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Abstract: RSA key pairs are normally generated from two large primes p and q. We consider what
happens if they are generated from two integers s and r, where r is prime, but unbeknownst to
the user, s is not. Under most circumstances, the correctness of encryption and decryption depends
on the choice of the public and private exponents e and d. In some cases, specific (s, r) pairs can be
found for which encryption and decryption will be correct for any (e, d) exponent pair. Certain s
exist, however, for which encryption and decryption are correct for any odd prime r - s. We give
necessary and sufficient conditions for s with this property.
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1. Notation and Background

Consider the RSA public-key cryptosystem and its operations of encryption and decryption [1].
Let (p, q) be primes, n = p ∗ q, φ(n) = (p− 1)(q− 1) denote Euler’s totient function and (e, d) the

encryption/decryption exponent pair chosen such that ed ≡
φ(n)

1. Let
(

Z
nZ

)∗
= Un be the group of units

mod n, and let a ∈ Un. Encryption and decryption operations are given by:

(ae)d ≡ (aed) ≡ (a1) ≡ a mod n

We consider the case of RSA encryption and decryption where at least one of (p, q) is a composite
number s. This situation might arise in the presence of a flawed primality tester or in the classroom
when a teacher wishes to demonstrate in RSA what happens if one of (p, q) is not a true prime. This is
the context in which this question arose for the author. Security in this case is obviously weaker,
since the modulus is now easier to factor, but how is correctness affected?

First, we note that RSA can be implemented using n as the product of multiple primes, with the
Chinese remainder theorem used to recover the message [2]. In multi-prime RSA, (e, d) are chosen
such that ed ≡

φ(n)
1, just as with two-prime RSA. The only difference is that the totient function

φ(n) = (p− 1)(q− 1) can no longer be used. For example, for three-prime RSA with primes (p, q, r),
the totient function is given by φ(n = pqr) = (p− 1)(q− 1)(r− 1).

For a composite number s (that the user incorrectly believes is prime) and a true prime r used to
generate keys with standard two-prime RSA, encryption and decryption exponents would be chosen
using the (incorrect) pseudo-totient φ′(n = sr) = (s− 1)(r− 1), choosing (e, d) such that ed ≡

φ′(n)
1.

In this case, encryption and decryption are given by:

(ae)d ≡
n=sr

(aed) ≡
n=sr

x
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where x is no longer mathematically guaranteed to be a.
Given the conditions above, under what circumstances will we have (ae)d ≡ a? Is correct RSA

even possible given the use of the wrong totient function? We investigate this question here.

2. Witnesses for Tuples (s, r, e, d)

Let n, e, d, a, s, r be as described. Let ord(a) denote the order of a in Un. Let us call the fraction of
elements of Un, the order of which does not divide (ed− 1) the witness ratio of (s, r, e, d). For these
elements (ae)d 6≡ a; they testify to the composite nature of s. Tuples (s, r, e, d) with a witness ratio of
zero are said to be witness-free. For RSA encryption with those values, the composite nature of s will
never be detected.

Example

Consider s = 10, r = 7. We have n = 10 ∗ 7 = 70, φ′(n) = (s− 1)(r− 1) = 54. The elements of
Un are:

Un = 1, 3, 9, 11, 13, 23, 27, 29, 31, 33, 37, 39, 41, 43, 47, 51, 53, 57, 59, 61, 67, 69

The set of orders of a ∈ Un is:
On = 1, 2, 3, 4, 6, 12

Suppose we choose e = 35, d = 17 as our exponent pair. We have ed = 595 ≡
φ′(n)

1, (ed− 1) = 594.

The element a = 9 will be encrypted correctly, because ord(9) = 6 and 6 | 594. The element a = 13,
by contrast, is a witness because ord(13) = 4 and 4 - 594. As a check, 9595 ≡

70
9, but 13595 ≡

70
27 6= 13.

For this combination of (s, r, e, d), the values of a = (1, 9, 11, 19, 29, 31, 39, 41, 51, 59, 61, 69) all
have orders in Un that divide (ed− 1) = 594, which means they will encrypt and decrypt correctly.
The remaining values of a = (13, 17, 23, 27, 33, 37, 43, 47, 53, 57, 67) do not. These values serve as
witnesses to the composite nature of s. Since both sets are of identical cardinality, the witness ratio for
(s, r, e, d) = (10, 7, 35, 17) is 0.5, so we might say the impostor s = 10 masquerading as a prime has a
50% chance of escaping detection. This assumes only a single element is encrypted. For all (s, r, e, d)
that are not witness-free, the chances of an impostor s escaping detection decrease with the length of
the message. Similar calculations will show that for (s, r, e, d) = (35, 17, 5, 109), the witness ratio is 2/3,
and for (s, r, e, d) = (437, 29, 29, 421), the witness ratio is 0.99.

3. Witness-Free Tuples (s, r, e, d)

Let λ(n) denote the Carmichael function, the maximum order of any element in Un. By Lagrange’s
theorem, and the fact that for integers a and b, a | b ↔ all divisors of a | b, we see that those tuples
(s, r, e, d) with the property λ(n) | (ed− 1) are exactly those that are witness-free.

For example, suppose we keep (s = 10, r = 7) from above, but now choose e = 11, d = 59.
We have (ed− 1) = 648. Recall On = 1, 2, 3, 4, 6, 12. All elements of On now divide (ed− 1) = 648,
so (s, r, e, d) = (437, 29, 29, 421) is witness-free. For example, 9649 ≡

70
9, 31649 ≡

70
31, 57649 ≡

70
57, etc.

Equivalently, (s, r, e, d) is witness-free when (e, d) with ed ≡
φ′(n)

1 also posses the property ed ≡
φ(n)

1.

For a given (s, r) with n = sr, such (e, d) can always be found by computing L = lcm(φ(n), φ′(n)) and
finding ed ≡

L
1. Such a procedure will by construction give ed ≡

φ′(n)
1 and ed ≡

φ(n)
1, yielding an (s, r, e, d)

that is witness-free.
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For example, consider the semiprimes s = 257 ∗ 263, r = 269 ∗ 271. We have:

n = 4927316309
s = 67591
r = 72899
φ′(n) = 4927175820
φ(n) = 4853329920
L = lcm(φ′(n), φ(n)) = 132851165712814080

Trying k = 1, we have:

kL + 1 = 132851165712814081 = 13 ∗ 19 ∗ 537858970497223

Choosing e = 13 ∗ 19 = 247, d = 537858970497223, we have (67591, 72899, 247, 537858970497223)
as a witness-free tuple. For example,

3132851165712814081 ≡
4927316309

3

150132851165712814081 ≡
4927316309

150

246132851165712814081 ≡
4927316309

246

etc.

Since all the primes chosen were >256, if our RSA message consisted of ASCII text encrypted at
the byte level (inefficient, but suitable for illustrative purposes), using the above values of (s, r, e, d),
two-prime RSA encryption and decryption would work correctly. This is true even though neither s
nor r are prime and even though e and d were chosen using the pseudo-totient.

4. Witness-Free Tuples (s, r)

It is possible in some cases to remove the effects of e and d. For those cases, (s, r, e, d) is witness-free
for any ed ≡

φ′(n=sr)
1. For these tuples the composite nature of s cannot be detected solely through

RSA encryption and decryption, regardless of the elements encrypted and the public and private
exponents chosen.

Theorem 1. Let s, r be positive integers, n = sr, φ′(n) = (s − 1)(r − 1). (s, r) is witness-free
↔ λ(n) | φ′(n).

Proof. →: Assume (s, r) is witness-free for all ed ≡
φ′(n=sr)

1. Let a ∈ Un be of order k. We have

ed = 1 + mφ′(n) from some integer m ≥ 0. Write φ′(n) as lk + r with l ≥ 0 and 0 ≤ r < k. We have:

aed ≡
n

a1+mφ′(n) ≡
n

a1+m(lk+r) ≡
n

a(alk+r)m

≡
n

a(ak)lm(amr) ≡
n

a1lm(amr) ≡
n

a(amr) ≡
n

a(am)r

Assume r is non-zero. Since r < k, there is no element b in Un for which br ≡
n

1. Therefore,

(am)r 6
n
≡ 1, which means aed 6

n
≡ a, contradicting our assumption that (s, r) is witness-free. Therefore,

r = 0, implying k | φ′(n); therefore, λ(n) | φ′(n).
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←: Let λ(n) | φ′(n). Let a ∈ Un be of order k. Since k | λ(n), k | φ′(n), we can write lk = φ′(n),
l > 0. We have ed ≡

φ′(n)
1 for any (e, d) pair, so ed = 1 + mφ′(n) for some integer m ≥ 0. This gives:

aed ≡
n

a1+mlk ≡
n

a(ak)lm ≡
n

a(1lm) ≡
n

a

Therefore, (s, r) is witness-free for all ed ≡
φ′(n=sr)

1.

Example

For s = 10, r = 17, n = sr = 170 = 2 ∗ 5 ∗ 17, λ(170) = 16, φ′(n) = 9 ∗ 16 = 144 = λ(170) ∗ 9.
By Theorem 1, (10, 17) is witness-free. For any ed ≡

144
1 and any a ∈ U170, we will have aed ≡

n
a.

For example, 11145 ≡
170

11, 121289 ≡
170

121, etc.

For s = 10, r = 23, we have n = 2 ∗ 5 ∗ 23 = 230, λ(230) = 44, φ′(n) = 9 ∗ 22 = 192, 44 - 192.
By Theorem 1, (10, 23) has witnesses. For example, 13385 ≡

230
93 6= 13.

5. Values of s That Yield Witness-Free Tuples for All Odd Primes r

Certain values of s can be constructed such that they can be paired with any odd prime r to
produce correct RSA key pairs. The properties of s required by Theorem 1 will hold for all primes
r ↔ ∀k ∈ Os, k | (s − 1), i.e., ∀a ∈ Us, as−1 ≡

s
1. This is the definition of a Carmichael number.

Thus, any pair (C, r) where C is a Carmichael number and r is a prime will produce functioning
RSA keys. This is a known result.

However, if we relax the requirements on s just slightly, so that only pairings with odd primes
are of interest, then non-Carmichael numbers can also meet the requirements. Let s be a composite
number such that Theorem 1 holds for all odd primes r - s. We refer to all such s as strong impostors.
We use the modifier strong to indicate that (s, r) is witness-free for all odd primes r - s, as opposed to
one or a few specific (s, r) that are witness-free.

Theorem 2. s is a strong impostor↔ λ(s) | 2(s− 1).

Proof. →: Assume s is a strong impostor. Then, by Theorem 1, for all odd primes r, λ(sr) | φ′(sr)→
λ(sr) | (s − 1)(r − 1). Since λ(sr) = lcm(λ(s), r − 1), we have lcm(λ(s), r − 1) | (s − 1)(r − 1).
This holds for all odd primes r, including three, so lcm(λ(s), 2) | 2(s − 1). Since the Carmichael
function is even for n > 2, the result follows.

←: Assume λ(s) | 2(s − 1). Let r be an odd prime. We have λ(sr) = lcm(λ(s), r − 1) =

lcm(2(s− 1)k, r − 1) for some positive integer k. This quantity must divide (s− 1)(r − 1), and the
result follows.

5.1. Example

The first sixteen strong impostors are:

{4, 6, 8, 12, 15, 24, 28, 66, 91, 276, 435, 532, 561, 616, 703, 946}

(note that the 13th strong impostor, 561, is the first Carmichael number). For any of these
numbers s, all tuples (s, r) with r an odd prime and r - s will be witness-free. For example, consider
(s, r) = (66, 179). n = 66 ∗ 179 = 11,814, φ′(n) = 65 ∗ 178 = 11,570. Choosing e = 21, d = 551,
ed = 11,571, we have 511,571 ≡

11,814
5, 9111,571 ≡

11,814
91, and so forth. The same results will hold for any

odd prime r - s, any ed ≡
φ′(n=rs)

1 and any a ∈ Un.
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5.2. The Structure of Strong Impostors

We can say a couple of things about the structure of strong impostors. First, we note that the
exponent of two in their prime factorization is always ≤3, and the exponents of all odd primes in their
prime factorization are always ≤1.

Theorem 3. Let s = pe1
1 pe2

2 . . . pem
m be a strong impostor, where the primes appear in numerical order and all

ei ≥ 0. Then, e1 ≤ 3, and ∀i > 1 ei <= 1.

Proof. Suppose s is an even strong impostor, i.e., e1 ≥ 1. By Theorem 2, λ(s) | 2(s− 1).
If e1 ≤ 2, we have:

λ(s) = lcm(2e1−1, pe2−1
2 (p2 − 1) . . . pem−1

m (pm − 1))

By the properties of the least common multiple, the exponents of all primes pi in the number
above must be ≥ ei − 1, and the number itself must divide 2(s− 1). We have:

2(s− 1) = 2e1+1 pe2
2 . . . pem

m − 2

We see by inspection that for all odd primes pi, no pei−1
i can divide 2(s− 1) if ei > 1, as there will

always be a remainder of −2. For p1 = 2, 2e1−1 can divide 2(s− 1) only if e1 = 1 or e1 = 2. Therefore,
if s is an even strong impostor with e1 ≤ 2, we have ∀ i > 1 ei ≤ 1.

If s is even, but with e1 > 2, we have:

λ(s) = lcm(2e1−2, pe2−1
2 (p2 − 1) . . . pem−1

m (pm − 1))

s is unchanged, so the same restrictions on the exponents of odd primes still apply. Applying similar
reasoning as before, 2e1−2 can divide 2(s− 1) only when e1 = 2 or e1 = 3. Therefore, the theorem holds
for even strong impostors.

Now, suppose that s is odd. Then:

λ(s) = lcm(pe2−1
2 (p2 − 1), . . . , pem−1

m (pm − 1))

As before, we require λ(s) | 2(s − 1). We have s − 1 = pe2
2 . . . pem

m − 1. Since s only contains
odd primes, the same conditions are required on its odd prime exponents for λ(s) to divide 2(s− 1).
Thus, for all strong impostors, the exponent of two in their prime factorization is≤ 3, and the exponents
of all odd primes are ≤ 1.

It follows that all odd strong impostors are square-free, and all even strong impostors are free of
squares > 4. These s when multiplied by any prime r - s produce non-square-free moduli that yield
valid RSA key pairs and witness-free tuples for any ed ≡

φ′(n=rs)
1.
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5.3. Example

Here is the prime factorization of the first eight strong impostors:

4 = 22

6 = 2 ∗ 3

8 = 23

12 = 22 ∗ 3

15 = 3 ∗ 5

24 = 23 ∗ 3

28 = 22 ∗ 7

66 = 2 ∗ 3 ∗ 11

Note that there are no non-unitary powers of odd primes, and their maximum power of two
is three.

We can also see that no strong impostor s can contain an odd prime pair (pi, pj) in its factorization
such that pj ≡pi

1. This is because if pj = kpi + 1 appears in the prime factorization of s, we will have

φ(pj) = kpi, so pi will appear somewhere in λ(s). No such pi can divide 2(s− 1) evenly. Thus, no s
that contains three in its prime factorization can contain any of the primes {7, 13, 19, 31...}, no s that
containing five can contain any of {11, 31, 41, 61...}, etc. This is perhaps more clearly seen in the prime
factorization of the next eight strong impostors:

91 = 7 ∗ 13

276 = 22 ∗ 3 ∗ 23

435 = 3 ∗ 5 ∗ 29

532 = 22 ∗ 7 ∗ 19

561 = 3 ∗ 11 ∗ 17

616 = 23 ∗ 7 ∗ 11

703 = 19 ∗ 37

946 = 2 ∗ 11 ∗ 43

In addition to the exponents of the primes in the factorization of s, we can say the following things
about the primes themselves.

Theorem 4. Let s = 2j p2 p3 . . . pm, where all pi are odd primes. s is a strong impostor↔ ∀pi | s, pi − 1 |
2(2j ∏

k 6=i
pk − 1).

Proof. Let s be a strong impostor as described. By Theorem 2, λ(s) | 2(s − 1). We can write s as
s = 2j ∏m

i=1 pi. Since s is a strong impostor, we must have (pi − 1) | 2(s− 1) ↔ ∀pi | s, (pi − 1) |
2(2j ∏m

i=1 pi − 1) ↔ (pi − 1) | 2j+1 ∏m
i=1 pi − 2. Performing the first step of division by an arbitrary

pi − 1, we obtain s = 2j+1 ∏m
i=1 pi − 2 = (pi − 1) ∗ 2j+1 ∏m

k 6=i pk + (2j+1 ∏m
k 6=i pk − 2). Since the latter

term is the remainder and must also be evenly divisible by pi − 1 and since the choice of pi was
arbitrary, the result follows.
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5.4. Example

Consider s = 2926 = 2 ∗ 7 ∗ 11 ∗ 19. We have (7− 1) | 2(2 ∗ 11 ∗ 19− 1), (11− 1) | 2(2 ∗ 7 ∗ 19− 1)
and (19− 1) | 2(2 ∗ 7 ∗ 11− 1). The reader can verify similar results for the first 16 strong impostors
presented above.

Put another way, the strong impostors are exactly those s = 2j p2 p3 . . . pm where 0 ≤ j ≤ 3, and
the set of m-1 simultaneous linear congruences 2(2j ∏

k 6=i
pk − 1) ≡

pi−1
0 has a solution in odd primes pi.

6. Semiprime Strong Impostors

Impostors can be strong in the sense of producing valid RSA encryption and decryption, while
still being easily detected by inspection or the presence of small factors. For example, strong impostors
that are even are obviously composite, as are those ending in five or those, the digits of which sum
to a multiple of three. Impostors for which the effectiveness of such simple detection techniques is
minimized are semiprimes s = pq, where p and q are both prime (three of these appear in the first 16
strong impostors above). These impostors are also the hardest to factor. The reader may have noticed
that all the semiprime strong impostors shown are prime pairs of the form (p, 2p− 1). This is in fact
always the case.

Theorem 5. Let p, q be distinct odd primes, p < q. s = pq is a strong impostor↔ q = 2p− 1.

Proof. This result is a special case of Theorem 4, with j = 0 and m = 3. Plugging in these values,
we obtain p2− 1 | 2(p3− 1) and p3− 1 | 2(p2− 1). Assume p2 < p3, and apply a change of variables with
x2 = p2 − 1, x3 = p3 − 1. The equations then become x2 | 2x3 and x3 | 2x2. Let 2x3 = k1x2, 2x2 = k2x3.
These two equations together imply k1 ∗ k2 = 4. Since x2 and x3 are distinct, we discard the solution
k1 = k2 = 2. Since x2 < x3, we have k1 = 4, k2 = 1,→ 2x2 = x3 → 2(p2 − 1) = (p3 − 1) → p3 =

2p2 − 1.

6.1. Example

(2, 3), (3, 5), (7, 13) (as shown previously) and (19, 37) are the first four (p, q) prime pairs such
that q = 2p− 1. Therefore, s = 6(2 ∗ 3), s = 15(3 ∗ 5), s = 91(7 ∗ 13), and s = 703(19 ∗ 37) are the first
four semiprime strong impostors.

6.2. Unmasking a Semiprime Strong Impostor

Semiprime strong impostors s = pq are among the most resistant to probabilistic primality
tests, because they approach the Rabin limit of s/4 bases [3] to which they are strong semiprimes.
Nonetheless, s/4 remains a small proportion, so like any composite, they will quickly fail probabilistic
primality tests like Miller–Rabin. If RSA key generation is implemented properly, there is no worry
about a strong impostor slipping through.

There is also a way to unmask a strong impostor s that yields its factors. We have s = pq =

p(2p− 1) = 2p2 − p, which means 2p2 − p− s = 0. s is known, so applying the quadratic formula
and considering only the positive solution, we have p = 1+

√
1+8s
4 . Thus, if you suspect s of being a

semiprime strong impostor, multiply it by eight, add one and take the square root. If the result is an
integer ≡

4
3, you have caught the impostor red-handed.

7. Constructing Strong Impostors

Theorem 4 and similar results above provide insights into the structure of strong impostors that
can be used to construct them. For example, it can be shown that for any even strong impostor, all its
odd prime factors are congruent to three mod four. We offer the following additional results for odd



Information 2018, 9, 216 8 of 9

primes pi, some without proof, but with examples to aid understanding. Proofs can be obtained by
combining the specific criteria below with the definition of a strong impostor.

(A) s = ∏(p, 2p− 1)
(B) s = ∏(p1, . . . , pm) lcm(p1 − 1, . . . , pm − 1) | 2(s− 1)
(C) s = ∏(p, b(p− 1) + 1, c(p− 1) + 1) lcm(b, c)|2(pb + pc + 1)
(D) s = ∏(6k + 1, 12k + 1, 18k + 1, mk + 1) 36 | m, m | 72(36k2 + 11k + 1)

We have already shown Condition A to be the definition of a two-factor strong impostor; Condition
B is the general definition. These are the simplest ways to find strong impostors: sift through the
required number of primes until those meeting the required condition are found.

Condition C applies to prime three-tuples that are separated by multiples of p − 1. Thus, to
generate a strong impostor from a prime p, if b = 2 does not yield a prime (i.e., Condition A fails),
keep incrementing b until a prime of the form b(p− 1) + 1 is found. Then, do the same starting at
c = b + 1. Once p2 = b(p− 1) + 1 and p3 = c(p− 1) + 1 are found, apply the indicated lcm criterion.
If that fails, continue searching with increasing b and c. For example, p = 4, b = 4, c = 7 produce
(5, 17, 29), all of which are prime. lcm(4, 7) = 28 and 28 | 2(5 ∗ 4 + 5 ∗ 7 + 1), so s = 15 ∗ 17 ∗ 29 = 2465
is a strong impostor.

Condition D describes the possible construction of a strong impostor from a Carmichael number
of a specific form. s = ∏(p1, p2, p3) = ∏(6k + 1, 12k + 1, 18k + 1) is a Carmichael number for
prime p1, p2, p3 [4]. Such a number can be multiplied by a prime of the form mk + 1 to produce a
non-Carmichael strong impostor if an m meeting the indicated criteria can be found. For example,
k = 6, (37, 73, 109) are all prime, and therefore, s = 37 ∗ 73 ∗ 109 = 294,409 is Carmichael number.
m = 72 is the smallest m that meets the criteria of Condition D, and mk + 1 = 72 ∗ 6 + 1 = 433 is prime.
Therefore, s = 294,409 ∗ 433 = 127,479,097 is a strong impostor.

The author has tested all Carmichael numbers of the indicated form with k ≤ 220. Approximately
85% yield strong impostors using this technique.

8. Conclusions and Open Problems

There are 2946 strong impostors below 232; 2797 are odd, and 149 are even. In this range,
true primes are about 2000-times more common than strong impostors. Of the strong impostors,
630 are semiprimes. The number of strong impostors in this range with one through seven factors
are {2, 630, 498, 1004, 678, 131, 2}, respectively. Four and eight are the only strong impostors with
one prime factor. The strong impostors with seven factors are 370,851,481 = 7*11*13*17*19*31*37 and
2,719,940,041 = 7*13*17*19*37*41*61. We see by construction that the density of strong impostors is
greater than that of the Carmichael numbers, but less than that of the primes. The largest strong
impostor known to the author was found using the criteria of Condition D, with k = 1,044,381 and
m = 2,827,177,323,983,136. This gives:

s = (6k + 1)(12k + 1)(18k + 1)(2, 827, 177, 323, 983, 136 ∗ 1044381 + 1)
= 4, 359, 071, 840, 350, 709, 426, 134, 393, 773, 581, 398, 480, 999, 153

Since there is an infinite number of Carmichael numbers [5], there is an infinite number of strong
impostors. The author conjectures there is an infinite number of non-Carmichael strong impostors.
This is related to well-known conjectures on prime constellations [6]. For example, proving there is an
infinite number of two-factor strong impostors would prove there is an infinite number of (p, 2p− 1)
prime pairs.

For a given p, we might ask if a strong impostor s exists containing p as its smallest factor.
We refer to such an s as an extension of p. While extensions have been found by the author for the first
256 primes, it is an open question whether every prime has an extension. Proving this would of course
prove there is an infinite number of non-Carmichael strong impostors.
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Similar open questions exist for non-Carmichael strong impostors of various forms, such as prime
three-tuples in arithmetic progression of the form (p, p + 6m, p + 12m) where p = 6k + 1. Examples of
strong impostors of this form for p >= 67 are currently unknown.

It is an open question whether an infinite number of Carmichael numbers of the form
(6k + 1, 12k + 1, 18k + 1) [7] can be extended to non-Carmichael strong impostors using the technique
of Condition D.

We have seen the that largest prime factor of a strong impostor must be less than twice the product
of the other prime factors. This means the computations required to determine if criteria for Conditions
B and C are met for a given input will terminate if the largest prime in the tuple is specified, or if all
primes except the largest are specified. For all other cases, termination is not guaranteed. This relates
to the open questions above.

Modern implementations of RSA use λ(n) instead of φ(n) in the selection of (e, d). A similar
substitution may be made in the examples here, with appropriate algebraic modifications as needed.

Finally, efficient algorithms for finding the smallest extension for a given prime p would be
interesting to explore, as well as a deeper understanding of the relationships between each pi of a
strong impostor beyond that presented here.
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