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Abstract: Hesitant fuzzy sets (HFSs), which were generalized from fuzzy sets, constrain the membership
degree of an element to be a set of possible values between zero and one; furthermore, if two or
more decision-makers select the same value, it is only counted once. However, a situation where
the evaluation value is repeated several times differs from one where the value appears only once.
Multi-hesitant fuzzy sets (MHFSs) can deal effectively with a case where some values are repeated more
than once in a MHFS. In this paper, the novel convex combination of multi-hesitant fuzzy numbers
(MHFNs) is introduced. Some aggregation operators based on convex operation, such as generalized
multi-hesitant fuzzy ordered weighted average (GMHFOWA) operator, generalized multi-hesitant
fuzzy hybrid weighted average (GMHFHWA) operator, generalized multi-hesitant fuzzy prioritized
weighted average (GMHFPWA) operator and generalized multi-hesitant fuzzy Choquet integral
weighted average (GMHFCIWA) operator, are developed and corresponding properties are discussed
in detail. Then, based on the proposed aggregation operators, a novel approach for multi-criteria
decision-making (MCDM) problem is proposed for ranking alternatives. Finally, an example is provided
to verify the developed approach and demonstrate its validity and feasibility and the study is supported
by a sensitivity analysis and a comparison analysis.

Keywords: multi-criteria decision-making; multi-hesitant fuzzy sets; aggregation operators

1. Introduction

Hesitant fuzzy sets (HFSs) and multi-hesitant fuzzy sets (MHFSs), which were originally defined
by Torra [1,2], are an extension of Zadeh’s fuzzy sets (FSs) [3]. They allow a membership degree to have
different possible precise values between zero and one. Recently, HFSs and its extensions has been
the subject of a great deal of research and have been widely applied to multi-criteria decision-making
(MCDM) problems [4–20]. For example, some works on the aggregation operators of HFSs have
been undertaken [9–15] and the correlation coefficient, distance and correlation measures for HFSs
were developed [16–20]. For example, Zhang et al. [13] developed some induced generalized hesitant
fuzzy operators and applied them to multi-criteria group decision-making (MCGDM) problems.
Zhou [14] proposed hesitant fuzzy ordered accurate weighted averaging (HFOAWA) operator and
hesitant fuzzy ordered accurate weighted geometric (HFOAWG) operators and applied them to project
investment. Zhang [15] defined generalized hesitant fuzzy power average (GHFPA) operator and
generalized hesitant fuzzy power geometric (GHFPG) operator and applied them to MCGDM problems.
Yu [16] proposed some aggregation operators based on Einstein operations and applied them to MCDM
problems. Wang et al. [21] proposed a wide range of hesitant multiplicative fuzzy power aggregation
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geometric operators on MCGDM problems for hesitant multiplicative information. Torres et al. [22]
propose a prioritized aggregation operator to combine a time sequence of hesitant fuzzy information,
and applied them to the service selection problem in service-based systems. Qian and Wang [23]
generalized HFSs and utilized the aggregation operators to solve MCDM problems. Meng et al. [24]
developed some induced generalized hesitant fuzzy Shapley hybrid operators and applied them
to MCDM problems. Zhou and Xu [25] developed an optimal discrete fitting aggregation MCDM
method with HFSs. Tan et al. [26] defined some hesitant fuzzy Hamacher aggregation operators and
applied them to MCDM problems. Meng and Chen [27] and Liao et al. [28] defined novel correlation
coefficients between HFSs and applied them to MCDM problems. Li et al. [29] and Hu et al. [30]
defined some new distance and similarity measures of HFSs and applied them to MCDM problems.
Furthermore, Zhang and Wei [31] developed the E-VIKOR method to solve MCDM problems with HFSs.
Zhang and Xu [32] proposed the TODIM method, which was based on measured functions with HFSs.
Farhadinia [33,34] developed some information measures of HFSs and a novel method of ranking hesitant
fuzzy values. Moreover, Peng et al. [35] developed an extension of ELECTRE III method to handle MCDM
problems with MHFSs.

However, two main shortcomings of the existing methods of dealing with HFSs have emerged from
the research to date. (1) Both distance measures, similarity measures and some comparison methods
should satisfy the condition that all hesitant fuzzy numbers (HFN) must be arranged in ascending order
and be of equal length. If the two HFNs being compared have different lengths, then the value of
the shorter one should be increased until both are equal. However, in such cases, different methods of
extension could produce different results. (2) The existing methods do not clarify: how to solve
a situation where there is a repeated value in the evaluation of alternatives; and, in particular,
whether decision-makers can give more than one value (possible membership degrees of an element)
for each criterion or not. At the same time, the situation where the evaluation value is repeated more
than once is actually different from that where a value appears only once. For example, decision-makers
can determine that the possible degrees of membership by which an alternative is assessed relative to
the criterion “excellence” are 0.7, 0.8, and 0.8, which is expressed in the form of an HFN as {0.7, 0.8}.
However, the nature of the evaluation {0.7, 0.8} substantially differs from that expressed in the form
of an MHFS as {0.7, 0.8, 0.8}, which can lead to loss of information during the data collection process.
Therefore, MHFSs can overcome these shortcomings and deal with the case where some values may be
repeated more than once in an HFS. In this paper, the novel MCDM approach is developed based on some
convex aggregation operators of multi-hesitant fuzzy sets (MHFNs). Moreover, the proposed approach
based on convex operators distinguished from other methods for MCDM method not only because
the proposed approach uses MHFSs, but also due to the consideration the inter-dependent phenomena
among the criteria, which makes it more consistent with the practical decision-making environment.

The remainder of this paper is organized as follows. In Section 2, the definition, as well as
the comparison method, of HFSs and MHFSs is provided. In Section 3, some aggregation operators of
multi-hesitant fuzzy numbers (MHFNs) based on convex operation are developed and corresponding
properties are discussed. In Section 4, an MCDM method based on convex aggregation operators is
proposed. In Section 5, an example to illustrate the practical application of the developed approach is
provided as well as sensitivity analysis and comparison analysis. Finally, some conclusions are drawn
in Section 6.

2. Hesitant Fuzzy Sets and Multi-Hesitant Fuzzy Sets

In this section, the definition of HFSs and MHFSs are reviewed. The comparison method of HFSs,
which will be utilized in the latter analysis, are also presented.

Definition 1. Let X be a reference set, and a HFS E on X be in terms of a function which will return a subset of
[0, 1] in the case of it being applied to X [1,2].
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In order that it would be easily understood, Xia and Xu [9] expressed the HFS as
a mathematical symbol:

E = { 〈x, hE(x) 〉|x ∈ X} (1)

where hE(x) is a set of values in [0, 1], denoting the possible membership degrees of the element
x ∈ X to the set E. E is called HFSs, hE(x) is called a hesitant fuzzy element (HFE) [4], and H is the set
of all HFEs. In particular, if X has only one element, E is called a HFN, which can be denoted by
E = {hE(x)}. The set of all HFNs is represented by HFNS.

Torra [1,2] defined some operations on HFNs, and Xia and Xu [4] defined some new operations
on HFNs as well as the score functions.

Definition 2. Let X be a reference set, and MHFSs be defined as EM in terms of a function HEM that returns
a multi-subset of [0, 1] when applied to X [1].

Based on Definition 1, MHFSs can be expressed by the mathematical equation:

EM =
{〈

x, HEM (x)
〉∣∣x ∈ X

}
(2)

Here, HEM (x) is a set of values in [0, 1] denoting the possible degrees of membership of
the element x ∈ X to the set EM. In any HEM (x), the values can be repeated multiple times. HEM (x)
is a multi-hesitant fuzzy element (MHFE), and HEM is the set of all MHFEs. It is noteworthy that,
if X contains only a single element, EM is called a MHFN, briefly denoted by EM =

{
HEM (x)

}
. The set

of all MHFNs is represented by MHFNS. Any HFS is a special case of an MHFS.
Moreover, the operations of HFNs between two HFNs HA and HB on X was defined as below [1]:

(1) λHA =
{

1−
(
1− γHA

)λ
}
(λ > 0);

(2) HA
λ =

{(
γHA

)λ
}

(λ > 0);

(3) HA ⊕ HB =
{

γHA + γHB − γHA · γHB

}
;

(4) HA ⊗ HB =
{

γHA · γHB

}
.

Apparently, the operations on HFNs presented in Definition 2 also can be suitable for MHFNs.
The ranking of two HFNs can be obtained by combining the score function and the accuracy

function [9,36].

Definition 3. Let HA and HB be two HFNs on X, and then the novel ranking method for MHFNs can be
defined as follows [36]:

(1) if s(HA) < s(HB), then HA ≺ HB;
(2) if s(HA) = s(HB), then:

- if f (HA) = f (HB), then HA ∼ HB;
- if f (HA) < f (HB), then HA � HB;
- if f (HA) > f (HB), then HA ≺ HB.

where s(Hi) =
1

lHi
∑γi∈Hi

γi and f (Hi) =
1

lHi
−1 ∑γi∈Hi

(s(Hi)− γi)
2 (i = A, B) represents the score function

and accuracy function of Hi respectively [4,31], and lHi is the number of elements in Hi. Please note that “≺”
means “inferior to”. The score function is similar to the mean value; the greater the value of the mean,
the larger the hesitant degree. The accuracy function is similar to the sample variance in statistics and
can reflect the fluctuation of evaluation values of HFNs; the greater the amplitude of fluctuation, the larger
the hesitant degree.
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Example 1. Let h1 = {0.2, 0.5} and h2 = {0.3, 0.4} be two HFNs. According to Definition 3, we have
s(h1) = s(h2) = 0.35 and f (h1) = 0.045 > f (h2) = 0.005. Apparently, H1 ≺ H2 can be obtained, which is
consistent with our intuitive.

3. The Convex Combination Operation and Some Aggregation Operators of MHFNs

In this section, the convex combination operation with MHFNs is developed, and corresponding
properties and aggregation operators are presented.

Definition 4. Let H1 and H2 be two MHFNs. A convex combination of H1 and H2 is defined as

C2(w1, H1, w2, H2 ) = w1 ⊗ H1 ⊕ w2 ⊗ H2 =

{(
w1γλ

1 + w2γλ
2

)1/λ
∣∣∣∣γ1 ∈ H1, γ2 ∈ H2

}
, λ > 0 (3)

where w1 ≥ 0, w2 ≥ 0 and w1 + w2 = 1.

Proposition 1. Let H1 and H2 be two MHFNs. For 0 ≤ w ≤ 1, the convex combination C2(w, H1, 1− w, H2)

of H1 and H2 is also a MHFNs.

Proof. Based on Definition 4, we just need to prove that 0 <
(
wγλ

1 + (1− w)γλ
2
)1/λ ≤ 1. It is

obvious that
(
wγλ

1 + (1− w)γλ
2
)1/λ

> 0. Assume γ′1 ∈ H1 and γ′2 ∈ H2 do exist, so to make(
wγ′λ1 + (1− w)γ′λ2

)1/λ ≥ 1 i.e., wγ′λ1 + (1− w)γ′λ2 ≥ 1. If γ′1 > γ′2, then wγ′λ1 + (1− w)γ′λ2 ≥ 1 i.e.,

w >
1−γ′λ2

γ′λ1 −γ′λ2
> 1 which obviously contradicts 0 ≤ w ≤ 1; if γ′1 = γ′2, then wγ′λ1 + (1− w)γ′λ1 = γ′λ1 > 1

which contradicts 0 < γ′λ1 ≤ 1; if γ′1 ≤ γ′2, then wγ′λ1 + (1− w)γ′λ2 ≥ 1 i.e., w <
1−γ′λ2

γ′λ1 −γ′λ2
< 0 which

obviously contradicts 0 ≤ w ≤ 1. Therefore, the hypothesis is not supported. For any γ1 ∈ H1 and

γ2 ∈ H2, we have
(
wγλ

1 + (1− w)γλ
2
)1/λ ≤ 1. Thus, the convex combination C2(w, H1, 1− w, H2)

of H1 and H2 is also a MHFNs. ~

Definition 5. Let Hi (i = 1, 2, . . . , n) be a collection of MHFNs. Then the generalized
multi-hesitant fuzzy ordered weighted average (GMHFOWA) operator of dimension n is a mapping
GMHFOWA : MHFNn → MHFN that has an associated weight vector w = (w1, w2, . . . , wn) with wi ≥ 0

(i = 1, 2, . . . , n) and
n
∑

i=1
wi = 1, and

GMHFOWA(H1, H2, . . . , Hn )

= Cn
(

wk, Hσ(k), k = 1, 2, . . . , n
)
= w1 ⊗ Hσ(1) ⊕ (1− w1)⊗ Cn−1

{
wi/

n
∑

k=2
wk, Hσ(i), i = 2, 3, . . . , n

}
.

(4)

Here (σ(1), σ(2), . . . , σ(n)) is a permutation of (1, 2, . . . , n), and such that Hσ(1) ≤ Hσ(2) ≤ . . . ≤
Hσ(n).

Theorem 1. Let Hi (i = 1, 2, . . . , n) be a collection of MHFNs. Then their aggregated value by using
the GMHFOWA operator is also a MHFN, and

GMHFOWA(H1, H2, . . . , Hn ) =

{(
w1γλ

σ(1) + w2γλ
σ(2) + . . . + wnγλ

σ(n)

)1/λ
∣∣∣∣γσ(i) ∈ Hσ(i), i = 1, 2, . . . , n

}
(5)

Here (σ(1), σ(2), . . . , σ(n)) is a permutation of (1, 2, . . . , n), and such that Hσ(1) ≤ Hσ(2) ≤ . . . ≤
Hσ(n).
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Example 2. Let H1 = {0.2, 0.2, 0.3}, H2 = {0.1, 0.2} and H3 = {0.4} be three MHFNs, w = (0.3, 0.4, 0.3)
be the weight vector of them, and λ = 1. Based on Definition 5 and Theorem 1, if the associated vector is
w = (0.3, 0.4, 0.3), then H3 > H1 > H2, Hσ(1) = H2, Hσ(2) = H1 and Hσ(3) = H3 can be obtained. So

GMHFOWA(H1, H2, H3 )

= {w1γ2 + w2γ1 + w3γ3|γ1 ∈ H1, γ2 ∈ H2, γ3 ∈ H3 } = {0.23, 0.23, 0.27, 0.26, 0.26, 0.30}.

It can be easily proved that the GMHFOWA operator is monotonicity, commutativity and bounded,
which are presented in the following.

Proposition 2. Let Hi (i = 1, 2, . . . , n) be a collection of MHFNs, the following prosperities can be true.

(1) (Monotonicity) Let H′i (i = 1, 2, . . . , n) be a collection of MHFNs. If for all i, Hi ≤ H′i , then

GMHFOWA(H1, H2, . . . , Hn ) ≤ GMHFOWA
(

H′1, H′2, . . . , H′n
)

(2) (Commutativity) If H∗1 , . . . , H∗n is a permutation of H1, . . . , Hn, then

GMHFOWA(H∗1 , H∗2 , . . . , H∗n ) = GMHFOWA(H1, H2, . . . , Hn)

(3) (Boundedness) If H− =
{

γ−1 , γ−2 , . . . , γ−n
}

and H+ =
{

γ+
1 , γ+

2 , . . . , γ+
n
}

, where γ−i = min
γi∈Hi

γi and

γ+
i = max

γi∈Hi
γi, then

H− ≤ GMHFOWA(H1, H2, . . . , Hn ) ≤ H+

Definition 6. Let Hi (i = 1, 2, . . . , n) be a collection of MHFNs. Then the generalized
multi-hesitant fuzzy hybrid weighted average (GMHFHWA) operator of dimension n is a mapping
GMHFHWA : MHFNn → MHFN that have the weighting vector w = (w1, w2, . . . , wn) of

Hi(i = 1, 2, . . . , n) with wi ≥ 0 (i = 1, 2, . . . , n) and
n
∑

i=1
wi = 1, the aggregation-associated vector is

ω = (ω1, ω2, . . . , ωn) with ωi ≥ 0 (i = 1, 2, . . . , n) and
n
∑

i=1
ωi = 1, and

GMHFHWA(H1, H2, . . . , Hn )

= Cn
(

ωk,
.

Hσ(k), k = 1, 2, . . . , n
)
= ω1 ⊗

.
Hσ(1) ⊕ (1−ω1)⊗ Cn−1

{
ωi/

n
∑

k=2
ωk,

.
Hσ(i), i = 2, 3, . . . , n

}
.

(6)

Here (σ(1), σ(2), . . . , σ(n)) is a permutation of (1, 2, . . . , n), and
.

Hσ(i) = nwi Hi(i = 1, 2, . . . , n) is
the i-th largest of the weighted multi-hesitant fuzzy values. n is the balancing coefficient which plays a role of
balance. If ω = (1/n, 1/n, . . . , 1/n), then the GMHFHWA operator is reduced to the GMHFOWA operator.
If w = (1/n, 1/n, . . . , 1/n), then the GMHFHWA operator is reduced to the GMHFWA operator.

Theorem 2. Let Hi (i = 1, 2, . . . , n) be a collection of MHFNs. Then their aggregated value by using
GMHFHWA operator is also a MHFN, and

GMHFHWA(H1, H2, . . . , Hn ) =

{(
ω1

.
γ

λ
σ(1) + ω2

.
γ

λ
σ(2) + . . . + ωn

.
γ

λ
σ(n)

)1/λ
∣∣∣∣ .
γσ(i) ∈

.
Hσ(i), i = 1, 2, . . . , n

}
(7)

Here (σ(1), σ(2), . . . , σ(n)) is a permutation of (1, 2, . . . , n), and
.

Hσ(i) = nwi Hi(i = 1, 2, . . . , n) is
the i-th largest of the weighted multi-hesitant fuzzy values. n is the balancing coefficient which plays a role
of balance.
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Example 3. Let H1 = {0.2, 0.2}, H2 = {0.1, 0.3} and H3 = {0.4} be three MHFNs. The weight vector is
w = (0.3, 0.4, 0.3) and aggregation-associated vector is also ω = (0.2, 0.4, 0.4), and λ = 1, then

.
H1 = 3× 0.3 ·H1 = {0.1819, 0.1819 };

.
H2 = 3× 0.4 ·H2 = {0.0126, 0.0419};

.
H3 = 3× 0.3 ·H3 = {0.3686}.

Obviously, s
( .

H3

)
> s
( .

H1

)
> s
( .

H2

)
. By using Theorem 3, we have

GMHFWA(H1, H2, H3 ) =
{(

ω1
.
γσ(1) + ω2

.
γσ(2) + . . . + ωn

.
γσ(n)

)∣∣∣ .
γσ(i) ∈

.
Hσ(i), i = 1, 2, 3

}
= {0.1512, 0.1632, 0.1512, 0.1632}.

Proposition 3. Let Hi (i = 1, 2, . . . , n) be a collection of MHFNs, the following prosperities can be true.

(1) (Monotonicity) Let H′i (i = 1, 2, . . . , n) be a collection of MHFNs. If for all i, Hi ≤ H′i , then

GMHFHWA(H1, H2, . . . , Hn ) ≤ GMHFHWA
(

H′1, H′2, . . . , H′n
)

(2) (Commutativity) If H∗1 , . . . , H∗n is a permutation of H1, . . . , Hn, then

GMHFHWA(H∗1 , H∗2 , . . . , H∗n ) = GMHFHWA(H1, H2, . . . , Hn)

(3) (Boundedness) If H− =
{

γ−1 , γ−2 , . . . , γ−n
}

and H+ =
{

γ+
1 , γ+

2 , . . . , γ+
n
}

, where γ−i = min
γi∈Hi

γi and

γ+
i = max

γi∈Hi
γi, then

H− ≤ GMHFHWA(H1, H2, . . . , Hn ) ≤ H+

Based on the prioritization between the criteria discussed in [37], the prioritized aggregation operator can
be obtained.

Definition 7. Let Hi (i = 1, 2, . . . , n) be a collection of MHFNs. Then the generalized
multi-hesitant fuzzy prioritized weighted average (GMHFPWA) operator of dimension n is a mapping
GMHFPWA : MHFNn → MHFN , and

GMHFPWA(H1, H2, . . . , Hn )

= Cn
(

Tk
∑n

j=1 Tj
, Hk, k = 1, 2, . . . , n

)
= T1

∑n
j=1 Tj

⊗ H1 ⊕
(

1− T1
∑n

j=1 Tj

)
⊗ Cn−1

{
Ti

∑n
j=1 Tj

/
n
∑

k=2

Tk
∑n

j=1 Tj
, Hi, i = 2, 3, . . . , n

}
.

(8)

Here Tj = ∏
j−1
k=1 s(Hk)(j = 2, . . . , n), T1 = 1 and s(Hk) is the score values of Hk(k = 1, 2, . . . , n).

Theorem 3. Let Hi (i = 1, 2, . . . , n) be a collection of MHFNs. Then their aggregated value by using
the GMHFPWA operator is also a MHFN, and

GMHFPWA(H1, H2, . . . , Hn ) =

{(
T1

∑n
j=1 Tj

γλ
1 + T2

∑n
j=1 Tj

γλ
2 + . . . + Tn

∑n
j=1 Tj

γλ
n

)1/λ
∣∣∣∣∣γi ∈ Hi, i = 1, 2, . . . , n

}
(9)

Here Tj = ∏
j−1
k=1 s(Hk)(j = 2, . . . , n), T1 = 1 and s(Hk) is the score values of Hk(k = 1, 2, . . . , n).

Example 4. Let H1 = {0.5, 0.5, 0.7}, H2 = {0.4, 0.5}, H3 = {0.8, 0.9} and H4 = {0.3, 0.4, 0.5} be four
MHFNs and λ = 1. Based on Definition 3, then s(H1) = 0.567, s(H2) = 0.45 and s(H3) = 0.85 can be
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obtained. If the prioritization during four MHFNs is H1 � H2 � H3 � H4, then according to Definition 7 and
Theorem 3,

T41 = 1, T2 = s(H1) = 0.567, T3 = s(H1)× s(H2) = 0.2552, T4 = 0.2169,
4

∑
j=1

Tj = 2.0391.

So

GMHFPWA(H1, H2, H3, H4 ) =
{(

1
2.0391 γ1 +

0.567
2.0391 γ2 +

0.2552
2.0391 γ3 +

0.2169
2.0391 γ4

)∣∣∣γi ∈ Hi, i = 1, 2, 3, 4
}

= {0.4885 , 0.4991, 0.5097, 0.5010, 0.5116, 0.5223, 0.5163, 0.5269, 0.5375, 0.5288, 0.5394, 0.5501, 0.4885, 0.4991,
0.5097, 0.5010, 0.5116, 0.5223, 0.5163, 0.5269, 0.5375, 0.5288, 0.5394, 0.5501, 0.5865, 0.5972, 0.6078, 0.5991,
0.6097, 0.6203, 0.6144, 0.6250, 0.6356, 0.6269, 0.6375, 0.6481}.

Similarly, it can be easily proved that the GMHFPWA operator is monotonicity, commutativity and
bounded, which are presented in the following.

Proposition 4. Let Hi (i = 1, 2, . . . , n) be a collection of MHFNs, then the following properties can be true.

(1) (Monotonicity) Let H′i (i = 1, 2, . . . , n) be a collection of MHFNs. If for all i, Hi ≤ H′i , then

GMHFPWA(H1, H2, . . . , Hn ) ≤ GMHFPWA
(

H′1, H′2, . . . , H′n
)

(2) (Commutativity) If H∗1 , . . . , H∗n is a permutation of H1, . . . , Hn, then

GMHFPWA(H∗1 , H∗2 , . . . , H∗n ) = GMHFPWA(H1, H2, . . . , Hn)

(3) (Boundedness) If H− =
{

γ−1 , γ−2 , . . . , γ−n
}

and H+ =
{

γ+
1 , γ+

2 , . . . , γ+
n
}

, where γ−i = min
γi∈Hi

γi and

γ+
i = max

γi∈Hi
γi, then

H− ≤ GMHFPWA(H1, H2, . . . , Hn ) ≤ H+

According to the fuzzy measure (more details can be founded in [38]), the Choquet integral aggregation
operator can be obtained.

Definition 8. Let Hi (i = 1, 2, . . . , n) be a collection of MHFNs. Then the generalized multi-hesitant
fuzzy Choquet integral weighted average (GMHFCIWA) operator of dimension n is a mapping
GMHFCIWA : MHFNn → MHFN , and

GMHFCIWA(H1, H2, . . . , Hn )

= Cn
((

µ
(

Aσ(k)

)
− µ

(
Aσ(k+1)

))
, Hσ(k), k = 1, 2, . . . , n

)
=
(

µ
(

Aσ(1)

)
− µ

(
Aσ(2)

))
⊗ Hσ(1) ⊕

(
1−

(
µ
(

Aσ(1)

)
− µ

(
Aσ(2)

)))
⊗Cn−1

{((
µ
(

Aσ(i)

)
− µ

(
Aσ(i+1)

))
/

n
∑

k=2

(
µ
(

Aσ(k)

)
− µ

(
Aσ(k+1)

))
, Hσ(i), i = 2, 3, . . . , n

)}
.

(10)

Here µ is a fuzzy measure on X, (σ(1), σ(2), . . . , σ(n)) is a permutation of (1, 2, . . . , n), and such that
Hσ(1) ≤ Hσ(2) ≤ . . . ≤ Hσ(n). Aσ(i) =

{
xσ(k)

∣∣∣k ≥ i
}

, and xσ(i) is the criterion corresponding to Hσ(i).

Theorem 4. Let Hi(i = 1, 2, . . . , n) be a collection of MHFNs, then their aggregated value by using
the GMHFCIWA operator is also a MHFN, and

GMHFCIWA(H1, H2, . . . , Hn )

=

{((
µ
(

Aσ(1)

)
− µ

(
Aσ(2)

))
γλ

σ(1) +
(

µ
(

Aσ(2)

)
− µ

(
Aσ(3)

))
γλ

σ(2) + . . . +
(

µ
(

Aσ(n)

)
− µ

(
Aσ(n+1)

))
γλ

σ(n)

)1/λ∣∣∣γσ(i) ∈ Hσ(i), i = 1, 2, . . . , n
}

.

(11)
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Here (σ(1), σ(2), . . . , σ(n)) is a permutation of (1, 2, . . . , n), and such that Hσ(1) ≤ Hσ(2) ≤ . . . ≤
Hσ(n) . Aσ(i) =

{
xσ(k)

∣∣∣k ≥ i
}

, and xσ(i) is the criterion corresponding to Hσ(i).

Example 5. Suppose a Venture Capital Company is going to evaluate the existed investment projects from
the financial perspective. Three criteria could be considered: c1 : operating capacity; c2: solvency; c3: profitability.
Suppose three criteria are inter-dependent. The decision-makers could give the evaluation values in form of
MHFNs and denoted as follows: H1 = {0.1, 0.1}, H2 = {0.2, 0.4} and H3 = {0.5}.

Suppose that µ(c1) = 0.30, µ(c2) = 0.30, µ(c3) = 0.20, µ(c1, c2) = 0.90, µ(c1, c3) = 0.80,
µ(c2, c3 ) = 0.60 , µ(c1, c2, c3) = 1, then the following results can be obtained.

wσ(1) = µ
(

Aσ(1)

)
− µ

(
Aσ(2)

)
= µ

(
cσ(1), cσ(2), cσ(3)

)
− µ

(
cσ(2), cσ(3)

)
= µ(c1, c2, c3)− µ(c1, c3) = 1− 0.80 = 0.20;

wσ(2) = 0.60;wσ(3) = 0.20.
Then Hσ(1) = H2, Hσ(2) = H1, Hσ(3) = H3.
Thus, the overall evaluation value can be calculated.

GMHFCIWA(H1, H2, H3 )

= C4
(

µ
(

Aσ(k)

)
− µ

(
Aσ(k+1)

)
, Hσ(k), k = 1, 2, 3

)
=
{

wσ(1)γσ(1) + wσ(2)γσ(2) + wσ(3)γσ(3)

∣∣∣γσ(i) ∈ Hσ(i), i = 1, 2, 3
}

= {0.20, 0.20, 0.24, 0.24}.

Similarly, the GMHFCIWA operator is monotonicity, commutativity and bounded, which are presented in
the following.

Proposition 5. Let Hi (i = 1, 2, . . . , n) be a collection of MHFNs, and µ be the fuzzy measure on X,
then the following properties can be true.

(1) (Monotonicity) Let H′i (i = 1, 2, . . . , n) be a collection of MHFNs. If for all i, Hi ≤ H′i , then

GMHFCIWAµ(H1, H2, . . . , Hn ) ≤ GMHFCIWAµ

(
H′1, H′2, . . . , H′n

)
(2) (Commutativity) If H∗1 , . . . , H∗n is a permutation of H1, . . . , Hn, then

GMHFCIWAµ(H∗1 , H∗2 , . . . , H∗n ) = GMHFCIWAµ(H1, H2, . . . , Hn)

(3) (Boundedness) If H− =
{

γ−1 , γ−2 , . . . , γ−n
}

and H+ =
{

γ+
1 , γ+

2 , . . . , γ+
n
}

, where γ−i = min
γi∈Hi

γi and

γ+
i = max

γi∈Hi
γi, then

H− ≤ GMHFCIWAµ(H1, H2, . . . , Hn ) ≤ H+

4. The MCDM Method Based on Aggregation Operators with MHFNs

The MCDM ranking/selection problems with multi-hesitant fuzzy information consists of
a group of alternatives, denoted by A = {a1, a2, . . . , an}. The alternatives are evaluated based on
the criteria denoted by C = {c1, c2, . . . , cm}. aij is the value of the alternative ai for the criterion cj,

and aij =
{

γk
ij, k = 1, 2, . . . , l

(
aij
)}

(i = 1, . . . , n; j = 1, . . . , m) are in the form of MHFNs, which are

given by several decision-makers. Furthermore, l
(
aij
)

represents the number of elements in aij and
the corresponding weight vector w = (w1, w2, . . . , wm). This method is suitable if the number of
decision-makers is small. A situation could arise where decision-makers evaluate these alternatives
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based on the given criteria, and one decision-maker could give several evaluation values. In particular,
in the case where two or more decision-makers give the same value, it is counted repeatedly. aij is
the set of evaluation values for all decision-makers.

The approach is an integration of MHFNs and aggregation operators to solve MCDM problems
mentioned above. It is noted that different operators have different characteristic. The decision-makers
can choose different operators according to their preference. The GMHFOWA operator mainly weights
the ordered positions of the multi-hesitant fuzzy values instead of weighting the multi-hesitant
fuzzy values themselves. The GMHFHWA operator reflects the importance degrees of both
multi-hesitant fuzzy values and their ordered positions. Furthermore, most MCDM methods are
under the assumption that the criteria are at the same priority level, and the prominent of characteristic
of the GMHFPWA is that it considers prioritization among the criteria. The GMHFCIWA operator can
better reflect the correlations among the elements to handle MCDM problems where the criteria
are inter-dependent or interactive. Therefore, four aggregation operators can be used to deal
with different relationships among the aggregated arguments, could handle MCDM problems in
a flexible and objective manner under multi-hesitant fuzzy environment, and can provide more choices
for decision-makers.

The procedure of this approach is shown as follows.
Step 1. Normalize the decision matrix.
For MCDM problems, the most common criteria are of maximizing and minimizing types.

To unify all criteria, it is necessary to normalize the evaluation values. (Note: if all the criteria
are of the maximizing type and have the same measurement unit, then there is no need to
normalize them). Suppose that the matrix R =

(
aij
)

n×m, where aij =
{

γ1
ij, γ2

ij, . . . , γk
ij

}
(
i = 1, 2, . . . , n; j = 1, 2, . . . , m; k = 1, 2, . . . , l

(
aij
))

, are MHFNs, is normalized into the corresponding

matrix R̃ =
(
ãij
)

n×m. Where ãij =
{

γ̃1
ij, γ̃2

ij, . . . , γ̃k
ij

} (
i = 1, 2, . . . , n; j = 1, 2, . . . , m; k = 1, 2, . . . , l

(
aij
))

.

l
(
aij
)

is the number of the elements of aij.
For the maximizing criteria, the normalization formula is

γ̃k
ij = γk

ij, k = 1, 2, . . . , l
(
aij
)

(12)

for the minimizing criteria,
γ̃k

ij = 1− γk
ij, k = 1, 2, . . . , l

(
aij
)

(13)

Seemingly, the normalization values ãij =
{

γ̃1
ij, γ̃2

ij, . . . , γ̃k
ij

}
{i = 1, 2, . . . , n; j = 1, 2, . . . , m} are

also MHFNs.
Step 2. Aggregate the MHFNs of each decision-maker.
Utilize the GMHFOWA, GMHFHWA, GMHPWA or GMHCIWA operator to aggregate

the MHFNs of each decision-maker, and the individual aggregated value yi of the alternative ai
(i = 1, 2, . . . , n) can be obtained.

Step 3. Calculate the score function value s(yi) and the accuracy function value a(yi) of yi
(i = 1, 2, . . . , m) using Definition 3.

Step 4. Rank the alternatives.

5. An Illustrative Example

In this section, an example is adapted from Schmeidler [39] for further illustration of the feasibility
of the proposed approach.

There is an investment company, which wants to invest in a project. There are five possible
alternatives in which to invest: a1 is a car company; a2 is a food company; a3 is a computer company; a4

is an arms company; and a5 is a TV company. The investment company must make a decision according
to the following four criteria: c1 is the environment impact; c2 is the risk; c3 are the growth prospects;
and c4 is the social-political impact. The environmental impact refers to the impact on the company’s
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environment and the processes used in making the product, such as the management methods and
work environment. The risk involves more than one risk factor, including product risk and development
environment risk. The growth prospects include increased profitability and returns. The social-political
impact refers to the government’s and local residents’ support for company. The four criteria are
correlated with each other in the assessment process. The five possible alternatives ai(i = 1, 2, . . . , 5)
are to be evaluated using the multi-hesitant fuzzy information of two decision-makers as presented in
Table 1. The evaluation values aij(i = 1, 2, 3, 4, 5; j = 1, 2, 3, 4) should be in the form of MHFNs which
are provided by two decision-makers based on their knowledge and experience. In the case where
decision-makers give the same value, then it is counted repeatedly, and aij is the set of evaluation values
for two decision-makers.

Table 1. Multi-hesitant fuzzy decision matrix.

c1 c2 c3 c4

a1 {0.4, 0.5, 0.7} {0.5, 0.5, 0.8} {0.6, 0.6, 0.9} {0.5, 0.6}
a2 {0.6, 0.7, 0.8} {0.5, 0.6} {0.6, 0.7, 0.7} {0.4, 0.5}
a3 {0.6, 0.8} {0.2, 0.3, 0.5} {0.6, 0.6} {0.5, 0.7}
a4 {0.5, 0.5, 0.7} {0.4, 0.5} {0.8, 0.9} {0.3, 0.4, 0.5}
a5 {0.6, 0.7} {0.5, 0.7} {0.7, 0.8} {0.3, 0.3, 0.4}

5.1. An Illustration of the Proposed Approach

There are four cases that the proposed approach is used to handle the MCDM problems where
the weight of criteria is known or unknown. The procedures of obtaining the optimal alternative,
by using the developed approach, are shown as follows.

Case 1. If the ordered positions of the multi-hesitant fuzzy values of criteria are considered,
then the GMHFOWA operator is utilized and the associated weight is w = (0.33, 0.18, 0.37, 0.12).
The procedures of the proposed approach can be obtained.

Step 1. Normalize the data in Table 1.
Because all the criteria are of the maximizing type and have the same measurement unit, there is

no need for normalization and R̃ =
(
ãij
)

5×4 =
(
aij
)

5×4.
Steps 2–3. Aggregate the MHFNs of each decision-maker and calculate the score function value

and accuracy function value.
According to Definition 5 and Theorem 1, the following results can be obtained:

s(y1 ) = 0.5810; s(y2) = 0.5782; s(y3) = 0.5240; s(y4) = 0.5247; s(y5) = 0.5485

Since the score function values are different, so there is no need to compute the accuracy
function value.

Step 4. Rank the alternatives.
Based on Step 3, since s(y3) < s(y4) < s(y5) < s(y2) < s(y1), so the final ranking is a3 ≺ a4 ≺

a5 ≺ a2 ≺ a1. The best alternative is a1 while the worst alternative is a3.
Case 2. If both the multi-hesitant fuzzy values of criteria and their ordered positions are

considered, then the GMHFHWA operator is utilized. If the corresponding vector of criteria is
w = (0.33, 0.18, 0.37, 0.12) and the aggregation-associated vector is ω = (0.3, 0.25, 0.2, 0.25), according
Definition 6 and Theorem 2, the following results can be obtained:

s(y1 ) = 0.3207; s(y2) = 0.3583; s(y3) = 0.2940; s(y4) = 0.3098; s(y5) = 0.3750

Since s(y3) < s(y4) < s(y1) < s(y2) < s(y5), so the final ranking is a3 ≺ a4 ≺ a1 ≺ a2 ≺ a5.
The best alternative is a5 while the worst alternative is a3.
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Case 3. If the prioritization among the multi-hesitant fuzzy values of criteria is taken into account,
then the GMHFPWA operator is used and the prioritization relation for criteria is c1 � c2 � c3 � c4.
Based on Definition 7 and Theorem 3,

T11 = 1, T12 = s(a11) = 0.5300, T13 = 0.3180, T14 = 0.2226, ∑4
j=1 Tj = 2.0706;

T21 = 1, T22 = s(a21) = 0.7000, T23 = 0.3850, T24 = 0.2568, ∑4
j=1 Tj = 2.3418;

T31 = 1, T32 = s(a31) = 0.7000, T33 = 0.2310, T34 = 0.1386, ∑4
j=1 Tj = 2.0696;

T41 = 1, T42 = s(a41) = 0.5670, T43 = s(a41)× s(a42) = 0.5670× 0.4500 = 0.2552,
T44 = s(a41)× s(a42)× s(a44) = 0.5670× 0.4500× 0.8500 = 0.2169, ∑4

j=1 Tj = 2.0391;
T51 = 1, T52 = s(a51) = 0.6500, T53 = 0.3900, T54 = 0.2925, ∑4

j=1 Tj = 2.3325.

Therefore, the following results can be obtained:

s(y1 ) = 0.5787; s(y2) = 0.6223; s(y3) = 0.5581; s(y4) = 0.5520; s(y5) = 0.6131

Since s(y4) < s(y3) < s(y1) < s(y5) < s(y2), so the final ranking is a4 ≺ a3 ≺ a1 ≺ a5 ≺ a2.
The best alternative is a2 while the worst alternative is a4.

Case 4. If the correlations among the multi-hesitant fuzzy values of criteria are considered, then
the GMHFCIWA operator can be used. Based on Definition 8 and Theorem 4, suppose µ(c1) = 0.40,
µ(c2) = 0.25, µ(c3) = 0.37, µ(c4) = 0.20, µ(c1, c2) = 0.60, µ(c1, c3) = 0.70, µ(c1, c4) = 0.56,
µ(c2, c3) = 0.68, µ(c2, c4) = 0.43, µ(c3, c4) = 0.54, µ(c1, c2, c3) = 0.88, µ(c1, c2, c4) = 0.75,
µ(c2, c3, c4) = 0.73, µ(c1, c3, c4) = 0.84, and µ(c1, c2, c3, c4) = 1, then the following results can
be obtained.

s(y1 ) = 0.6200; s(y2) = 0.6320; s(y3) = 0.6050; s(y4) = 0.6305; s(y5) = 0.6400

Since s(y3) < s(y1) < s(y4) < s(y2) < s(y5), so the final ranking is a3 ≺ a1 ≺ a4 ≺ a2 ≺ a5.
The best alternative is a5 while the worst alternative is a3.

5.2. Sensitivity Analysis

In Step 2, four aggregation operators can be used, and the sensitivity analysis will be conducted
in these cases. Since the aggregation parameter λ is a balance factor, which can be determined by
decision-makers based on their preference. To investigate the influence of different λ on the ranking
of alternatives, various λ are utilized. If the GMHFOWA operator, the GMHFHWA operator,
the GMHPWA operator and the GMHCIWA operator are used respectively, then the ranking results
are shown in Tables 2 and 3.

Table 2. Rankings obtained using the GMHFOWA operator and the GMHFHWA operator.

λ
Rankings

GMHFOWA GMHFHWA

λ = 1 a3 ≺ a4 ≺ a5 ≺ a2 ≺ a1 a3 ≺ a4 ≺ a1 ≺ a2 ≺ a5
λ = 2 a3 ≺ a4 ≺ a5 ≺ a2 ≺ a1 a3 ≺ a4 ≺ a1 ≺ a2 ≺ a5
λ = 5 a3 ≺ a4 ≺ a5 ≺ a2 ≺ a1 a3 ≺ a4 ≺ a1 ≺ a2 ≺ a5
λ = 10 a3 ≺ a4 ≺ a5 ≺ a2 ≺ a1 a3 ≺ a4 ≺ a1 ≺ a2 ≺ a5
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Table 3. Rankings obtained using the GMHFPWA and the GMHFCIWA operators.

λ
Rankings

GMHFPWA GMHFCIWA

λ = 1 a4 ≺ a3 ≺ a1 ≺ a5 ≺ a2 a3 ≺ a1 ≺ a4 ≺ a2 ≺ a5
λ = 2 a4 ≺ a3 ≺ a1 ≺ a5 ≺ a2 a3 ≺ a1 ≺ a4 ≺ a2 ≺ a5
λ = 5 a4 ≺ a3 ≺ a1 ≺ a5 ≺ a2 a3 ≺ a1 ≺ a4 ≺ a2 ≺ a5
λ = 10 a4 ≺ a3 ≺ a1 ≺ a5 ≺ a2 a3 ≺ a1 ≺ a4 ≺ a2 ≺ a5

From Tables 2 and 3, it can be seen that if the GMHFCIWA operator and the GMHFHWA operator
are used respectively in Step 2, then the final ranking is a3 ≺ a1 ≺ a4 ≺ a2 ≺ a5 or a3 ≺ a4 ≺
a1 ≺ a2 ≺ a5. The best alternative is always a5 while the worst alternative is a3. If the GMHFOWA
operator, the GMHFPWA operator are used respectively in Step 2, then the final ranking is a3 ≺ a4 ≺
a5 ≺ a2 ≺ a1 and a4 ≺ a3 ≺ a1 ≺ a5 ≺ a2. The best alternative is a1 or a2 while the worst
alternative is a3 or a4. However, for each operator, the rankings obtained are consistent as λ changes.
Moreover, for different operator, the aggregation parameter λ also lead to different aggregation results,
but the final rankings of alternatives are the same as the parameter changes. Moreover, different
aggregation operators can be chosen according to the practical necessity of MCDM problems, which can
represent the decision-makers’ preference.

5.3. A Comparison Analysis and Discussion

In this section, to validate the feasibility of the proposed multi-hesitant fuzzy MCDM approach
based on convex operators, a comparative study was conducted with other methods as shown in
Xu [9,10], Zhang et al. [13], Yu [16], Zhang and Wei [31], Zhang and Xu [32], and Peng et al. [35].
Moreover, the method in Wei [11] considering the prioritization among criteria is also compared.

The method presented in Peng et al. [35] can deal with multi-hesitant fuzzy information directly.
However, in other compared methods, they all do not clarify that how to solve a situation where there
is a repeated value in the evaluation of alternatives. The comparison analysis was based on the same
illustrative example, but the same value will be counted only once in Table 1. Suppose the weight vector
of criteria is w = (0.33, 0.18, 0.37, 0.12), then the compared results can be obtained as shown in Table 4.

Table 4. Comparison of different methods.

Methods Ranking of Alternatives

Xu [9,10] a3 ≺ a2 ≺ a1 ≺ a5 ≺ a4
Wei [11] a3 ≺ a1 ≺ a4 ≺ a5 ≺ a2

Zhang [13] a3 ≺ a4 ≺ a1 ≺ a2 ≺ a5
Yu [16] a3 ≺ a2 ≺ a5 ≺ a4 ≺ a1

Zhang and Wei [31] a3 ≺ a4 ≺ a2 ≺ a1 ≺ a5
Zhang and Xu [32] a4 ≺ a3 ≺ a2 ≺ a1 ≺ a5

Peng et al. [35] a4 ≺ a3 ≺ a2 ≺ a1 ≺ a5

Proposed
methods:

GMHFOWA a3 ≺ a4 ≺ a5 ≺ a2 ≺ a1
GMHFHWA a3 ≺ a4 ≺ a1 ≺ a2 ≺ a5
GMHFPWA a4 ≺ a3 ≺ a1 ≺ a5 ≺ a2

According to the results presented in Table 4, the following conclusions can be categorically
drawn. Firstly, the repetitive values in HFSs are not taken into consideration in the existing methods.
Secondly, compared with the methods relying on aggregation operators, the result of using the
GMHFHWA operator is the same as that using the method of Zhang [13], and the best alternative
is always a5 while the worst alternative is always a3; the result of using the GMHFOWA operator is
the same as that using the method of Yu [16] and the best alternative is a1 while the worst alternative
is a3; However, the results of the proposed approach are different from that using the method of
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Xu [9,10]. Furthermore, the method of Wei [11] and the proposed GMHFPWA operator are all
considered the prioritization among criteria. However, there exist a litter difference between the result
of using GMHFPWA operator and the result of using the method of Wei [11], the final ranking is
a4 ≺ a3 ≺ a1 ≺ a5 ≺ a2 or a3 ≺ a1 ≺ a4 ≺ a5 ≺ a2. The best alternative is always a2 while
the worst alternative is a4 or a3. Apparently, different operations and aggregation operators being
involved in those methods can interpret the differences existing in the final rankings to some extent.
Thirdly, compared with the methods relying on distance measures, the result of using the GMHFWA
operator or the GMHFHWA operator is the same as that using the method of Zhang and Wei [31]
and the best alternative is always a5 while the worst alternative is always a3. However, it is different
from that using of Zhang and Xu [32] that the best alternative is a5 while the worst alternative
is a4. Furthermore, the methods using distance measures have certain shortcomings because the
condition should be satisfied that all HFNs must be arranged in ascending order and be of equal
length. If two HFNs being compared have different lengths, then the value of the shorter one should
be increased subjectively until both are equal. Finally, the result using the method of Peng et al. [35] is
the same as that of the proposed approach. Therefore, the proposed method can effectively overcome
the shortcomings of the compared methods and the computation is very simple.

From the analysis above, it can be seen that the main advantages of the approach developed in
this paper over the other methods are not only due to its ability to effectively deal with the preference
information expressed by MHFNs, but also due to its consideration that the weight of criteria is known
or unknown. This can avoid losing and distorting the preference information provided, which makes
the results better correspond with real life decision-making problems.

6. Conclusions

HFSs are considered useful in handling decision-making problems under uncertain situations where
decision-makers hesitate when choosing between several values before expressing their preferences about
weights and data. MHFSs can deal effectively with the case where some values are repeated more than
once in an HFS. In this paper, the convex combination of MHFNs was discussed and some aggregation
operators based on convex operation, such as GMHFOWA operator, GMHFHWA operator, GMHFPWA
operator and GMHFCIWA operator, were developed as well. Moreover, a novel approach based on convex
operators was developed to deal with MCDM problems where the data are MHFNs. Finally, an illustrative
example was given to verify the proposed approach. The primary characteristic of the proposed approach
is that those aggregation operators can provide more choices for decision-makers according to the actual
decision-making environment. Moreover, MHFSs could overcome the shortcomings in HFSs where if two
or more decision-makers set the same value, it is only counted once. Further research will investigate how
to obtain the optimal values of criteria by a specified model within a multi-hesitant fuzzy environment.
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5. Faizi, S.; Sałabun, W.; Rashid, T.; Wątróbski, J.; Zafar, S. Group decision-making for hesitant fuzzy sets based
on characteristic objects method. Symmetry 2017, 9, 136. [CrossRef]

6. Faizi, S.; Rashid, T.; Saabun, W.; Zafar, S.; Wtróbski, J. Decision making with uncertainty using hesitant fuzzy
sets. Int. J. Fuzzy Syst. 2018, 20, 93–103. [CrossRef]

7. Liao, H.; Wu, D.; Huang, Y.; Ren, P.; Xu, Z.; Verma, M. Green logistic provider selection with a hesitant fuzzy
linguistic thermodynamic method integrating cumulative prospect theory and PROMETHEE. Sustainability 2018,
10, 1291. [CrossRef]

8. Liu, P.; Gao, H. Multi-criteria decision making based on generalized Maclaurin symmetric means with
multi-hesitant fuzzy linguistic information. Symmetry 2018, 10, 81. [CrossRef]

9. Xia, M.M.; Xu, Z.S. Hesitant fuzzy information aggregation in decision making. Int. J. Approx. Reason. 2011,
52, 395–407. [CrossRef]

10. Zhu, B.; Xu, Z.S.; Xia, M.M. Hesitant fuzzy geometric Bonferoni means. Inf. Sci. 2012, 205, 72–85. [CrossRef]
11. Wei, G.W. Hesitant fuzzy prioritized operators and their application to multiple attribute decision making.

Knowl. Based Syst. 2012, 31, 176–182. [CrossRef]
12. Xia, M.M.; Xu, Z.S.; Chen, N. Some Hesitant fuzzy aggregation operators with their application in group

decision making. Group Decis. Negot. 2013, 22, 259–279. [CrossRef]
13. Zhang, Z.M.; Wang, C.; Tian, D.Z.; Li, K. Induced generalized hesitant fuzzy operators and their application

to multiple attribute group decision making. Comput. Ind. Eng. 2014, 67, 116–138. [CrossRef]
14. Zhou, W. An Accurate method for determining hesitant fuzzy aggregation operator weights and its

application to project investment. Int. J. Intell. Syst. 2014, 29, 668–686. [CrossRef]
15. Zhang, Z.M. Hesitant fuzzy power aggregation operators and their application to multiple attribute group

decision making. Inf. Sci. 2013, 234, 150–181. [CrossRef]
16. Yu, D.J. Some hesitant fuzzy information aggregation operators based on Einstein operational laws. Int. J.

Intell. Syst. 2014, 29, 320–340. [CrossRef]
17. Chen, N.; Xu, Z.S.; Xia, M.M. Correlation coefficients of hesitant fuzzy sets and their applications to clustering analysis.

Appl. Math. Model. 2013, 37, 2197–2211. [CrossRef]
18. Xu, Z.S.; Xia, M.M. Distance and similarity measures for hesitant fuzzy sets. Inf. Sci. 2011, 181, 2128–2138.

[CrossRef]
19. Xu, Z.S.; Xia, M.M. On distance and correlation measures of hesitant fuzzy information. Int. J. Intell. Syst. 2011,

26, 410–425. [CrossRef]
20. Farhadinia, B. Distance and similarity measures for higher order hesitant fuzzy sets. Knowl. Based Syst. 2014,

55, 43–48. [CrossRef]
21. Wang, L.; Ni, M.F.; Yu, Z.K.; Zhu, L. Power geometric operators of hesitant multiplicative fuzzy numbers and their

application to multiple attribute group decision making. Math. Probl. Eng. 2014, 2014, 186502. [CrossRef]
22. Torres, R.; Salas, R.; Astudillo, H. Time-based hesitant fuzzy information aggregation approach for

decision-making problems. Int. J. Intell. Syst. 2014, 29, 579–595. [CrossRef]
23. Qian, G.; Wang, H.; Feng, X.Q. Generalized hesitant fuzzy sets and their application in decision support system.

Knowl. Based Syst. 2013, 37, 357–365. [CrossRef]
24. Meng, F.Y.; Chen, X.H.; Zhang, Q. Induced generalized hesitant fuzzy Shapley hybrid operators and their

application in multi-attribute decision making. Appl. Soft Comput. 2015, 28, 599–607. [CrossRef]
25. Zhou, W.; Xu, Z.S. Optimal discrete fitting aggregation approach with hesitant fuzzy information.

Knowl. Based Syst. 2015, 78, 22–33. [CrossRef]
26. Tan, C.Q.; Yi, W.T.; Chen, X.H. Hesitant fuzzy Hamacher aggregation operators for multicriteria decision making.

Appl. Soft Comput. 2015, 26, 325–349. [CrossRef]
27. Meng, F.Y.; Chen, X.H. Correlation coefficients of hesitant fuzzy sets and their application based on fuzzy measures.

Cognative Comput. 2015, 7, 445–463. [CrossRef]
28. Liao, H.C.; Xu, Z.S.; Zeng, X.J. Novel correlation coefficients between hesitant fuzzy sets and their application

in decision making. Knowl. Based Syst. 2015, 82, 115–127. [CrossRef]
29. Li, D.Q.; Zeng, W.Y.; Li, J.H. New distance and similarity measures on hesitant fuzzy sets and their

applications in multiple criteria decision making. Eng. Appl. Artif. Intell. 2015, 40, 11–16. [CrossRef]

http://dx.doi.org/10.3390/sym10050177
http://dx.doi.org/10.3390/sym9080136
http://dx.doi.org/10.1007/s40815-017-0313-2
http://dx.doi.org/10.3390/su10041291
http://dx.doi.org/10.3390/sym10040081
http://dx.doi.org/10.1016/j.ijar.2010.09.002
http://dx.doi.org/10.1016/j.ins.2012.01.048
http://dx.doi.org/10.1016/j.knosys.2012.03.011
http://dx.doi.org/10.1007/s10726-011-9261-7
http://dx.doi.org/10.1016/j.cie.2013.10.011
http://dx.doi.org/10.1002/int.21651
http://dx.doi.org/10.1016/j.ins.2013.01.002
http://dx.doi.org/10.1002/int.21636
http://dx.doi.org/10.1016/j.apm.2012.04.031
http://dx.doi.org/10.1016/j.ins.2011.01.028
http://dx.doi.org/10.1002/int.20474
http://dx.doi.org/10.1016/j.knosys.2013.10.008
http://dx.doi.org/10.1155/2014/186502
http://dx.doi.org/10.1002/int.21658
http://dx.doi.org/10.1016/j.knosys.2012.08.019
http://dx.doi.org/10.1016/j.asoc.2014.11.017
http://dx.doi.org/10.1016/j.knosys.2015.01.011
http://dx.doi.org/10.1016/j.asoc.2014.10.007
http://dx.doi.org/10.1007/s12559-014-9313-9
http://dx.doi.org/10.1016/j.knosys.2015.02.020
http://dx.doi.org/10.1016/j.engappai.2014.12.012


Information 2018, 9, 207 15 of 15

30. Hu, J.H.; Zhang, X.L.; Chen, X.H.; Liu, Y.M. Hesitant fuzzy information measures and their applications in
multi-criteria decision making. Int. J. Syst. Sci. 2015, 87, 91–103. [CrossRef]

31. Zhang, N.; Wei, G.W. Extension of VIKOR method for decision making problem based on hesitant fuzzy set.
Appl. Math. Model. 2013, 37, 4938–4947. [CrossRef]

32. Zhang, X.L.; Xu, Z.S. The TODIM analysis approach based on novel measured functions under hesitant
fuzzy environment. Knowl. Based Syst. 2014, 61, 48–58. [CrossRef]

33. Farhadinia, B. A novel method of ranking hesitant fuzzy values for multiple attribute decision-making problems.
Int. J. Intell. Syst. 2013, 28, 752–767. [CrossRef]

34. Farhadinia, B. Information measures for hesitant fuzzy sets and interval-valued hesitant fuzzy sets. Inf. Sci. 2013,
240, 129–144. [CrossRef]

35. Peng, J.J.; Wang, J.Q.; Wang, J.; Yang, L.J.; Chen, X.H. An extension of ELECTRE to multi-criteria
decision-making problems with multi-hesitant fuzzy sets. Inf. Sci. 2015, 307, 113–126. [CrossRef]

36. Chen, N.; Xu, Z.S. Hesitant fuzzy ELECTRE II approach: A new way to handle multi-criteria decision
making problems. Inf. Sci. 2015, 292, 175–197. [CrossRef]

37. Yager, R.R. Prioritized aggregation operators. Int. J. Approx. Reason. 2008, 48, 263–274. [CrossRef]
38. Wang, Z.; Klir, G.J. Fuzzy Measure Theory; Plenum Press: New York, NY, USA, 1992.
39. Schmeidler, D. Subjective probability and expected utility without additivity. Econometrica 1989, 57, 517–587.

[CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/00207721.2015.1036476
http://dx.doi.org/10.1016/j.apm.2012.10.002
http://dx.doi.org/10.1016/j.knosys.2014.02.006
http://dx.doi.org/10.1002/int.21600
http://dx.doi.org/10.1016/j.ins.2013.03.034
http://dx.doi.org/10.1016/j.ins.2015.02.030
http://dx.doi.org/10.1016/j.ins.2014.08.054
http://dx.doi.org/10.1016/j.ijar.2007.08.009
http://dx.doi.org/10.2307/1911053
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Hesitant Fuzzy Sets and Multi-Hesitant Fuzzy Sets 
	The Convex Combination Operation and Some Aggregation Operators of MHFNs 
	The MCDM Method Based on Aggregation Operators with MHFNs 
	An Illustrative Example 
	An Illustration of the Proposed Approach 
	Sensitivity Analysis 
	A Comparison Analysis and Discussion 

	Conclusions 
	References

