daily Mail and DUC-2004
test sets, respectively. We use the pyrouge package (https://pypi.org/project/pyrouge/) and the
official ROUGE script (https://github.com/summanlp/evaluation/tree/master/ROUGE-RELEASE-
1.5.5) to obtain our ROUGE scores. In addition, we will show the result of the saliency evaluation and
readability evaluation. Then, we will provide the weight heat map. Finally, we will discuss our results.

5.1. Results

For CNN/Daily Mail and DUC-2004, their reference summaries have different lengths, so we set
different sizes at the test stage. For CNN/Daily Mail, the length of the reference summaries was 53 on
average. We set the maximum decoder steps to 100. Table 4 shows the results for CNN/Daily Mail.
We can see that our model achieves state-of-the-art results without reinforcement learning. We only
used maximum likelihood (ML) to train our model. We did not use RL to train the model, but the
experiments of Celikyilmaz et al. [31] show that RL can apparently improve the value of ROUGE. This
may become a part of our future work.

https://pypi.org/project/pyrouge/
https://github.com/summanlp/evaluation/tree/master/ROUGE-RELEASE-1.5.5
https://github.com/summanlp/evaluation/tree/master/ROUGE-RELEASE-1.5.5

Information 2018, 9, 217 12 of 19

Table 4. ROUGE F1 on CNN/Daily Mail. All our ROUGE scores have a 95% confidence interval in the
official ROUGE script.

Model ROUGE-1 ROUGE-2 ROUGE-L

Maximum Likelihood

Words-lv2k-temp-att 35.46 13.30 32.65
Pointer-Generator + Coverage 39.53 17.28 36.38

ML, with intra-attention 38.30 14.81 35.49
Controlled summarization 39.75 17.29 36.54

End2end w/inconsistency loss 40.68 17.97 37.13
Attentive Information Extraction (Ours) 42.01 20.09 38.78

Reinforcement Learning

DCA MLE + SEM 41.11 18.21 36.03
DCA MLE + SEM + RL 41.69 19.47 37.92

Words-lv2k-temp-att: Nallapati et al. [12] used a pointer mechanism to solve the problem of
out-of-vocabulary and used the feature-rich-encoder to embed the word.

Pointer-Generator + Coverage: See et al. [16] also adopted pointer to handle OOV words and
introduced an extended vocabulary. Besides, in order to prevent the repeatability, the model used
coverage to solve it. This model was our baseline model.

ML, with intra-attention: Paulus et al. [22] used an attention mechanism inside the decoder to
solve the problem of repeatability.

Controlled summarization: Fan et al. [36] presented a neural summarization model to enable
users to specify some high level attributes, such as the desired length, style, and the entities, in order
to control to the shape of the generated summaries to better suit users’ needs.

End2end w/inconsistency loss: Hsu et al. [28] combined an extractive model with an abstractive
model to generate summaries.

DCA MLE + SEM + RL: Celikyilmaz et al. [31] presented deep communicating agents in an
encoder-decoder architecture to address the challenges of representing a long document for abstractive
summarization and trained their model using reinforcement learning to generate summaries.

DCA MLE + SEM: Celikyilmaz et al. [31] did not use RL to train their model.
For DUC-2004, the reference summary contains 75 bytes on average, so we change the maximum

decoder steps to 25. In addition, in the past, most of the work on DUC-2004 was evaluated using
ROUGE recall, so we also obtained ROUGE recall for DUC-2004. The results are shown in Table 5.
The results show that our model outperforms the state-of-the-art baseline model in ROUGE-1 and
ROUGE-L recall with least 1.9 points.

Table 5. ROUGE recall on DUC-2004. All our ROUGE scores have a 95% confidence interval in the
official ROUGE script.

Model ROUGE-1 ROUGE-2 ROUGE-L

ABS+ 28.18 8.49 23.81
Words-lv5k-1sent 28.61 9.42 25.24

C2R + Atten 28.97 8.26 24.06
SEASS 29.21 9.56 25.51

AC-ABS 32.03 10.99 27.86
Attentive Information Extraction (Ours) 33.94 8.99 28.44

ABS+: Rush et al. [10] used CNN encode the source text and neural language model to decode.
Words-lv5k-1sent: Nallapati et al. [12] trained the model on the first sentence from the source

text and adopted the large vocabulary trick based on an attentional encoder-decoder model.

Information 2018, 9, 217 13 of 19

C2R + Atten: Chopra et al. [11] used a CNN to encode and RNN to decode, which outperformed
the ABS+ model.

SEASS: Zhou et al. [24] adopted selective encoding to extend the seq2seq model, which reduced
the burden of the decoder.

AC-ABS: Li et al. [37] employed an actor-critic framework to enhance the traditional abstractive
model to improve the quality of the generated summaries.

We randomly selected three examples to evaluate visually. The result is shown in Figure 4. We can
see that the summary generated by our model captures more key information contained in the source
text. This indicates that our summaries have a higher saliency than the summary of See et al. [16].Information 2018, 9, x FOR PEER REVIEW 13 of 18

Figure 4. Examples of abstractive summarization. Green font is the key information of the source
text and red font represents the effective information generated by the abstractive model. The
source text (1–3) represents original texts, the gold summary is the reference summary, the
generated summary is the summary by the model of See et al. [16] and our model represents the
summary by our proposed model.

Table 7. Readability evaluation results. See et al. [16] is the summary generated by the model of See
et al. [16] and our model is the summary generated by our model. A/B: A represents the score of the
syntax and B indicates the score of the grammar.

Summary Evaluator 1 Evaluator 2 Evaluator 3 Average Score
See et al. [16] 4.23/2.97 4.09/3.01 4.50/3.22 4.27/3.07
Our model 4.31/3.08 4.28/3.20 4.71/3.53 4.43/3.27

Finally, we randomly selected an example to visualize the weight (in Section 4.2). Figure 5
shows the result, in which we can see that key words in the source text were picked by MLP, such as
“Cambodian”, “rejected”, “demands”, “talks”, “outside”, “political”, “Government”, “opposition”,
“asked”, “meeting”, etc. This shows that our extra attention mechanism and similarity module
determined the importance of each word in the source text. They obtained the important
information before the decoder. This effectively reduced the interference of irrelevant information to
the decoder. Therefore, the generated summaries contain more key information, namely, their
saliency is higher.

Figure 4. Examples of abstractive summarization. Green font is the key information of the source text
and red font represents the effective information generated by the abstractive model. The source
text (1–3) represents original texts, the gold summary is the reference summary, the generated
summary is the summary by the model of See et al. [16] and our model represents the summary
by our proposed model.

Information 2018, 9, 217 14 of 19

In addition, we picked 100 examples randomly and assigned them to three different people
to score anonymously. The result of the saliency evaluation is shown in Table 6. From the result,
the summary that is generated by our model has a higher relevance score than the unimproved
model, so our proposed model enhances the saliency of text summarization. Besides, we also selected
100 examples randomly and assigned them to three different evaluators to score for readability. The
syntax score and grammar scores are presented in Table 7. We found that the summary generated by
our model had a higher syntax score and a higher grammar score than the summary generated by See
et al. Thus we can say that the summary generated by our model has stronger readability.

Table 6. Saliency evaluation results. See et al. [16] is the summary generated by the model of See et al.
[16] and our model is the summary generated by our model.

Summary Evaluator 1 Evaluator 2 Evaluator 3 Average Score

See et al. [16] 3 2.86 3.22 3.03
Our model 3.5 3.12 3.36 3.33

Table 7. Readability evaluation results. See et al. [16] is the summary generated by the model of See et
al. [16] and our model is the summary generated by our model. A/B: A represents the score of the
syntax and B indicates the score of the grammar.

Summary Evaluator 1 Evaluator 2 Evaluator 3 Average Score

See et al. [16] 4.23/2.97 4.09/3.01 4.50/3.22 4.27/3.07
Our model 4.31/3.08 4.28/3.20 4.71/3.53 4.43/3.27

Finally, we randomly selected an example to visualize the weight ai (in Section 4.2). Figure 5
shows the result, in which we can see that key words in the source text were picked by MLP, such as
“Cambodian”, “rejected”, “demands”, “talks”, “outside”, “political”, “Government”, “opposition”,
“asked”, “meeting”, etc. This shows that our extra attention mechanism and similarity module
determined the importance of each word in the source text. They obtained the important information
before the decoder. This effectively reduced the interference of irrelevant information to the decoder.
Therefore, the generated summaries contain more key information, namely, their saliency is higher.Information 2018, 9, x FOR PEER REVIEW 14 of 18

Figure 5. The weight heat map. The word in the picture is the source text. The darker color has
greater weight and corresponding word is more important. The reference summary was
“Cambodian government rejects opposition’s call for talks abroad”. The generated summary by our
model was “Cambodian leader Hun Sen rejected opposition parties demands for talks outside the
country”.

5.2. Discussion

Current abstractive models implicitly apply attention mechanisms to extract the key
information while the summaries are generating. We think the model benefits from explicitly
extracting key information before the decoder. We propose an attentive information extraction
model to obtain the important information before the decoder. In Section 5.1, the result showed that
our model effectively reduced the interference of the irrelevant information in the source text. This
makes the summary more accurate and the saliency of the summary higher than the baseline model
[16]. Besides, through readability evaluation, we found that the summary generated by our model
had stronger readability.

However, the target of the abstractive model was not only to generate a summary with higher
saliency, but also to generate more novel n-grams as in the reference summaries. In order to evaluate
the abstractive ability of our model, we conducted detailed statistical analysis about the percentage
of new n-grams for DUC 2004 and CNN/Daily Mail. The result is shown in Figures 6 and 7.

Figure 6. The percentage of new n-grams for CNN/Daily Mail. Larger percentage indicates stronger
abstraction.

Figure 7. The percentage of new n-grams for DUC 2004. Larger percentage indicates stronger
abstraction.

From Figures 6 and 7, we can see that although our model is abstractive, it does not produce
new n-grams as often as reference summaries. For CNN/Daily Mail, the model of See et al. [16]

Figure 5. The weight heat map. The word in the picture is the source text. The darker color has
greater weight and corresponding word is more important. The reference summary was “Cambodian
government rejects opposition’s call for talks abroad”. The generated summary by our model was
“Cambodian leader Hun Sen rejected opposition parties demands for talks outside the country”.

5.2. Discussion

Current abstractive models implicitly apply attention mechanisms to extract the key information
while the summaries are generating. We think the model benefits from explicitly extracting key
information before the decoder. We propose an attentive information extraction model to obtain the
important information before the decoder. In Section 5.1, the result showed that our model effectively
reduced the interference of the irrelevant information in the source text. This makes the summary
more accurate and the saliency of the summary higher than the baseline model [16]. Besides, through
readability evaluation, we found that the summary generated by our model had stronger readability.

Information 2018, 9, 217 15 of 19

However, the target of the abstractive model was not only to generate a summary with higher
saliency, but also to generate more novel n-grams as in the reference summaries. In order to evaluate
the abstractive ability of our model, we conducted detailed statistical analysis about the percentage of
new n-grams for DUC 2004 and CNN/Daily Mail. The result is shown in Figures 6 and 7.

Information 2018, 9, x FOR PEER REVIEW 14 of 18

Figure 5. The weight heat map. The word in the picture is the source text. The darker color has
greater weight and corresponding word is more important. The reference summary was
“Cambodian government rejects opposition’s call for talks abroad”. The generated summary by our
model was “Cambodian leader Hun Sen rejected opposition parties demands for talks outside the
country”.

5.2. Discussion

Current abstractive models implicitly apply attention mechanisms to extract the key
information while the summaries are generating. We think the model benefits from explicitly
extracting key information before the decoder. We propose an attentive information extraction
model to obtain the important information before the decoder. In Section 5.1, the result showed that
our model effectively reduced the interference of the irrelevant information in the source text. This
makes the summary more accurate and the saliency of the summary higher than the baseline model
[16]. Besides, through readability evaluation, we found that the summary generated by our model
had stronger readability.

However, the target of the abstractive model was not only to generate a summary with higher
saliency, but also to generate more novel n-grams as in the reference summaries. In order to evaluate
the abstractive ability of our model, we conducted detailed statistical analysis about the percentage
of new n-grams for DUC 2004 and CNN/Daily Mail. The result is shown in Figures 6 and 7.

Figure 6. The percentage of new n-grams for CNN/Daily Mail. Larger percentage indicates stronger
abstraction.

Figure 7. The percentage of new n-grams for DUC 2004. Larger percentage indicates stronger
abstraction.

From Figures 6 and 7, we can see that although our model is abstractive, it does not produce
new n-grams as often as reference summaries. For CNN/Daily Mail, the model of See et al. [16]

Figure 6. The percentage of new n-grams for CNN/Daily Mail. Larger percentage indicates
stronger abstraction.

Information 2018, 9, x FOR PEER REVIEW 14 of 18

Figure 5. The weight heat map. The word in the picture is the source text. The darker color has
greater weight and corresponding word is more important. The reference summary was
“Cambodian government rejects opposition’s call for talks abroad”. The generated summary by our
model was “Cambodian leader Hun Sen rejected opposition parties demands for talks outside the
country”.

5.2. Discussion

Current abstractive models implicitly apply attention mechanisms to extract the key
information while the summaries are generating. We think the model benefits from explicitly
extracting key information before the decoder. We propose an attentive information extraction
model to obtain the important information before the decoder. In Section 5.1, the result showed that
our model effectively reduced the interference of the irrelevant information in the source text. This
makes the summary more accurate and the saliency of the summary higher than the baseline model
[16]. Besides, through readability evaluation, we found that the summary generated by our model
had stronger readability.

However, the target of the abstractive model was not only to generate a summary with higher
saliency, but also to generate more novel n-grams as in the reference summaries. In order to evaluate
the abstractive ability of our model, we conducted detailed statistical analysis about the percentage
of new n-grams for DUC 2004 and CNN/Daily Mail. The result is shown in Figures 6 and 7.

Figure 6. The percentage of new n-grams for CNN/Daily Mail. Larger percentage indicates stronger
abstraction.

Figure 7. The percentage of new n-grams for DUC 2004. Larger percentage indicates stronger
abstraction.

From Figures 6 and 7, we can see that although our model is abstractive, it does not produce
new n-grams as often as reference summaries. For CNN/Daily Mail, the model of See et al. [16]

Figure 7. The percentage of new n-grams for DUC 2004. Larger percentage indicates
stronger abstraction.

From Figures 6 and 7, we can see that although our model is abstractive, it does not produce new
n-grams as often as reference summaries. For CNN/Daily Mail, the model of See et al. [16] produced
more novel n-grams than our model. However, we can also see in Figure 4 that although the model of
See et al. produced more new n-grams, most of them were erroneous. Although our model produces
less novel n-grams, the saliency of the summaries generated by our model was higher and most of
the summaries were correct. Thus, our attentive information extraction schema is still useful, apart
from the fact that most of the contents was copied from the source text. For DUC 2004, we found the
result of our model and See et al. [16] to be less different. The number of novel n-grams for DUC was
less than for CNN/Daily Mail on the whole. Maybe the length of the summaries was too short, so
the summary generating process was already over when the model massively began to generate new
n-grams. Thus the percentage was lower than for CNN/Daily Mail. In this situation, regardless of
which model used, the result of our model and the model of See et al. was similar.

Additionally, the probability of generating a novel word also provides a measure of the abstractive
ability of the model. Here we used Pgen [16] to represent the probability. In order to measure the
abstractive ability of our model, we recorded the value of Pgen at the beginning of training and at the
end of training. We found that Pgen started with a value of about 0.26 then increased, converging to
about 0.55 by the end of training. This shows that the model first learns to mostly copy, then learns to
generate. However, during the test stage, Pgen was very low, and only had a mean value of 0.16. The
result was similar for See et al. [16]. For this reason, we agree with the opinion of See et al. namely
that the model receives word-by-word supervision in the form of the reference summary during the

Information 2018, 9, 217 16 of 19

training stage, but during the test it does not. This is far from the purpose of abstractive summarization.
Solving this problem without affecting the performance of the model is a part of our future work.
Perhaps we can additionally adopt RL to train our model. We can calculate the rate of abstraction
to encourage a higher rate, thereby making the model produce more novel n-grams. Besides, if we
want to generate a summary that is more similar to the reference summary, we can also adopt RL to
encourage larger ROUGE so as to improve the performance of the model. Maybe this way also can
improve the degree of abstraction.

In addition, our model extracts the important information before the decoder, thereby enhancing
the saliency of the summary, but we can see that it cannot completely filter all irrelevant information
from Figure 5, such as “accusing”, “parties”, “the”, etc. Maybe we can apply the hard attention
mechanism [38] to solve the problem in the future, but hard attention may result in the loss of
information if the information extraction mechanism is not very good. Besides, the ROUGE-2 recall
reduced obviously for DUC-2004 (see Section 5.1). This is a negative outcome. In order to understand
the reason for this, we tried to increase the length of Max_dec_steps (in Section 4.2) to 30; in this case
the ROUGE-2 recall was 9.75. If we continued increasing the length to 35, the ROUGE-2 recall also
continued increasing. The result is shown in Table 8.

Table 8. Results for DUC-2004. +Max_dec_steps (25/30/35) represents setting different lengths for
Max_dec_steps.

Our Model ROUGE-1 ROUGE-2 ROUGE-L

+Max_dec_steps 25 33.94 8.99 28.44
+Max_dec_steps 30 36.96 9.75 30.69
+Max_dec_steps 35 39.14 10.26 32.17

We can infer that the result declines because the CNN/Daily Mail does not match the DUC-2004.
The reference summary length for CNN/Daily Mail was 53 words on average, but for DUC-2004 it was
only 75 bytes. Even so, the ROUGE-1 and ROUGE-L recall increased. We mainly considered ROUGE-L,
which represents the rate of the longest common subsequence between the reference summary and the
generated summary.

As we adopted three LSTM models, the training speed of our model was very slow. During the
training process, we applied some tricks such as discarding the source text with a length over 500 and
setting the Max_enc_steps and Max_dec_steps to 250 and 50 respectively in the early stages of training.
As CNN/Daily Mail is a news dataset, we think the key information is shown in the first half of the
text. Therefore, we fixed the maximum length of input text at 250. When the model began to converge,
we changed this to 400 and 100, which effectively speeded up the training.

In general, our model has the above weaknesses, but using anonymous and subjective human
evaluation, the saliency of the generated summary was enhanced and the readability of the generated
summary was also better than the baseline model. The result for CNN/Daily Mail and DUC-2004 also
outperformed the state-of-the-art baseline model. In the future, we will encourage our model to write
a summary more abstractively using RL and try to adopt the hard attention mechanism before the
decoder to extract important information.

6. Conclusions

In this work, our target was to enhance the saliency of the summary in abstractive text
summarization. In order to achieve this, we proposed an attentive information extraction model
to obtain the skeleton of the source text, namely, the important information for the decoder. We
conducted our experiments using CNN/Daily Mail and DUC-2004. The experiments showed that our
proposed model can effectively extract important information in the source text before the decoder.
In addition, we achieved a 42.01 ROUGE-1 f-score and 33.94 ROUGE-1 recall for the CNN/Daily
Mail and DUC 2004 datasets, respectively. Our results outperformed the state-of-the-art abstractive

Information 2018, 9, 217 17 of 19

model by at least 1.33 points for the CNN/Daily Mail dataset. For DUC 2004, our model outperformed
the state-of-the-art model by at least 1.9 points. Finally, using human evaluation, the saliency of the
summaries generated by our model was further enhanced. The readability of the summaries generated
by our model was better than the baseline model. As a part of our future work, we plan to apply
RL and hard attention mechanisms to the abstractive model to further improve the performance of
the model.

Author Contributions: X.X. conceived the idea, performed the experiments and wrote the paper. Y.W. provided
the ideas for the experiments. L.J. helped build the experimental environment. G.X., X.F. and L.W. provided
writing guidance. Besides, Y.W. and L.J. also helped revise the paper.

Funding: This work was funded by the Pre-research Project (Grant No.: 31510010502), and the Research of
Nuclear emergency Application Technology and Application Demonstration (Grant No.: 41-Y30B12-9001-17/18).

Acknowledgments: We are thankful to Key Laboratory of Spatial Information Processing and Applied System
Technology, Chinese Academy of Sciences for providing support in the experimental condition. Thanks for
Hermann et al. to provide the raw data. And thanks for all authors to their efforts.

Conflicts of Interest: The authors have no relevant financial interests in this article and no potential conflicts of
interest to disclose. Research data is some public datasets.

References

1. Cheng, J.; Lapata, M. Neural summaryzation by extracting sentences and words. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, 7–12 August 2016;
pp. 484–494.

2. Cao, Z.; Chen, C.; Li, W.; Li, S.; Wei, F.; Zhou, M. TGSum: Build Tweet Guided Multi-Document
Summarization Dataset. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix,
AZ, USA, 12–17 February 2016; pp. 2906–2912.

3. Yang, Y.; Bao, F.; Nenkova, A. Detecting (un) important content for single-document news summarization.
In Proceedings of the 15th Conference of the European Chapter of the Association for Computational
Linguistics, Valencia, Spain, 3–7 April 2017; pp. 707–712.

4. Isonuma, M.; Fujino, T.; Mori, J.; Matsuo, Y.; Sakata, I. Extractive summarization using multi-task learning
with document classification. In Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, Copenhagen, Denmark, 7–11 September 2017; pp. 2101–2110.

5. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv
2014.

6. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. In Proceedings of
the Advances in Neural Information Processing Systems Conference, Montreal, QC, Canada, 8–13 December
2014; pp. 3104–3112.

7. Cao, Z.; Wei, F.; Dong, L.; Li, S.; Zhou, M. Ranking with Recursive Neural Networks and Its Application
to Multi-Document Summarization. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, Austin, TX, USA, 25–29 January 2015; pp. 2153–2159.

8. Nallapati, R.; Zhai, F.; Zhou, B. SummaRuNNer: A Recurrent Neural Network Based Sequence Model for
Extractive Summarization of Documents. In Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, San Francisco, CA, USA, 4–10 February 2017; pp. 3075–3081.

9. Cao, Z.; Li, W.; Li, S.; Wei, F.; Li, Y. Attsum: Joint learning of focusing and summarization with neural
attention. arXiv 2016.

10. Rush, A.M.; Chopra, S.; Weston, J. A neural attention model for abstractive sentence summarization. In
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal,
17–21 September 2015; pp. 379–389.

11. Chopra, S.; Auli, M.; Rush, A.M. Abstractive sentence summarization with attentive recurrent neural
networks. In Proceedings of the 2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, San Diego, CA, USA, 12–17 June 2016; pp. 93–98.

Information 2018, 9, 217 18 of 19

12. Nallapati, R.; Zhou, B.; Gulcehre, C.; Xiang, B. Abstractive text summarization using sequence-to-sequence
rnns and beyond. In Proceedings of the 20th SIGNLL Conference on Computational Natural Language
Learning, Berlin, Germany, 11–12 August 2016; pp. 280–290.

13. Vinyals, O.; Fortunato, M.; Jaitly, N. Pointer networks. In Proceedings of the Advances in Neural Information
Processing Systems Conference, Montreal, QC, Canada, 7–12 December 2015; pp. 2692–2700.

14. Gu, J.; Lu, Z.; Li, H.; Li, V.O. Incorporating copying mechanism in sequence-to-sequence learning. In
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Germany,
7–12 August 2016; pp. 1631–1640.

15. Gulcehre, C.; Ahn, S.; Nallapati, R.; Zhou, B.; Bengio, Y. Pointing the unknown words. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, 7–12 August 2016;
pp. 140–149.

16. See, A.; Liu, P.J.; Manning, C.D. Get to the point: Summarization with pointer-generator networks. In
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, BC,
Canada, 30 July–4 August 2017; pp. 1073–1083.

17. Tu, Z.; Lu, Z.; Liu, Y.; Liu, X.; Li, H. Modeling coverage for neural machine translation. arXiv 2016.
18. Suzuki, J.; Nagata, M. Cutting-off Redundant Repeating Generations for Neural Abstractive Summarization.

In Proceedings of the 15th Conference of the European Chapter of the Association for Computational
Linguistics, Valencia, Spain, 3–7 April 2017; pp. 291–297.

19. Nema, P.; Khapra, M.; Laha, A.; Ravindran, B. Diversity driven attention model for query-based abstractive
summarization. arXiv 2017.

20. Li, P.; Lam, W.; Bing, L.; Wang, Z. Deep Recurrent Generative Decoder for Abstractive Text Summarization.
arXiv 2017.

21. Guu, K.; Hashimoto, T.B.; Oren, Y.; Liang, P. Generating Sentences by Editing Prototypes. arXiv 2017.
22. Paulus, R.; Xiong, C.; Socher, R. A deep reinforced model for abstractive summarization. arXiv 2017.
23. Xu, J. Improving Social Media Text Summarization by Learning Sentence Weight Distribution. arXiv 2017.
24. Zhou, Q.; Yang, N.; Wei, F.; Zhou, M. Selective encoding for abstractive sentence summarization. arXiv 2017.
25. Ma, S.; Sun, X.; Xu, J.; Wang, H.; Li, W.; Su, Q. Improving semantic relevance for sequence-to-sequence

learning of Chinese social media text summarization. arXiv 2017.
26. Ma, S.; Sun, X.; Lin, J.; Ren, X. A Hierarchical End-to-End Model for Jointly Improving Text Summarization

and Sentiment Classification. arXiv 2018.
27. Ma, S.; Sun, X.; Lin, J.; Wang, H. Autoencoder as Assistant Supervisor: Improving Text Representation for

Chinese Social Media Text Summarization. arXiv 2018.
28. Hsu, W.T.; Lin, C.K.; Lee, M.Y.; Min, K.; Tang, J.; Sun, M. A Unified Model for Extractive and Abstractive

Summarization using Inconsistency Loss. arXiv 2018.
29. Lin, J.; Sun, X.; Ma, S.; Su, Q. Global Encoding for Abstractive Summarization. arXiv 2018.
30. Li, C.; Xu, W.; Li, S.; Gao, S. Guiding Generation for Abstractive Text Summarization Based on Key

Information Guide Network. In Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, New Orleans, LA, USA,
1–6 June 2018; pp. 55–60.

31. Celikyilmaz, A.; Bosselut, A.; He, X.; Choi, Y. Deep communicating agents for abstractive summarization.
arXiv 2018.

32. Hermann, K.M.; Kocisky, T.; Grefenstette, E.; Espeholt, L.; Kay, W.; Suleyman, M.; Blunsom, P. Teaching
machines to read and comprehend. In Proceedings of the Advances in Neural Information Processing
Systems Conference, Montreal, QC, Canada, 7–12 December 2015; pp. 1693–1701.

33. Over, P.; Dang, H.; Harman, D. DUC in context. Inf. Process. Manag. 2007, 43, 1506–1520. [CrossRef]
34. Duchi, J.; Hazan, E.; Singer, Y. Adaptive subgradient methods for online learning and stochastic optimization.

J. Mach. Learn. Res. 2011, 12, 2121–2159.
35. Lin, C.Y. ROUGE: A Package for Automatic Evaluation of Summaries. In Proceedings of the Workshop

on Text Summarization Branches Out, Post-Conference Workshop of ACL 2004, Barcelona, Spain,
25–26 July 2004.

36. Fan, A.; Grangier, D.; Auli, M. Controllable Abstractive Summarization. arXiv 2017.

http://dx.doi.org/10.1016/j.ipm.2007.01.019

Information 2018, 9, 217 19 of 19

37. Li, P.; Bing, L.; Lam, W. Actor-critic based training framework for abstractive summarization. arXiv 2018.
38. Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhutdinov, R.; Zemel, R.S.; Bengio, Y. Show, Attend and

Tell: Neural Image Caption Generation with Visual Attention. In Proceedings of the 32nd International
Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 2048–2057.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Proposed Model
	Model Flow Diagram
	Model Overview
	Model Details
	Text Encoder
	Attentive Information Extraction
	Summary Decoder

	Experiment
	Datasets
	Experiment Details
	Evaluation Metrics

	Results and Discussion
	Results
	Discussion

	Conclusions
	References

