
Article

Forecasting Electricity Consumption Using an
Improved Grey Prediction Model

Kai Li 1 ID , Tao Zhang 1,2,*
1 School of Information Management and Engineering, Shanghai University of Finance and Economics,

777 Guoding Road, Yangpu District, Shanghai 200433, China; likai@163.sufe.edu.cn
2 Shanghai Key Laboratory of Financial Information Technology, Shanghai University of Finance and

Economics, 777 Guoding Road, Yangpu District, Shanghai 200433, China
* Correspondence: taozhang@mail.shufe.edu.cn; Tel.: +86-21-6590-1436

Received: 30 July 2018; Accepted: 10 August 2018; Published: 12 August 2018

Abstract: Prediction of electricity consumption plays critical roles in the economy. Accurate
electricity consumption forecasting is essential for policy makers to formulate electricity supply
policies. However, limited data and variables generally cannot provide sufficient information to
gain satisfactory prediction accuracy. To address this problem, we propose a novel improved
grey forecasting model, which combines data transformation for the original data sequence and
combination interpolation optimization of the background value of the GM(1,1) model, and
is therefore named DCOGM(1,1). To evaluate the simulation and prediction performance of
DCOGM(1,1), two case studies are carried out. In addition, the results show that DCOGM(1,1)
outperforms most existing improved grey models in terms of forecasting accuracy. Finally,
DCOGM(1,1) is employed to predict the total electricity consumption of Shanghai City in China
from 2017 to 2021. In addition, the results suggest that DCOGM(1,1) performs well compared with
the traditional GM(1,1) model and other grey modification models in this context and Shanghai’s
electricity consumption will increase stably in the following five years. In summary, DCOGM(1,1)
proposed in our study has competent exploration and exploitation ability, and could be utilized as an
effective and promising tool for short-term planning for other forecasting issues with limited source
data as well.

Keywords: grey forecasting model; electricity consumption; GM(1,1) model; background value;
data transformation; DCOGM(1,1)

1. Introduction

1.1. Background and Motivation

Rapid development of the economy has led to fast-growing electric power demand all over the
world. Meanwhile, electricity is also regarded as one of the most significant driving forces of economic
development and is deemed essential in our daily life [1–3]. Therefore, prediction of electricity
consumption has become urgent and important for a country or region [4–6]. Establishment of an
accurate and reliable forecasting model for electricity consumption, which could provide valuable
information for electricity system operators to formulate policies and plans of electricity [7], is vital for
the management of power system.

1.2. Literature Review

The forecast accuracy of electricity consumption is affected by many factors, such as economic
development [8], population [9], power facilities [10] and climate factors [11], and thus the data
sequence of electricity consumption often presents to be highly nonlinear, stochastic, time-changeable,

Information 2018, 9, 204; doi:10.3390/info9080204 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0002-5150-8459
http://dx.doi.org/10.3390/info9\num [minimum-integer-digits = 2]{8}\num [minimum-integer-digits = 4]{204}
http://www.mdpi.com/journal/information


Information 2018, 9, 204 2 of 18

and uncertain. The average annual growth rate of electricity consumption is high and unstable [6].
Therefore, long-term forecasts of electricity consumption may be unreliable or impractical. Lee and
Tong [12] found that the data of energy consumption usually do not conform to statistical assumptions.
To improve the prediction accuracy of electricity consumption in actual modelling, it is necessary
to select a forecasting model that works well with a relatively small sample size in the context of
short-term forecasting. Moreover, it has been found that the data closer to the forecasts period exert
more significant efforts on prediction effects [13,14]. Thus, making full use of more recent data is
another way to improve prediction performance.

Due to the indispensable contribution of electricity consumption forecasts to society,
many scholars have proposed kinds of forecast models to settle the forecasting problem of electricity
consumption in the past few decades, and these forecasting methods could be generally divided into
three categories: statistical analysis models, computational intelligence models and grey prediction
models. Statistical analysis models, such as regression analysis (RA) [15], functional state space
model [16], logistic regression [17], spatial-temporal model [18], Markov chain model [19], time series
analysis [9,20] and Kalman filter model [21], have gained popularity in electricity consumption
prediction. However, one of the limitations of the statistical analysis models is that their forecasting
performance is highly dependent on sufficient samples and multiple complicated variables in order
to gain the parameters for the forecasting models [6,22]. Furthermore, statistical analysis models
usually require that the sample data satisfy statistical assumptions [23], such as having a normal
distribution, thus restricting its practical application. Computational intelligence models mainly
include artificial neural network [24,25] and support vector machine regression (SVR) [26,27]. However,
the forecast accuracy of computational intelligence models could significantly rely on the number of the
training sample data [22,28], which is generally no less than 30 and sometimes unavailable in practice.
Given that the source data sequence of electricity consumption is relatively small in size and does
not always conform to certain statistical distribution, statistical analysis models and computational
intelligence models are not appropriate prediction tools for electricity consumption forecasting in
certain circumstance [6,29].

The emerging Grey system theory, which was originally proposed by Deng in 1982 [30], provides
an appropriate alternative solution to short-term electricity consumption forecasting. The Grey
system indicates that a part of information within the system are known, while the other part
of the information is unknown, and each factor of the system is within an uncertain relationship.
In grey system theory, black represents the part of information that are completely unknown, white
represents the part of information that are completely known, and grey represents insufficient or
incomplete information. In actual life, every system could be considered as a grey system because
there are always some uncertainties. Information that can be obtained from a system is always
uncertain and insufficient in general due to noise from both inside and outside of the system of
concern [31]. The main advantage of the grey system is that, in the context of a relatively small
amount of information and an incomplete, insufficient and discrete data source, it is competent
to solve some uncertainty problems. The same as statistical analysis models and computational
intelligence models, grey prediction models also represent a collection of forecasting models. In grey
systems theory, GM(m,n) denotes a grey prediction model, where m is the order of the differential
equation and n is the number of variables. Although a large variety types of grey prediction models
can be studied, the most widely used grey prediction model is a GM(1,1) model because of its
high computational efficiency [32]. So far, the GM(1,1) model has been widely applied to a broad
spectrum of fields, including economics [33,34], environment [35], tourism [36,37], industry [38,39],
education [40], transportation [41] and energy [29,42–45]. Wang et al. [33] presented an improved grey
model, named PRGM(1,1), to forecast tertiary industry in Beijing City in China. Li et al. [35] proposed
an improved GM(1,1) model to predict the aquaculture water quality in Yixing City and Dongying
City in China. Hu et al. [37] applied MCGM(1,1) model to forecast the number of foreign tourists from
eight main countries. Li et al. [38] used the GM(1,1) model to forecast automobile production in Japan.
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Tang and Yin [40] applied a GM(1,1) model to forecast education expenditure and school enrollment.
Xie et al. [43] proposed an optimized GM(1,1) model to predict the energy demand and self-sufficiency
rate in China. Zhao and Guo [44] applied an optimized grey model to forecast the annual power load
forecasting.

Many factors, such as population, economic development, industrial level and structure and
environmental protection policy, affect electricity consumption, but how these factors influence
the electricity consumption is largely unknown [22]. Moreover, the electricity consumption in
developing nations like China is growing rapidly and the size of collected sample data is relatively
small [29]. Therefore, GM(1,1) model is an appropriate prediction method to settle electricity
consumption forecasts issues. However, one influential flaw of GM(1,1) model is the prediction error,
so improvements of the GM(1,1) model are often carried out before practical application. Thus far,
there is a large amount of literature for electricity consumption forecasts with improved GM(1,1)
models. Ding et al. [22] proposes a rolling NOGM(1,1) model, which is an improved GM(1,1) model
combined with a novel optimized initial condition and a rolling mechanism, to predict the total and the
industrial electricity consumption in China from 2015 to 2020. The experimental results illustrate that
the rolling NOGM(1,1) model outperforms the other competing models. Xu et al. [29] proposed the
IRGM(1,1) model, by optimizing the time response function, to forecast the electricity consumption in
China, and the IRGM(1,1) model can significantly promote forecast accuracy according to comparison
of the experimental results. Wang et al. [5] applied a seasonal grey model (SGM(1,1) model), which is
based on the accumulation operators generated by seasonal factors, to forecast the primary industrial
electricity consumption in China from 2010 to 2016, and the prediction accuracy of SGM(1,1) model
outperforms the original GM(1,1) model and some improved grey models. Hamzacebi and Es [46]
proposed an optimized GM(1,1) model to predict the total electric energy demand of Turkey from 2013
to 2025, and the superiority of the optimized GM(1,1) model is significant when compared with other
forecasting models.

1.3. Contributions

Although the GM(1,1) model has been widely applied as mentioned above, the theoretical
system of grey system is immature due to short history, and improvement of prediction precision
of GM(1,1) model is strategically important in practice in a certain situation. Distribution of
the original data sequence is an important factor that affects the prediction accuracy of GM(1,1)
model [47–49]. Furthermore, in the traditional GM(1,1) model, the first data of the data sequence is
not involved in the modelling procedure, which reduces the data utilization efficiency and induces
prediction error [50]. Thus, modifications of the original data sequence provide a target to improve
the prediction performance of GM(1,1) model. Additionally, in a traditional GM(1,1) model, the
grey developed coefficient a and the grey controlled variable b are obtained by using the least
squares method, which depend on the background value. The background value Z(1)(k + 1) is
usually estimated approximately by the mean value of the current and previous period values
of the first-order accumulated generating operator of the original data sequence, defined as:
Z(1)(k + 1) = 1

2 [x
(1)(k + 1) + x(1)(k)]. However, this numerical calculation method for the background

value leads to bias and affects the prediction performance [6,51]. Thus, modifications on the
background calculation are another way to improve the prediction accuracy of GM(1,1) model. Thus, in
this study, we modify simultaneously the original data sequence and the calculation of the background
value of GM(1,1) model and propose the combined improved grey model, namely DCOGM(1,1) model.
In addition, empirical studies illustrate that the DCOGM(1,1) model is superior to other prediction
models in short-term electricity consumption forecasting. The major contributions of this study are
as follows:

1. A novel optimized GM(1,1) model, which is based on data transformation for the original data
sequence and combination interpolation optimization of the background value and is therefore
abbreviated as DCOGM(1,1), is proposed.
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2. The proposed improved grey prediction model aims to achieve effective performance in
electricity consumption forecasts. In our empirical studies, DCOGM(1,1) is successfully
applied to electricity consumption forecasts and obtains favourable forecasting performance
compared with the statistical analysis models, computational intelligence models, and seven
grey modification models. Thus, the DCOGM(1,1) model is verified to be suitable for electricity
consumption forecasting.

3. DCOGM(1,1) model expands the application of a GM(1,1) model and, in the future, DCOGM(1,1)
can be employed in other fields for short-term forecasts, such as GDP forecasting, tourism demand
forecasting and natural gas consumption prediction under the condition of limited source data.

The remainder of this paper is organized as follows: the basic knowledge of the GM(1,1) model
and the methods and steps of the proposed improved grey forecasting model are demonstrated in
Section 2. Section 3 applies the proposed model to forecast electricity consumption, and compares the
results with three other prediction models. The discussions are given in Section 4. The conclusions are
presented in Section 5.

2. Materials and Methods

2.1. GM(1,1) Model

The GM(1,1) model is the first order Grey model with only one variable; the first “1” denotes the
“first order”, and the latter “1” means the “univariate”. The model is suitable in the situation that the
data sequence satisfies or basically satisfies exponential growth and the growth speed is relatively
slow [47]. The GM(1,1) model is featured by high computational efficiency and requirement of only
one parameter fitting the model. Generally, the detailed modelling procedure for GM(1,1) model is
as follows:

Let x(0) = (x(0)(1), x(0)(2), . . . , x(0)(n)) denote a non-negative sequence of original data,
where n is the length of the raw data sequence and n ≥ 4. The new cumulative data sequence
x(1) = (x(1)(1), x(1)(2), . . . , x(1)(n)), which is the accumulated generating operator (AGO) [30] of
x(0), is obtained as x(1)(k) = ∑k

i=1 x(0)(i), k = 1, 2, 3, . . . , n. The data sequence x(1) could weaken the
randomness of x(0).

Then, the first-order grey differential equation of GM(1,1) model is given by [52]:

dx(1)(t)
dt

+ ax(1)(t) = b, (1)

and the equation
x(0)(k) + aZ(1)(k) = b (2)

is called the grey difference equation of GM(1,1) model, and is a discretization of Equation (1).
Z(1)(k) is called the background value of a GM(1,1) model, for which the kth entry is defined

as Z(1)(k + 1) = 1
2 [x

(1)(k + 1) + x(1)(k)], k = 1, 2, 3, . . . , n− 1. t denotes the independent variables,
a represents the grey developed coefficient of GM(1,1) model, and b is the grey controlled variable of
the GM(1,1) model.

If û = [a, b]T , a and b can be estimated by the least square estimation methods as follows:

û = [a, b]T = [BT B]−1BTY, (3)

where Y = [x(0)(2), x(0)(3), . . . , x(0)(n)]T , and the matrix B =

∣∣∣∣∣∣∣∣∣∣∣∣

−Z(1)(2) 1
−Z(1)(3) 1

...
...

−Z(1)(n) 1

∣∣∣∣∣∣∣∣∣∣∣∣
.
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The solution of x(1) at time k can be estimated as:

x̂(1)(k + 1) =
(

x(0)(1)− b
a

)
e−ak +

b
a

. (4)

The predicted data x̂(0)(k + 1) at time k can be recovered by Equation (5):

x̂(0)(k + 1) = (1− ea)

(
x(0)(1)− b

a

)
e−ak (5)

and k = 1, 2, 3, . . . , n.
The predicted value of the primitive data at time k + h can be obtained by Equation (6):

x̂(0)(k + h) = (1− ea)

(
x(0)(1)− b

a

)
e−a(k+h−1). (6)

2.2. Methodology of the Combined Optimized GM(1,1) Model

As previously noted, modification of the original sequence and improvement on calculation of
the background value are two of the methods to improve the prediction performance of GM(1,1)
model. Many improved GM(1,1) models focusing on these two targets have been put forward to
increase the prediction accuracy. Tien [50] has proposed the first-entry GM(1,1) model (FGM(1,1)),
which includes the first-entry’s messages of the original series, and shows that FGM(1,1) could extract
the messages from the data more sufficiently than the existing GM(1,1) model. Chung [6] applied an
improved GM(1,1) model named the NNGM(1,1), which is a neural-network-based GM(1,1) model,
to solve the troublesome problem of the background value estimation by automatically determining
the grey developed coefficient a and the grey controlled variable b. Zhao and Guo [44] proposed the
Rolling-ALO-GM(1,1) model with improved prediction accuracy to forecast the annual electricity
consumption in China. Li et al. [53] proposed an improved grey model (PGM(1,1) model) based on
particle swarm optimization algorithm, and achieved better prediction performance. Hsu [54] brought
up an improved transformed grey model based on a genetic algorithm (ITGM(1,1)), which exhibited
better in-sample and out-of-sample forecasting performance. However, further improvements are still
needed in order to achieve adequate results in certain situations.

In this study, we propose a novel improved grey forecasting model, DCOGM(1,1), which combines
data transformation for the original data sequence and combination interpolation optimization of
the background value. In addition, the detailed procedures are demonstrated as follows and are also
illustrated in Figure 1. During the modelling, we firstly make data transformation for the original data
sequence and then optimize the background value by using combination interpolation optimization.
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Figure 1. The flowchart of DCOGM(1,1).

2.2.1. Data Transformation for the Original Data Sequence

The basic process of data transformation for the original data sequence of GM(1,1) model is
as follows:

Step 1: Take the logarithm

Taking the logarithm for the original data sequence x(0) effectively weakens its
fluctuation tendency:

x(0)1 (k) = ln(x(0)(k)) (7)

and k = 1, 2, . . . , n.

Step 2: Add a constant c in the front of the data sequence x(0)1 .

Since the first data of the original data sequence are not involved in modelling, which reduces the
data resource utilization efficiency and contributes to the prediction error of GM(1,1) model, a constant
c can be put in the front of the data sequence x(0)1 , so that the first data of the original data sequence

can be utilized during modelling [50]. Sequence x(0)1 could be converted to sequence x(0)2 as follows:

x(0)2 = {c, x(0)1 (1), x(0)1 (2) . . . , x(0)1 (n)}, c > 0. (8)

The GM(1,1) model usually fits the original modelling data sequence into an exponential sequence,
which is x(0)(t) = be(−at). The coefficients a and b in the exponential function expressions are the
development factor a and the coordination factor b for the GM(1,1) model. Thus, we can choose
c = x(0)(0) = be(−a·0) = b in this study.

During modelling, the GM(1,1) model is firstly established to get the grey coefficient b, which will
be added to the front of x(0)1 to form a new data sequence x(0)2 .

Step 3: Take exponentials
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Take exponentials for the data sequence x̂(0), and the predicted value is acquired as follows:

x̂(0)3 (k) = exp(x̂(0)(k)). (9)

2.2.2. Combination Interpolation Optimization of the Background Value

The background value Z(1)(k + 1) in the traditional GM(1,1) model is usually estimated
approximately by the trapezoidal formula as follows:

Z(1)(k + 1) =
1
2
[x(1)(k + 1) + x(1)(k)]. (10)

However, the real background value is

Z(1)(k + 1) =
∫ k+1

k
x(1)(t)dt. (11)

Obviously the original GM(1,1) model is biased because Equation (10) estimates the definite
integral Z(1)(k + 1) =

∫ k+1
k x(1)(t)dt based on the trapezoidal formula. The trapezoidal formula is

the Newton–Cotes integral formula, in which the algebraic accuracy is 1. Consequently, the low
algebraic accuracy of the trapezoidal formula results in a relatively large error of the solution of a
background value, and comprises one of the main error sources of the GM(1,1) model. Especially when
the original modelling data sequence changes sharply, the estimation formula of the background value
may produce more significant errors. Thus, it is urgent to improve the background value formula to
acquire a content result. In this study, we optimized the background value by improving the algebraic
accuracy of the Newton–Cotes integral formula to improve the prediction accuracy of the model.

The Simpson 3/8 formula is the Newton–Cotes integral formula where the algebraic accuracy is 3,
and its algebraic accuracy is significantly higher than the trapezoidal formula. Therefore, the definite
integral Z(1)(k + 1) =

∫ k+1
k x(1)(t)dt solved by Simpson 3/8 formula would result in higher precision

than that by the trapezoidal formula theoretically. Although the higher-order interpolation can help to
improve the prediction accuracy of the model to a certain extent, this would lead to the occurrence of
the oscillation–Runge phenomenon and inevitably cause strong distortions of the prediction results,
which greatly reduces the applicability of the model. Therefore, the Simpson 3/8 formula is chosen to
solve the background value in this study as follows [55]:

Z(1)(k + 1) =
∫ k+1

k
x(1)(t)dt

=
1
8
[x(1)(k) + 3x(1)(k +

1
3
) + 3x(1)(k +

2
3
) + x(1)(k + 1)].

(12)

Because neither x(1)(k + 1
3 ) nor x(1)(k + 2

3 ) are included in the original data sequence, numerical
analysis is applied to solve this, and the interpolation polynomial method is the most commonly used
numerical solution. The Lagrange interpolation method and Newton interpolation method are two
common interpolation polynomial methods. Lagrange interpolation polynomials are characterized by
compact equations. However, when a node is added, all of the interpolation basis functions of Lagrange
interpolation polynomials need changing, which means that the whole Lagrange interpolation
polynomial is consequently altered. In addition, it is very inconvenient in practical application.
On the contrary, the addition of a new node simply requires an additional monomial to the original
Newton interpolation polynomials. Thus, the Newton interpolation method is superior to the Lagrange
interpolation method in terms of simple calculation, and the former method is used in this study to
solve x(1)(k + 1

3 ) and x(1)(k + 2
3 ). Since the data sample of the GM(1,1) model is usually relatively

limited, the quadratic Newton interpolation is utilized to solve x(1)(k + 1
3 ) and x(1)(k + 2

3 ).
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Set k, k + 1 and k + 2 as three points for the interpolation nodes, then the polynomial of the
quadratic Newton interpolation is [55]:

Nk(t) =x(1)(k) + x(1)[k, k + 1] · (t− k) + x(1)[k, k + 1, k + 2] · (t− k)(t− (k + 1)), (13)

where

x(1)[k, k + 1] =
x(1)(k + 1)− x(1)(k)

(k + 1)− k
= x(1)(k + 1)− x(1)(k), (14)

and

x(1)[k, k + 1, k + 2] =
x(1)[k, k + 2]− x(1)[k, k + 1]

(k + 2)− (k + 1)
= x(1)[k, k + 2]− x(1)[k, k + 1]

=
1
2
(x(1)(k + 2)− x(1)(k))− (x(1)(k + 1)− x(1)(k))

=
1
2
(x(1)(k)− 2x(1)(k + 1) + x(1)(k + 2)).

(15)

Substitute Equations (14) and (15) in Equation (13); then,

Nk(t) =x(1)(k) + (x(1)(k + 1)− x(1)(k)) · (t− k) +
1
2
· (x(1)(k)− 2x(1)(k + 1) + x(1)(k + 2))

· (t− k)(t− (k + 1)).
(16)

Substitute t = k + 1
3 and t = k + 2

3 in Equation (16), respectively; then,

Nk(k +
1
3
) =

1
9
(5x(1)(k) + 5x(1)(k + 1)− x(1)(k + 2)), (17)

and

Nk(k +
2
3
) =

1
9
(2x(1)(k) + 8x(1)(k + 1)− x(1)(k + 2)). (18)

Substitute Equations (17) and (18) in Equation (12), then

Z(1)(k + 1) =
∫ k+1

k
x(1)(t)dt =

1
8
[x(1)(k) + 3x(1)(k +

1
3
) + 3x(1)(k +

2
3
) + x(1)(k + 1)]

=
1

12
(5x(1)(k) + 8x(1)(k + 1)− x(1)(k + 2)),

(19)

where k = 1, 2, . . . , n− 2.
Obviously, the last three points n− 2, n− 1 and n do not fit Equation (16), so they need to be

solved separately, and the detailed procedures are demonstrated as follows [55]:

Z(1)(n) =
∫ n

n−1
x(1)(t)dt =

1
8
[x(1)(n− 1) + 3x(1)(n− 2

3
) + 3x(1)(n− 1

3
)

+ x(1)(n)].
(20)

Set n− 2, n− 1 and n as interpolation nodes and then the polynomial of the second quadratic
Newton interpolation is:
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Nk(t) = x(1)(n− 2) + x(1)[n− 2, n− 1](t− (n− 2)) +

x(1)[n− 2, n− 1, n](t− (n− 2))(t− (n− 1))

= x(1)(n− 2) + (x(1)(n− 1)− x(1)(n− 2))(t− (n− 2)) +
1
2
(x(1)(n− 2)− 2x(1)(n− 1) + x(1)(n))(t− (n− 2))(t− (n− 1)).

(21)

Substitute t = n− 2
3 and t = n− 1

3 in Equation (21), respectively; then,

Nk(n−
2
3
) =

1
9
(−x(1)(n− 2) + 8x(1)(n− 1) + 2x(1)(n)), (22)

and

Nk(n−
1
3
) =

1
9
(−x(1)(n− 2) + 5x(1)(n− 1) + 5x(1)(n)). (23)

Substitute Equations (22) and (23) in Equation (20); then,

Z(1)(n) =
∫ n

n−1
x(1)(t)dt =

1
8
[x(n−1)(k) + 3x(1)(n− 2

3
) + 3x(1)(n− 1

3
) + x(1)(n)]

=
1

12
(−x(1)(n− 2) + 8x(1)(n− 1) + 5x(1)(n)).

(24)

To sum up, the optimized background value applied in this study by the quadratic Newton
interpolation method is:

Z(1)(n) =
1

12
(−x(1)(n− 2) + 8x(1)(n− 1) + 5x(1)(n)), (25)

and

Z(1)(k + 1) =
1

12
(5x(1)(k) + 8x(1)(k + 1)− x(1)(k + 2)), (26)

where k = 1, 2, . . . , n− 2.

3. Results

To evaluate the newly improved grey forecasting model (DCOGM(1,1)) proposed in this study,
two real cases from previous studies [6,56], which are prediction of short-term electricity consumption
in Asia-Pacific Economic Cooperation (APEC) and prediction of electricity consumption in Turkey,
are carried out to estimate the simulation and prediction performance of DCOGM(1,1). In addition,
DCOGM(1,1) is then compared with the published improved GM(1,1) models in corresponding
studies [6,56–58]. All experimental tests in this article are done via R software (version 3.5.0) in
Windows 64 bit systems by the computer with 2 GB RAM and 4 GHz CPU.

3.1. Evaluation Indices

In order to assess the simulation and prediction performance of the improved GM(1,1) models,
appropriate evaluation indices should be chosen as the most vital thing, which can effectively
demonstrate the differences between the real and predicted values obtained by the competing
prediction models. In this study, two frequently-used statistical evaluation indicators are chosen,
which are mean absolute percentage error (MAPE) and root mean squared error (RMSE). MAPE and
RMSE are defined by Equations (27) and (28), respectively, as follows:
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MAPE =
1
n

n

∑
i=1
| x̂

(0)(i)− x(0)(i)
x(0)(i)

| × 100%, (27)

and

RMSE =

√√√√ 1
T

T

∑
i=1

(x̂(0)(i)− x(0)(i))2, (28)

where x(0)(i) denotes primitive data sequence, and x̂(0)(i) denotes the predicted data sequence.

3.2. Evaluation of the Improved GM(1,1) Model

3.2.1. Case 1: Prediction of Short-Term Electricity Consumption in APEC

An experiment is conducted based on the annual electricity consumption in APEC collected from
2000 to 2007. The same as reported by Li et al. [56], the data from 2000 to 2003 are used to construct
different prediction models, and the data from 2004 to 2007 are used for ex-post testing. Four prediction
models, which are the AGM(1,1) model [56], back propagation neural network (BPN), support vector
machine regression (SVR) and DCOGM(1,1), are constructed separately with the same dataset of
electricity consumption in APEC. The forecasting results are summarized in Table 1.

Table 1. Absolute percentage error (APE) and MAPE determined by the four compared models for the electricity
consumption in APEC.

Coumtry AGM(1,1) BPN SVR DCOGM(1,1)

Australia 1.50 3.02 6.71 1.29
Brunei Darussalam 6.45 4.31 6.22 2.69

Canada 1.86 1.73 2.46 1.33
Chile 2.70 4.75 11.40 2.37
China 4.74 14.08 30.03 4.43

Chinese Taipei 1.10 4.20 9.51 1.15
Hong Kong, China 0.57 1.76 3.56 0.64

Indonesia 9.58 7.41 6.79 8.44
Japan 1.57 2.11 3.80 2.35

Malaysia 0.97 5.12 11.72 1.64
Mexico 2.60 3.60 8.34 3.90

New Zealand 3.38 2.82 6.58 3.56
Papua New Guinea 12.52 8.23 7.93 11.48

Peru 3.98 7.26 13.08 1.46
Philippines 2.37 3.44 8.07 2.53

Russia 1.72 2.72 5.45 1.79
Republic of Korea 1.12 5.39 12.49 1.64

Singapore 0.96 3.83 8.18 0.64
Thailand 0.56 5.71 13.56 1.55

USA 0.96 1.81 3.68 1.55
Vietnam 3.78 13.78 29.74 1.99

MAPE (%) 3.10 5.10 9.97 2.78

From Table 1, we can see that the MAPEs for AGM(1,1), BPN, SVR and DCOGM(1,1) are 3.10%,
5.10%, 9.97% and 2.78%, respectively. Improved GM(1,1) models show decreased prediction error
compared with other models in this case study, and furthermore DCOGM(1,1) reduces the error by
nearly 11% compared with the improved GM(1,1) model, AGM(1,1). Thus, it suggests that DCOGM(1,1)
proposed in our study is superior to AGM(1,1), BPN and SVR, and DCOGM(1,1) is competent for
forecasting problems compared with other predictive models.
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3.2.2. Case 2: Prediction of Electricity Consumption in Turkey

The second experiment was conducted on the historical annual electricity consumption in Turkey.
The example from [6] that predicts electricity consumption in Turkey is adopted in this subsection.
DCOGM(1,1) along with other five models, which are Model of Analysis of the Energy Demand
(MAED) [57], the grey prediction with rolling mechanism (GPRM) [58], BP neural network (BPN),
radial basis function network (RBFN) and NNGM(1,1) [6], are separately constructed with the same
dataset to forecast the total electricity consumption and the industrial electricity consumption from
1994 to 2004 in Turkey in order to achieve a relevant comparison. The results are listed in Tables 2 and 3.

Table 2. APE and MAPE obtained by different methods for total electricity consumption.

Year Actual Value (TWh) MAED GPRM BPN RBFN NNGM(1,1) DCOGM(1,1)

1994 61.40 8.83 5.66 3.16 2.27 5.05 4.35
1995 67.39 10.65 2.17 2.58 3.90 2.67 2.97
1996 74.16 9.54 3.80 4.72 15.71 3.01 0.74
1997 81.88 8.05 0.59 4.01 15.40 0.27 4.55
1998 87.70 9.89 2.76 0.56 4.14 2.94 5.30
1999 91.20 15.12 4.86 2.47 11.43 4.47 3.16
2000 98.30 16.35 1.72 2.54 14.98 2.05 4.36
2001 97.07 27.33 6.68 5.30 1.31 5.50 3.18
2002 102.95 29.76 1.46 1.86 8.40 2.55 3.73
2003 111.77 29.16 6.74 6.30 9.46 5.88 1.97
2004 121.14 28.78 1.33 6.78 16.11 0.87 0.50

MAPE (%) 17.59 3.43 3.66 9.37 3.21 3.17

Table 3. APE and MAPE obtained by different methods for industrial electricity consumption.

Year Actual Value (TWh) MAED GPRM BPN RBFN NNGM(1,1) DCOGM(1,1)

1994 34.14 16.18 10.09 4.46 0.72 9.95 6.83
1995 38.01 17.71 5.41 1.91 10.25 5.70 0.27
1996 40.64 21.31 2.90 2.91 8.20 1.58 1.95
1997 43.49 24.76 2.33 2.04 11.15 1.78 4.15
1998 46.14 29.39 0.77 0.94 2.47 0.72 5.43
1999 46.48 41.26 5.84 5.15 5.87 5.69 1.69
2000 48.84 47.82 0.88 0.70 4.81 1.49 1.96
2001 46.99 65.93 6.27 7.02 3.54 6.65 6.84
2002 50.49 66.81 5.05 4.69 4.74 4.32 4.75
2003 55.10 65.08 8.39 8.23 10.28 6.48 0.34
2004 59.57 64.93 0.08 4.99 7.30 0.01 2.52

MAPE (%) 41.93 4.36 3.91 6.30 4.23 3.30

From Tables 2 and 3, it shows that the MAPEs obtained by MAED, GPRM, BPN, RNFN,
NNGM(1,1) and DCOGM(1,1) are 17.59%, 3.43%, 3.66%, 9.73%, 3.21% and 3.17% respectively for
total electricity consumption, and 41.93%, 4.36%, 3.91%, 6.30%, 4.23% and 3.30% respectively for
industrial electricity consumption. It is obvious that DCOGM(1,1) performs well and outperforms
MAED, GPRM, RBFN, RNFN amd NNGM(1,1). Furthermore, DCOGM(1,1), NNGM(1,1),GPRM,
BPN and RBFN could achieve better forecasting performance than MAED in electricity consumption
forecasting. Thus, it indicates that DCOGM(1,1) has good simulation capabilities compared with other
predictive models in terms of prediction accuracy, and DCOGM(1,1) could be an appropriate tool for
electricity consumption forecasting.

The results of Case 1 and Case 2 demonstrate the superior simulation and prediction performance
of DCOGM(1,1) over the other forecasting models. In summary, it could be suggested that DCOGM(1,1)
we proposed in this study is superior to most existing improved grey forecasting models in terms of
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forecasting performance. Therefore, DCOGM(1,1) is applied to predict the electricity consumption for
Shanghai City in China in the following section.

3.3. Case 3: Forecasts of Electricity Consumption for Shanghai City in China

Shanghai City is the largest city and also the economic and financial center of China. Constructing
the prediction models to forecast the electricity consumption for Shanghai City in China and to analyse
the forecasting results accordingly is essential both economically and practically. In this section,
DCOGM(1,1) is applied to forecast Shanghai’s electricity consumption in China.

3.3.1. Modelling Procedure of Shanghai’s Electricity Consumption Forecasting

The primitive data sequence of Shanghai’s total electricity consumption in China is collected
from the official website of Shanghai City Bureau of Statistics in China (http://www.stats-sh.gov.cn/).
The sample data of annual electricity consumption for Shanghai City in China from 2010 to 2016 is
listed in Table 4 and illustrated in Figure 2. It can be seen from Figure 2 that Shanghai’s total electricity
consumption in China is characteristic of nonlinear growth, and the average increasing speed of
electricity consumption in these seven years is about 2.0% per year, although there might be a slight
short-term fluctuation.

The detailed procedure to forecast Shanghai’s total electricity consumption is as follows: Firstly,
different prediction models, which are DCOGM(1,1), traditional GM(1,1)model, and four published
improved GM(1,1)models, DGM(1,1) [51], FGM(1,1) [50], RGM(1,1) [59], TGM(1,1) [54], and linear
regression (LR) model, are constructed separately with the data of annual total electricity consumption
of Shanghai City from 2010 to 2014, then the prediction performances of those prediction models
are examined and compared with the data from year 2015 and 2016, and, finally, the total electricity
consumption forecasting of Shanghai city from 2017 to 2021 is predicted by the superior model.

Table 4. The electricity consumption for Shanghai City in China from 2010 to 2016 [Unit: 100 million kwh].

Year 2010 2011 2012 2013 2014 2015 2016

Value 1295.87 1339.62 1353.45 1410.61 1369.02 1405.56 1486.02
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Figure 2. The electricity consumption for Shanghai City in China from 2010 to 2016.

3.3.2. Comparison of the Forecasting Performances of the Predictive Models

The actual data and predicted data by the seven models for the year 2015 and 2016 are listed in
Table 5 and Figure 3. In addition, the most commonly used indices, namely MAPE and RMSE, which
are used as the evaluation indices of the forecasting performance for the predictive models, are also
listed in Table 5.

As for MAPEs shown in Table 5, it could be concluded that all seven of the predictive models
present to be highly accurate (MAPE < 10%) in this study according to Lewis’ benchmark of accuracy

http://www.stats-sh.gov.cn/
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evaluation [60]; additionally, DCOGM(1,1) yields the lowest MAPE (1.95%) and bears the highest
prediction accuracy, which verifies again that the new proposed model in this study is superior to the
other six predictive models.

Finally, according to the RMSE values for the total electricity consumption, which are shown in
Table 5, the findings are the same as those for MAPE values above, that is, DCOGM(1,1) has the smallest
RMSE and outperforms the other six models in terms of predicting the electricity consumption.

In conclusion, DCOGM(1,1) proposed in this study performs better than the other five grey
forecasting models and the LR model. The two evaluation indices confirm that the novel improved
grey forecasting model (DCOGM(1,1)) is most suitable for electricity consumption forecasting purposes.
Therefore, this novel model will be utilized for forecasting the electricity consumption for Shanghai
City in China from 2017 to 2021.

Table 5. Forecasting results of the electricity consumption for Shanghai City in China by the compared
models [Unit: 100 million kwh].

Year DCOGM(1,1) GM(1,1) DGM(1,1) FGM(1,1) RGM(1,1) TGM(1,1) LR

2015 1420.43 1404.59 1404.27 1419.47 1404.59 1404.60 1418.90
2016 1443.70 1419.47 1419.02 1442.22 1413.49 1419.48 1440.63

MAPE 1.9529 2.2737 2.3003 1.9686 2.4749 2.2727 2.0018
RMSE 31.72 47.06 47.39 32.50 51.29 47.05 33.45
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Figure 3. Forecasting results of the electricity consumption.

3.3.3. Forecasting the Total Electricity Consumption for Shanghai City in China during 2017–2021

Because of its forecasting accuracy, which is superior to most existing improved GM(1,1) models,
DCOGM(1,1) is further applied to predict the electricity consumption for Shanghai City in China from
2017 to 2021. The predicted values are illustrated in Figure 4. It demonstrates that the total electricity
consumption for Shanghai City in China will exhibit a relatively stable rising trend in the following
five years, and will reach nearly 159.85 billion kwh by the year 2021. In other words, the electricity
consumption for Shanghai City in China will increase by nearly 11.25 billion kwh relative to 2016 year
by the year of 2021. Under the pressure of an electricity shortage worldwide, it is a huge challenge for
Shanghai’s electricity demand strategy, and relevant departments need to make appropriate measures
in advance to cope with the looming shortage of electricity demand.
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Figure 4. The predictive value of Shanghai’s electricity consumption from 2017 to 2021.

4. Discussion

Prediction of electricity consumption for a country (region) not only plays a significant role in the
economy but also is important for policy makers[1]. Accurate prediction results could facilitate effective
implementation of electricity supply policies, help avoid economic losses caused by insufficient
electricity to a certain extent and reduce operating costs and risks of economy [4]. However, the source
database of electricity consumption is often limited with great deviation [29]. Given this, the GM(1,1)
model, which is one of the most frequently used grey prediction models and only requires a limited
number of samples to construct a prediction model with relatively high prediction accuracy, is an
appropriate tool for electricity consumption forecasting.

In this study, we proposed a novel improved GM(1,1) model, DCOGM(1,1), for electricity
consumption prediction. To evaluate the simulation and prediction performance of DCOGM(1,1),
some compared prediction models, such as statistical analysis models (LR model and MAED [57]),
computational intelligence models (BPN, RBFN and SVR), and grey prediction models (AGM(1,1)
model [56], GPRM [58], NNGM(1,1) [6], DGM(1,1) [51], FGM(1,1) [50], RGM(1,1) [59], and TGM(1,1) [54]),
are selected in this article. From Case 1 and Case2, we can see that the grey prediction models
outperform statistical analysis models and computational intelligence models, that is the MAPEs
gained by AGM(1,1) and DCOGM(1,1) are lower than those by BPN and SVR in Case 1 as shown in
Table 1 and the MAPEs gained by MAED, BPN and RBFN are higher than those by GPRM, NNGM(1,1)
and DCOGM(1,1) in Case 2 as indicated in Table 2. In addition, this could be attributed to limited
source data and the distribution of the original data sequence, in the condition of which grey prediction
models have more advantages.

The GM(1,1) model is based on the assumption that the original data sequence obeys the
exponential distribution [47,61]. However, the practical data sequence often exhibits the characteristic
of approximately inhomogeneous exponential growth [48,49]. In addition, the calculation of the
background value of GM(1,1) model leads to bias and affects the prediction performance [6,53,54].
Therefore, in this paper, we optimized the GM(1,1) model by combining data transformation for the
original data sequence and combination interpolation optimization of the background value, namely
DCOGM(1,1). The results of three cases suggest that the prediction performance of DCOGM(1,1)
is not only better than statistical analysis models and computational intelligence models, but also
better than other grey modification models, such as AGM(1,1) model [56], GPRM [58], NNGM(1,1) [6],
DGM(1,1) [51], FGM(1,1) [50], RGM(1,1) [59] and TGM(1,1) [54]. Thus, DCOGM(1,1) is a promising tool
for short-term electricity consumption prediction. In addition, combined optimization is a potential
method to improve the prediction performance of GM(1,1) model, and could be considered in other
circumstances. However, it should be noticed that the performance of long-term forecasting by the
DCOGM(1,1) is less efficient than that of short-term forecasting.

Theoretically, grey modification models could improve the prediction accuracy of the GM(1,1)
model. However, we can see that the prediction performances of DGM(1,1) [51] and RGM(1,1) [59]
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are inferior to that of the traditional GM(1,1)model from Case 3 as shown in Table 5. Thus, it is worth
noting that grey modification models that can improve the prediction accuracy of the model may not
be applied in all situations, since each prediction model has its own scope of application. Thus, caution
should be taken before a prediction model is applied in a different context.

5. Conclusions

Accurate prediction of electricity consumption plays an important role in electricity management
and economy development. In this paper, we firstly analyze the instinctive characteristics of GM(1,1)
model, and find that the distribution of the original data sequence and the background value are
two of the most important factors that affect the forecast accuracy of GM(1,1) model, and then we
propose a novel improved GM(1,1) model (DCOGM(1,1)), which combines data transformation for the
original data sequence and combination interpolation optimization of the background value, to forecast
short-term electricity consumption. Two case studies show that DCOGM(1,1) performs better than
the traditional GM(1,1) model and some improved GM(1,1) models and has better exploration and
exploitation ability. Finally, application of DCOGM(1,1) for total electricity consumption forecasting in
Shanghai City not only indicates an increasing electricity consumption demand in the following five
years in Shanghai City, but it also verifies the adequate predictive performance of DCOGM(1,1).

Based on the empirical results, we suggest that the DCOGM(1,1), which bears higher prediction
precision, could be utilized as an effective and promising forecasting tool in the future. For example,
DCOGM(1,1) can be utilized in other forecasting fields, such as GDP forecasting, tourism demand
forecasting, peak load forecasting, business forecasting, and natural gas consumption prediction, in
the context of which the source data is relatively limited and changes slowly in general.

However, it is worth noting that the prediction accuracy of GM(1,1) model and improved GM(1,1)
model may decrease rapidly when the raw data sequence fluctuates dramatically or grows aggressively,
thus further improvements will also be needed in such circumstances. Moreover, it is known that
the prediction accuracy of the traditional GM(1,1) could be improved by optimization of the initial
condition [22] and rolling mechanism [6]. How DCOGM(1,1) can be combined with the optimization
of the initial condition and rolling mechanism may be an interesting issue for electricity consumption
forecasting. Furthermore, taking advantage of other common techniques to improve the prediction
accuracy of the grey prediction model is also meaningful. In addition, all of these issues could be a
future focus.
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13. Červená, M.; Schneider, M. Short-term forecasting of GDP with a DSGE model augmented by monthly
indicators. Int. J. Forecast. 2014, 30, 498–516. [CrossRef]

14. Huang, Y.F.; Wang, C.N.; Dang, H.S.; Lai, S.T. Evaluating performance of the DGM(2,1) model and its
modified models. Appl. Sci. 2016, 6, 73. [CrossRef]

15. Mohamed, Z.; Bodger, P. Forecasting electricity consumption in New Zealand using economic and
demographic variables. Energy 2005, 30, 1833–1843. [CrossRef]

16. Nagbe, K.; Cugliari, J.; Jacques, J. Short-term electricity demand forecasting using a functional state space
model. Energies 2018, 11, 1120. [CrossRef]

17. Wang, F.; Wang, F.; Yu, Y.; Wang, X.; Ren, H.; Shafie-Khah, M.; Catalao, J.P.S. Residential electricity
consumption level impact factor analysis based on wrapper feature selection and multinomial logistic
regression. Energies 2018, 11, 1180. [CrossRef]

18. Cabral, J.D.A.; Legey, L.F.L.; Cabral, M.V.D.F. Electricity consumption forecasting in Brazil: A spatial
econometrics approach. Energy 2017, 126, 124–131. [CrossRef]

19. Zhao, W.; Wang, J.; Lu, H. Combining forecasts of electricity consumption in China with time-varying
weights updated by a high-order Markov chain model. Omega 2014, 45, 80–91. [CrossRef]

20. Bouzerdoum, M.; Mellit, A.; Pavan, A.M. A hybrid model (SARIMA-SVM) for short-term power forecasting
of a small-scale grid-connected photovoltaic plant. Sol. Energy 2013, 98, 226–235. [CrossRef]

21. Al-Hamadi, H.M.; Soliman, S.A. Short-term electric load forecasting based on Kalman filtering algorithm
with moving window weather and load model. Electr. Power Syst. Res. 2004, 3, 47–49. [CrossRef]

22. Ding, S.; Hipel, K.W.; Dang, Y.G. Forecasting China’s electricity consumption using a new grey prediction
model. Energy 2018, 149, 314–328. [CrossRef]

23. Wu, L.F.; Liu, S.F.; Cui, W.; Liu, D.L.; Yao, T.X. Non-homogenous discrete grey model with fractional-order
accumulation. Neural. Comput. Appl. 2014, 25, 1215–1221. [CrossRef]

24. Kaytez, F.; Taplamacioglu, M.C.; Cam, E.; Hardalac, F. Forecasting electricity consumption: A comparison of
regression analysis, neural networks and least squares support vector machines. Int. J. Electr. Power 2015,
67, 431–438. [CrossRef]

25. Hu, Y.C.; Jiang, P. Forecasting energy demand using neural-network-based grey residual modification
models. J. Oper. Res. Soc. 2017, 68, 556–565. [CrossRef]

26. Cao, G.; Wu, L. Support vector regression with fruit fly optimization algorithm for seasonal electricity
consumption forecasting. Energy 2016, 115, 734–745. [CrossRef]

27. Kavousi-Fard, A.; Samet, H.; Marzbani, F. A new hybrid modified firefly algorithm and support vector
regression model for accurate short term load forecasting. Expert Syst. Appl. 2014, 41, 6047–6056. [CrossRef]

28. Pozna, C.; Precup, R.E.; Tar, J.K. New results in modelling derived from Bayesian filtering. Knowl. Based Syst.
2010, 23, 182–194. [CrossRef]

29. Xu, N.; Dang, Y.G.; Gong, Y.D. Novel grey prediction model with nonlinear optimized time response method
for forecasting of electricity consumption in China. Energy 2017, 118, 473–480. [CrossRef]

http://dx.doi.org/10.1016/j.energy.2018.04.155
http://dx.doi.org/10.1016/j.epsr.2004.10.015
http://dx.doi.org/10.1016/j.energy.2009.07.046
http://dx.doi.org/10.1016/j.enpol.2015.11.028
http://dx.doi.org/10.1109/TPWRS.2011.2181981
http://dx.doi.org/10.3390/en6062927
http://dx.doi.org/10.1016/j.enconman.2010.06.053
http://dx.doi.org/10.1016/j.ijforecast.2014.01.005
http://dx.doi.org/10.3390/app6030073
http://dx.doi.org/10.1016/j.energy.2004.08.012
http://dx.doi.org/10.3390/en11051120
http://dx.doi.org/10.3390/en11051180
http://dx.doi.org/10.1016/j.energy.2017.03.005
http://dx.doi.org/10.1016/j.omega.2014.01.002
http://dx.doi.org/10.1016/j.solener.2013.10.002
http://dx.doi.org/10.1016/S0378-7796(03)00150-0
http://dx.doi.org/10.1016/j.energy.2018.01.169
http://dx.doi.org/10.1007/s00521-014-1605-1
http://dx.doi.org/10.1016/j.ijepes.2014.12.036
http://dx.doi.org/10.1057/s41274-016-0130-2
http://dx.doi.org/10.1016/j.energy.2016.09.065
http://dx.doi.org/10.1016/j.eswa.2014.03.053
http://dx.doi.org/10.1016/j.knosys.2009.11.015
http://dx.doi.org/10.1016/j.energy.2016.10.003


Information 2018, 9, 204 17 of 18

30. Deng, J.L. Control problem of grey systems. Syst. Control Lett. 1982, 1, 288–294.
31. Liu, S.; Lin, Y. Grey Information: Theory and Practical Applications; Springer: London, UK, 2006.
32. Talafuse, T.O.; Pohl, E.A. Small sample reliability growth modeling using a grey systems model. Qual. Eng.

2017, 29, 455–467. [CrossRef]
33. Wang, Q.; Liu, L.; Wang, S.; Wang, J.Z.; Liu, M. Predicting Beijing’s tertiary industry with an improved grey

model. Appl. Soft. Comput. 2017, 57, 482–494. [CrossRef]
34. Hsin, P.H.; Chen, C.I. Application of trembling-hand perfect equilibrium to Nash nonlinear Grey Bernoulli

model: An example of BRIC’s GDP forecasting. Neural. Comput. Appl. 2016, 28, 269–274. [CrossRef]
35. Li, Z.B.; Jiang, Y.; Yue, J.; Zhang, L.; Li, D. An improved gray model for aquaculture water quality prediction.

Intell. Autom. Soft Comput. 2012, 18, 557–567. [CrossRef]
36. Wu, L.; Liu, S.; Yao, L.; Xu, R.; Lei, X. Using fractional order accumulation to reduce errors from inverse

accumulated generating operator of grey model. Soft. Comput. 2015, 19, 483–488. [CrossRef]
37. Hu,Y.C.; Jiang, P.; Chiu,Y.J.; Tsai, J.F. A novel grey prediction model combining markov chain with

functional-link net and its application to foreign tourist forecasting. Information 2017, 8, 126. [CrossRef]
38. Li, G.D.; Masuda, M.; Nagai, M. The prediction for Japan’s domestic and overseas automobile production.

Technol. Forecast. Soc. 2014, 87, 224–231. [CrossRef]
39. Chang, C.J.; Yu, L.; Jin, P. A mega-trend-diffusion grey forecasting model for short-term manufacturing

demand. J. Oper. Res. Soc. 2016, 67, 1439–1445. [CrossRef]
40. Tang, H.W.V.; Yin, M.S. Forecasting performance of grey prediction for education expenditure and school

enrollment. Econ. Educ. Rev. 2012, 31, 452–462. [CrossRef]
41. Chen, Y.Y.; Liu, H.T.; Hsieh, H.L. Time series interval forecast using GM(1,1) and NGBM(1,1) models.

Soft. Comput. 2017, 1–15. [CrossRef]
42. Wu, L.; Gao, X.; Xiao, Y.; Yang, Y.; Chen, X. Using a novel multi-variable grey model to forecast the electricity

consumption of Shandong Province in China. Energy 2018, 157, 327–335. [CrossRef]
43. Xie, N.M.; Yuan, C.Q.; Yang, Y.J. Forecasting China’s energy demand and self-sufficiency rate by grey

forecasting model and Markov model. Int. J. Electr. Power 2015, 66, 1–8. [CrossRef]
44. Zhao, H.; Guo, S. An optimized grey model for annual power load forecasting. Energy 2016, 107, 272–286.

[CrossRef]
45. Liang, J.; Liang, Y. Analysis and modeling for China’s electricity demand forecasting based on a new

mathematical hybrid method. Information 2017, 8, 33. [CrossRef]
46. Hamzacebi, C.; Es, H.A. Forecasting the annual electricity consumption of Turkey using an optimized grey

model. Energy 2014, 70, 165–171. [CrossRef]
47. Zeng, B.; Zhou, M.; Zhang, J. Forecasting the energy consumption of China’s manufacturing using a

homologous grey prediction model. Sustainability 2017, 9, 1975. [CrossRef]
48. Zeng, B.; Meng, W.; Tong, M.Y. A self-adaptive intelligence grey predictive model with alterable structure

and its application. Eng. Appl. Artif. Intell. 2016, 50, 236–2448. [CrossRef]
49. Xie, N.M.; Liu, S.F.; Yang, Y.J.; Yuan, C.Q. On novel grey forecasting model based on non-homogeneous

index sequence. Appl. Math. Model. 2013, 37, 5059–5068. [CrossRef]
50. Tien, T.L. A new grey prediction model FGM(1,1). Math. Comput. Model. 2009, 49, 1416–1426. [CrossRef]
51. Xie, N.M.; Liu, S.F. Discrete grey forecasting model and its optimization. Appl. Math. Model. 2009,

33, 1173–1186. [CrossRef]
52. Deng, J. Introduction to grey system theory. J. Grey Syst. 1989, 1, 1–24.
53. Li, K.; Liu, L.; Zhai, J.; Khoshgoftaar, T.M.; Li, L. The improved grey model based on particle swarm

optimization algorithm for time series prediction. Eng. Appl. Artif. Intel. 2016, 55, 285–291. [CrossRef]
54. Hsu, L.C. Using improved grey forecasting models to forecast the output of opto-electronics industry.

Expert. Syst. Appl. 2011, 38, 13879–13885. [CrossRef]
55. Turner, P.R. Numerical Integration. In Numerical Analysis; Macmillan College Work Out Series; Palgrave:

London, UK, 1994.
56. Li, D.C.; Chang, C.J.; Chen, C.C.; Chen, W.C. Forecasting short-term electricity consumption using the

adaptive grey-based approach—Asian case. Omega 2012, 40, 767–773. [CrossRef]
57. Akay, D.; Atak, M. Grey prediction with rolling mechanism for electricity demand forecasting of Turkey.

Energy 2007, 32, 1670–1675. [CrossRef]

http://dx.doi.org/10.1080/08982112.2017.1318920
http://dx.doi.org/10.1016/j.asoc.2017.04.022
http://dx.doi.org/10.1007/s00521-016-2340-6
http://dx.doi.org/10.1080/10798587.2012.10643265
http://dx.doi.org/10.1007/s00500-014-1268-y
http://dx.doi.org/10.3390/info8040126
http://dx.doi.org/10.1016/j.techfore.2013.12.016
http://dx.doi.org/10.1057/jors.2016.31
http://dx.doi.org/10.1016/j.econedurev.2011.12.007
http://dx.doi.org/10.1007/s00500-017-2876-0
http://dx.doi.org/10.1016/j.energy.2018.05.147
http://dx.doi.org/10.1016/j.ijepes.2014.10.028
http://dx.doi.org/10.1016/j.energy.2016.04.009
http://dx.doi.org/10.3390/info8010033
http://dx.doi.org/10.1016/j.energy.2014.03.105
http://dx.doi.org/10.3390/su9111975
http://dx.doi.org/10.1016/j.engappai.2015.12.011
http://dx.doi.org/10.1016/j.apm.2012.10.037
http://dx.doi.org/10.1016/j.mcm.2008.11.015
http://dx.doi.org/10.1016/j.apm.2008.01.011
http://dx.doi.org/10.1016/j.engappai.2016.07.005
http://dx.doi.org/10.1016/j.eswa.2011.04.192
http://dx.doi.org/10.1016/j.omega.2011.07.007
http://dx.doi.org/10.1016/j.energy.2006.11.014


Information 2018, 9, 204 18 of 18

58. Wang, J.; Jiang, H.; Zhou, Q.; Wu, J.; Qin, S. China’s natural gas production and consumption analysis based
on the multicycle Hubbert model and rolling Grey model. Renew. Sustain. Energy Rev. 2016, 53, 1149–1167.
[CrossRef]

59. Peng, G.Z.; Wang, H.W.; Song, X.; Zhang, H.M. Intelligent management of coal stockpiles using improved
grey spontaneous combustion forecasting models. Energy 2017, 132, 269–279. [CrossRef]

60. Lewis, C. Industrial and Business Forecasting Methods; Butterworth Scientific: London, UK, 1982.
61. Wei, B.; Xie, N.; Hu, A. Optimal solution for novel grey polynomial prediction model. Appl. Math. Model.

2018, 62, 717–727. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.rser.2015.09.067
http://dx.doi.org/10.1016/j.energy.2017.05.067
http://dx.doi.org/10.1016/j.apm.2018.06.035
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Motivation
	Literature Review
	Contributions

	Materials and Methods
	GM(1,1) Model
	Methodology of the Combined Optimized GM(1,1) Model
	Data Transformation for the Original Data Sequence
	Combination Interpolation Optimization of the Background Value


	Results
	Evaluation Indices
	Evaluation of the Improved GM(1,1) Model
	Case 1: Prediction of Short-Term Electricity Consumption in APEC
	Case 2: Prediction of Electricity Consumption in Turkey

	Case 3: Forecasts of Electricity Consumption for Shanghai City in China 
	Modelling Procedure of Shanghai's Electricity Consumption Forecasting 
	Comparison of the Forecasting Performances of the Predictive Models 
	Forecasting the Total Electricity Consumption for Shanghai City in China during 2017–2021 


	Discussion
	Conclusions
	References

