
  information

Article

Aspect Term Extraction Based on MFE-CRF

Yanmin Xiang, Hongye He and Jin Zheng *

School of Information Science and Engineering, Central South University, Changsha 410000, China;
xymcsu@foxmail.com (Y.X.); csumm@foxmail.com (H.H.)
* Correspondence: 164612192@csu.edu.cn; Tel.: +86-0731-8887-9628

Received: 4 July 2018; Accepted: 2 August 2018; Published: 3 August 2018
����������
�������

Abstract: This paper is focused on aspect term extraction in aspect-based sentiment analysis (ABSA),
which is one of the hot spots in natural language processing (NLP). This paper proposes MFE-CRF
that introduces Multi-Feature Embedding (MFE) clustering based on the Conditional Random Field
(CRF) model to improve the effect of aspect term extraction in ABSA. First, Multi-Feature Embedding
(MFE) is proposed to improve the text representation and capture more semantic information from
text. Then the authors use kmeans++ algorithm to obtain MFE and word clustering to enrich
the position features of CRF. Finally, the clustering classes of MFE and word embedding are set as
the additional position features to train the model of CRF for aspect term extraction. The experiments
on SemEval datasets validate the effectiveness of this model. The results of different models indicate
that MFE-CRF can greatly improve the Recall rate of CRF model. Additionally, the Precision rate also
is increased obviously when the semantics of text is complex.
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1. Introduction

Sentiment analysis is one of the hot spots of natural language processing (NLP), which aims
to mine opinions, sentiments, and emotions based on observations of people’s actions that can be
captured using their writing [1]. The early sentiment analysis focuses on the coarse-grained emotion
analysis at the document-level and sentence-level, such as the sentiment polarity of documents, or the
subjectivity and opinion mining of sentences. The coarse-grained emotion analysis tries to detect
the overall polarity (negative or positive) of a sentence (or a document) regardless of the target
entities and their aspects [2]. Deepening of the research allows for aspect-based sentiment analysis
(ABSA) development [3]. Its target is to analyze the emotion of text from multiple angles, extract the
emotion entities and assess the emotion polarity of the target entities. ABSA can capture more precise
information in the text [4]. In restaurant reviews, the document-level sentiment analysis only makes
a judgment on the whole document, but ABSA requires identifying the entities that are endowed with
reviews, such as food taste and service quality. Thus, ABSA has a great reference value to create a
recommendation system for e-commerce services and commodities classification [5].

Improving text representation is an important way to improve the effect of NLP tasks. In 2013,
Mikolov put forward the word embedding models CBOW and Skip-Gram [6,7], then the researchers
of text representation turned to word embedding. One-hot encoding is a 1 × N matrix (vector) used
to distinguish each word in a vocabulary. The vector consists of 0s in all cells with the exception
of a single 1 in a cell used uniquely to identify the word [8], which will cause the space of word
vector to become sparse when there are more features. Due to the sparseness of the one-hot encoding
and the neglect of the semantic information, the method of traditional natural language processing
based on Bag of Words hits a bottleneck in NLP tasks. Word embedding compresses words into
a low-dimensional continuous space and overcomes the above disadvantages, which causes the
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related studies concerning word embedding to play important roles in the NLP conferences. However,
word embedding still has some disadvantages, such as the loss of context semantic meaning. Therefore,
the further improvement of word vector has become a research focus. The improvement of ABSA in
this paper is also based on strengthening the text representation.

To get more granular text emotional information, Choi et al. first extracted the opinion source by
Conditional Random Field (CRF) in 2005 [9], which laid the foundation for aspect-based sentiment
analysis (ABSA). ABSA was divided into aspect term extraction and aspect term polarity. Aspect term
extraction is the problem of sequence labeling. However, CRF can count word frequency and extract
contextual information of sentences, which makes CRF superior to ABSA. Jakob et al., in 2010,
proposed a model that used CRF to extract opinion entities from data sets in the single domains
and across domains [10]. Miao et al. used a probability model to reinforce the effect of CRF
on the basis of domain information [11]. The DLIREC system won the best grade of aspect term
extraction in competition, which used word embedding clustering as the position features of CRF.
The ability of CRF to recognize aspect term has been demonstrated [12]. Since internet text is constantly
expanding, ABSA applications in specific tasks are frequent [13,14] and the challenges in ABSA are
also gradually displayed [15], such as the low Recall ratio of recognition in aspect term and difficulty
in conjunction recognition.

The purpose of this paper is to study aspect term extraction of ABSA. The main innovation points
are improved text representation and additional position features of CRF. The main works of this paper
are as follows:

• Put forward Multi-Feature Embedding (MFE) model: this model strengthens the text based on
distributed word embedding to overcome the weakness of insufficient contextual information in
word embedding.

• Put forward MFE-CRF: MFE clustering based on word embedding is used to strengthen the effect
of CRF in aspect term extraction. MFE clustering classes are obtained by Kmeans++ algorithm
and the clustering classes are set as the additional position features to strengthen the effect of CRF.
It proves that MFE clustering can significantly improve the effect of CRF in aspect term extraction
through experiments.

2. Related Work

2.1. Aspect Term Extraction

The aspect-based sentiment analysis (ABSA) project joined the SemEval international semantic
competition in 2014. There are two subtasks that are aspect term extraction (ATE) and term polarity
classification (TPC). ATE is significantly meaningful to aspect-based sentiment analysis, which aims to
identify the aspect terms in the given domain [16].

The influence of SemEval has led to the high attention on ABSA in recent years. Poria et al. used
the rule of dependent syntax to extract the dependency of words in the text to improve the effect of
ABSA [17]. Khan et al. pointed out the effectiveness of the topic model in solving ABSA tasks [18].
Poria et al. also took advantage of the idea of topic model and made topic model clustering as position
features to identify emotional entities [19]. Schouten et al. analyzed in detail the semantic features
that are beneficial to aspect term extraction and proposed an improvement scheme based on external
dictionaries [20]. H. Wen et al. chose the traditional method combined with machine learning to
extract the aspect terms of e-commerce reviews [5]. Wu et al. proposed a hybrid unsupervised method
that combined rules and machine learning to address ATE tasks [21]. Manek et al. proposed a Gini
Index that combined a features selection method with Support Vector Machine (SVM) for sentiment
classification of a large movie review dataset [22]. A Weichselbraun et al. pursued a flexible and
automated strategy by linking input entities to DBpedia to obtain background knowledge of these
entities (aspects) [23].
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Compared with these related works, the current approach differs from them significantly.
First, to solve the problem that word embedding ignores the latent contextual information of text,
the authors improve the distributed representation of text to extract additional latent semantic through
Multi-Feature Embedding (MFE). Second, clustering classes are obtained by kmeans++ algorithm
and then clustering classes are used as additional position features to strengthen the effect of CRF.
MFE-CRF can extract useful information from complex semantics and shows effectiveness in ATE by
the experimental results.

2.2. Aspect Term Extraction Based on BIO

Aspect term extraction is one of the sub-tasks of aspect-based sentiment analysis (ABSA). Its goal
is to identify and extract entities in the text that are endowed with review information.

2.2.1. Sequence Representation of Aspect Term

Sequence labeling algorithms in machine learning are widely used in the sequence prediction,
such as the Hidden Markov Model (HMM) [24] and Conditional Random Field (CRF) [25]. Text should
be transformed into a corresponding set of observation sequences and state sequences in sequence
prediction. The observation sequence is the list of words in the text, and the state sequence is the mark
list including B, I and O [26], where B stands for the beginning word of the aspect term, I stands for
the continuation word of the aspect term and O stands for the non-aspect term.

2.2.2. Sequence Prediction Based on CRF

Due to the good performance of Conditional Random Field (CRF) in sequence prediction,
many models selected CRF as the algorithm to predict labels [9,10,12].

Regarding the observation sequence X and the state sequence Y, the problem of sequence labeling
is to find the optimal conditional probability distribution P(Y|X) [9].

It is assumed that the joint probability distribution of state sequence Y constitutes the undirected
graph model (Markov Random Field), and each node in the state sequence satisfies the conditional
independence. Given the observation sequence (input sequence) X, the conditional probability
distribution model P(Y|X) of state sequence (output sequence) Y is called the conditional random
field (CRF). Therefore, for each node Yi in the output sequence:

P (Yi|X, Yi , · · · , Yi − 1, Yi + 1 , · · · , Yn ) = P ( Yi | X, Yi − 1, Yi + 1 ) , (1)

The undirected graph in CRF is constructed on the joint distribution probability of state sequence
Y. The set of two adjacent points on sequence Y is the maximum clique Ci = { Yi−1 , Yi }.
Given the observation sample sequence x = [ x1, x2, · · · , xn ] and the corresponding output sequence
y = [y1, y2, · · · , yn], the potential function of maximum clique can be expressed as:

ΨCi = exp
(

∑k λktk (yi−1, yi, x, i) + ∑l µl Sl (yi, x, i)
)

, (2)

The conditional probability and normalized factor can be expressed as:

P (Y|X) =
exp

(
∑i,k λktk (yi−1, yi, x, i) + ∑i,l µlsl (yi, x, i)

)
Z

, (3)

Z = ∑y exp( ∑i,k λktk (yi−1, yi, x, i) + ∑i,l µlsl (yi, x, i)), (4)

Using the formula, tk and sl are the transfer and state feature functions respectively. λk and
µl are the corresponding feature coefficients. Concerning the observation sequence x of test data,
the sequence labeling is to find the output sequence Y = y that maximizes the conditional probability
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P (Y|X = x). The key to solve text sequence labeling by CRF is to construct the position features on the
text. Extracting the most effective position features of text is an affirmation for the good effect of CRF.

3. CRF Model Based on MFE Clustering Reinforcement

3.1. MFE

Multi-Feature Embedding (MFE) is an improved model based on word embedding. First,
this model captures the effective semantic features in the original texts and then converts the texts into
feature sequences. Second, the feature sequences are used as the input of the word embedding training
model. Finally, the obtained semantic features are mapped to MFE for reinforcement.

3.1.1. Semantic Capture

• Word-POS: Traditional word embedding models cannot recognize the polysemy of words.
There are two sentences “jack works hard every day” and “his works are amazing”. The meaning
of “works” is different in the two sentences. The former is “work”, but the latter is
“production”. To eliminate ambiguity, MFE combines Part-of-Speech (POS) with word to
get the Word-POS feature. The authors specify a text D = [w1, w2, · · · , wl ] contains l words,
and then P = [p1, p2, · · · , pl ] is obtained by part-of-speech tagging. Finally, combine D
and P to get WP = [(w1, p1), (w2, p2), · · · , (wl , pl)]. “Works”, will be distinguished by verb
and noun in Word-POS. Table 1 shows the comparison between traditional word embedding
model and the Word-POS model regarding similar elements in IMDB (http://ai.stanford.
edu/$\sim$amaas/data/sentiment/) dataset (part of speech tagging is done by NLTK toolkit
(http://www.nltk.org/#), word embedding is trained by Skip-Gram). The “nn” means noun and
“vb” means verb in the Table 1.

Table 1. The comparison between traditional word embedding model and the Word-Part-of-Speech
(POS) model regarding similar elements.

Word/Word-POS The Closest Word of the Vector

works work, worked, done, plays, working, crafted, quite
(works, nn) (work, nn), (films, nn), (works, nn), (art, nn), (kundera, nn), (krzysztof, nn), (masterpiece, nn)
(works, vb) (worked, vb), (work, vb), (work, vb), (succeed, vb), (working, vb), (plays, vb), (done, vb)

It can be clearly observed that in the Word-POS model, the words close to “works” in the verb
form are verbs, such as “play”, “succeed” and “worked”, but “works” is similar to some nouns in
the noun form, such as “films” and “art”. Taking the word vector model, the polysemy of this word
cannot be captured, and it will only regard “works” as a verb to a large extent.

• Stemming: To eliminate semantic redundancy, the stem of each word is extracted in the text.
Then, the word stem sequence of the text is set as the input of the word embedding training
model. Table 2 shows the comparison between traditional word embedding model and the stem
model regarding similar elements.

Table 2. The comparison between traditional word embedding model and the stem model regarding
similar elements.

Word/Stem The Closest Word of the Vector

Run (word) runs, running, ran, mill, afoul, walk, amok
Running (word) run, runs, walking, run, minutes, around, screaming

Run (stem) walk, chase, amok, go, afoul, get, wander

http://ai.stanford.edu/$\sim $amaas/data/sentiment/
http://ai.stanford.edu/$\sim $amaas/data/sentiment/
http://www.nltk.org/#
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It can be seen from the table that the distance between the corresponding vectors of the same
stem is very close. Therefore, there is semantic redundancy in the traditional word vector model.
Stemming can eliminate this phenomenon by normalization and the more compact semantics of words
in the text.

3.1.2. Training of MFE

• Step1. Sequence transformation. Prior to the semantic features being mapped to the features
vector, the text needs to be transformed into a features sequence. Table 3 shows an example
of sequence transformation. The “nn” means noun, “vb” means verb and “jj” means adjective in
the Table 3.

• Step2. Vector mapping. Subsequent to the text being transformed into the features sequence, it can
be used as the input data of the word embedding training model. Through the training process of
word embedding, the semantic features sequence can be mapped to the MFE vector. MFE assumes
that the similar semantic text features have the similar structures of context. The window slides
on the features sequence can map texts that have similar semantic features to vectors with similar
distance. The overall structure of the training model is shown in Figure 1.

Table 3. Example of Sequence Transformation.

Sequence

Original Sequence Natural language processing is a field concerned with the interactions
between computers and human languages.

Pretreatment natural language processing field concerned interactions computers
human languages

Word-POS (natural, jj) (language, nn) (processing, nn) (field, nn) (concerned, vb)
(interactions, nn) (computers, nn) (human, jj) (languages, nn)

Stemming natur languag process field concern interact comput human languag
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Figure 1. The training of Multi-Feature Embedding (MFE) (Skip-Gram).

3.2. Features of MFE-CRF

The position features of text have a direct influence on the performance of Conditional Random
Field (CRF), this section shows the position features used for the aspect term extraction task.
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3.2.1. General Features

Considering the aspect term extraction as a BIO sequence labeling problem, the extraction of
position features is turned to obtain the features of a word in the text sequence. The following basic
position features are extracted as the baseline features:

• Lower-case word: Information of uppercase and lowercase needs to be considered separately;
make lowercase as the general feature .

• Suffix of word: The suffix of a word can determine whether the word is aspect term. The last two
and three words are extracted as the general features.

• Capital: Proper nouns and special words usually begin with uppercase words; they are more
likely to be aspect terms.

• Part-of-speech: Aspect terms are usually nouns and other words with specific parts of speech,
therefore, part-of-speech is one of the most important general features.

• Stemming: To get more compact sentences.
• Dependent syntactic:

1. amod: Whether the word is modified by other words;
2. nsubj: Whether the word is used as the subject for other words;
3. dobj: Whether the word is used as a direct object for other words.

3.2.2. Cluster Features

Word vector is trained by CBOW and Skip-Gram [6,7], Multi-Feature Embedding (MFE) is
obtained by the method mentioned in Section 3.1.2. Then, all the words in the corpus are mapped
to the fixed length vector. Through clustering, all the words in the corpus can be grouped into the
clustering class; words in each cluster will have similar semantics due to the close distances of vectors.

This paper selects Kmeans [27] and Kmeans++ [28] as the cluster algorithms. Kmeans++ is an
algorithm for choosing the initial center points to avoid the poor clustering found by standard Kmeans
algorithms. Using the initialization of Kmeans++, the algorithm is guaranteed to find the optimal
result. Since there are two kinds of word vectors, the authors’ process of clustering contains two parts:
word clustering and MFE clustering.

1. Word Clustering

There are two kinds of word vectors that are trained by CBOW and Skip-Gram respectively,
then they are input into Kmeans++ to find the clustering classes respectively. Finally, two kinds of
word clustering models can be obtained. The general process of word clustering is as follows:

• Step1. Determine the value of k and choose one center uniformly at random among the sample
set (all word vectors).

• Step2. Taking each word vector wi, calculate the distance between the vector and the nearest
center that has already been chosen by Formula (5). Specify two word vectors of length
m w1 = [w1,1, w1,2, · · · , w1,m] and w2 = [w2,1, w2,2, · · · , w2,m]. The distance between vectors
can be calculated by Euclidean Distance:

d =
√
(w1,1 − w2,1)

2 + (w1,2 − w2,2)
2 + · · · + (w1,m − w2,m)

2, (5)

• Step3. Choose one new center. Calculate the selected probability p(wi) of each word vector wi
using Formula (6), then select the new center by roulette wheel selection:

p(wi) =
d2(wi)

∑wi∈W d2(wi)
, (6)
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• Step4. Repeat Step2 and Step3 until k centers have been chosen.
• Step5. Regarding all the word vectors, calculate the distance between the vector and k centers

using Formula (5). Mark the clustering class of the center that is the closest to each point as the
clustering class for this point.

• Step6. Update the centers of the k classes, specify that the word vectors set belonging to the ith

clustering class as Di. The new centroid Ci of this class is calculated by the mean value of vectors
in Di:

Ci =
∑wεDi

w
|Di|

, (7)

Through the iteration of Step4 and Step5, the clustering of word vectors is completed until the
centers of mass no longer change obviously or reach the number of iterations.

Following the completion of word clustering, the clustering classes can be extracted as the position
features. To increase the richness of clustering features, this paper uses CBOW and Skip-Gram to train
two sets of word vectors. Finally, two word clustering models can be extracted.

Concerning the input sequence, the corresponding word vector of each word is found. The closest
word clustering class of the word vector is marked as the word clustering class of this word. Since there
are two word clustering models, each word in the input sequence extracts two word clustering classes
as the position features of CRF.

2. MFE Clustering

According to the description in Section 3.1, text can be transformed into additional semantic
sequences. The stem sequence and Word-POS sequence have the same structure as the original word
sequence, which means each word of a sentence can be presented by MFE and has a unique feature in
the additional semantic sequence.

MFE contains Word-POS embedding and stem embedding. There are four kinds of feature
embedding where two kinds of feature embedding are from Word-POS embedding and the others are
from stem embedding. Then, they are input into Kmeans++ to get the clustering classes respectively.
Finally, four kinds of word clustering models are obtained. The process of MFE clustering based on
word clustering is as follows:

• Step1. According to the steps described in Section 3.1.2, train Word-POS embedding and stem
embedding in corpus.

• Step2. Cluster the Word-POS embedding and stem embedding by the method used in
Word Clustering.

Following the completion of MFE clustering, the clustering classes can be extracted as the position
features. To increase the richness of clustering features, this paper uses CBOW and Skip-Gram to train
four sets of MFE. Finally, four MFE clustering models can be extracted.

Concerning the input sequence, the corresponding MFE of each word is found. The closest MFE
clustering class of the MFE is marked as the MFE clustering class of this word. Since there are four
MFE clustering models, each word in the input sequence extracts four MFE clustering classes as the
position features of CRF.

Finally, MFE-CRF extracted six clustering position features where two clustering position features
are from the word clustering and the others were from the MFE clustering. Thus, each word of the
input sequences can extract six clustering classes as the position features of CRF.

3.3. Process of MFE-CRF

Regarding the observation sequence and state sequence, take a phone comment about phones
such as “I think the screen is good but its battery is weak to use”. Specify the “screen” and “battery” as
the aspect term, then the state sequence is {‘O’, ‘O’,’O’, ‘B’, ‘O’, ‘O’, ‘O’, ‘O’, ‘B’, ‘O’, ‘O’, ‘O’, ‘O’} and
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the observation sequence is {‘I’, ‘think’, ’the’, ‘screen’, ‘is’, ‘good’, ‘but’, ‘its’, ‘battery’, ‘is’, ‘weak’, ‘to’,
‘use’}. The specific process is as follows:

• Step1. Extract the general features. According to the general features shown in Section 3.2.1,
it needs to extract the features from each position of the observation sequences. Take the
word “screen” for example, the general features dictionary for the word “screen” is
d1

(
′screen′

)
={lower:‘screen’, lower[–2]:‘en’, lower[–3]:‘een’, isTitle: false, POS:‘NN’, stem:

‘screen’, amod: true, nsubj: true, dobj: false}.
• Step2. Extract the clustering features. According to the word and MFE clustering methods given

in Section 3.2.2, six clustering models are constructed by Skip-Gram and CBOW. Get the clustering
classes of each word wi in the observation sequence and set it as Ck(wi), the clustering features

dictionary of wi is d2(wi) =

{
C1 : C1(wi), C2 : C2(wi), C3 : C3(wi),
C4 : C4(wi), C5 : C5(wi), C6 : C6(wi)

}
.

• Step3. Construction of CRF model. Figure 2 shows the overall process of the MFE-CRF model.
CRF model is trained by position features of the observation and state sequence. Once the model
converges, the position features of the test text are taken as the input and then the BIO sequence
of the test text can be predicted.
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Using the MFE-CRF, the clustering procedure constructs all semantic classes of MFE and word
vectors. The word vectors within the same clustering class have similar semantics, so the clustering
classes of the observation sequence are the effective position features of CRF. Additionally, there are
different results for the clustering class through training vector using different training algorithms
(such as Skip-Gram and CBOW), thus, the clustering classes are richness. The MFE-CRF proposed in
this paper uses six clustering models to extract the clustering features of each word, which is to obtain
a semantic class of words from multiple aspects so as to enrich the position features of CRF and get a
better effect of training.
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4. Experiments

This experiment used the open datasets and evaluation criteria of SemEval, which showed the
different results between MFE-CRF and the models that used the general features. Concurrently,
the selection of the best value of clustering was analyzed through experiments. (The code and data are
publicly available at https://github.com/xymcsu/MFE-CRF)

4.1. Experiment Description

The research task is to label the positions of the aspect terms in the text and requires submission
of a set of start and end positions of the aspect terms in the unlabeled test sets for evaluation.

The datasets used in the experiments are as follows:

• SemEval2014 (http://alt.qcri.org/semeval2014/task4/index.php?id=important-dates): The data
set includes laptop and restaurant trial data. Restaurant trial data contains 3041 pieces of train data
and 800 pieces of test data; laptop trial data contains 3045 pieces of train data and 800 pieces of
test data. During this experiment, all the train data sets were used for position features extraction
and model training, and test data sets were used for the evaluation. L-14 means laptop dataset
and R-14 means restaurant dataset in SemEval2014.

• SemEval2015 (http://alt.qcri.org/semeval2015/task12/)/2016 (http://alt.qcri.org/semeval2016/
task5/): The data sets include restaurant trial data that are similar to SemEval2014. R-15 contains
1363 pieces of train data and 685 pieces of test data; R-16 contains 2048 pieces of train data and
676 pieces of test data. During this experiment, all the training data sets were used for model
training and test data sets were used for the additional evaluation.

• Yelp dataset (https://www.yelp.com/dataset): The training of word embedding and MFE
requires a large number of training data, therefore the experiment used an additional yelp
dataset for vector training to achieve a better effect. Yelp dataset contains 335,022 samples
of restaurant-comment data; 200,000 comments were selected randomly for the expansion of
vector training.

• Amazon product data (http://jmcauley.ucsd.edu/data/amazon/): The data set contains
1,689,188 electronic product reviews; the experiment selected randomly 200,000 comments
containing the words “laptop” or “computer” to expand the training text.

4.2. Experiment Setup and Evaluation Measures

CRF models were trained by CRFsuite (http://www.chokkan.org/software/crfsuite/). The details
of each model are as follows:

• CRF1: CRF1 was trained by the general features shown in Section 3.2.1. This model that was set
as the baseline obtained the basic effect of aspect term extraction.

• CRF2: CRF2 model was reinforced by Skip-Gram word clustering on the basis of CRF1.
The dimension of word embedding was 300, negative sample size was 5, the width of window
was 10 and it ignored words that appeared less than 3 times.

• CRF3: CRF3 model was reinforced by CBOW word clustering on the basis of CRF2; the parameters
of CBOW were consistent with Skip-Gram.

• CRF3+Stem: CRF3+Stem was reinforced by stem MFE clustering including CBOW and
Skip-Gram on the basis of CRF3. The parameters of MFE were consistent with word embedding.

• CRF3+WP: CRF3+WP was reinforced by Word-POS MFE clustering, including CBOW and
Skip-Gram on the basis of CRF3.

• CRF3+ALL: CRF3+ALL was reinforced by stem and Word-POS MFE clustering on the basis
of CRF3.

The results of the experiments were evaluated with Precision, Recall and F1. Regarding each
test text S, the position set of the aspect terms that are predicted is w1(S), the position set of true

https://github.com/xymcsu/MFE-CRF
http://alt.qcri.org/semeval2014/task4/index.php?id=important-dates
http://alt.qcri.org/semeval2015/task12/
http://alt.qcri.org/semeval2016/task5/
http://alt.qcri.org/semeval2016/task5/
https://www.yelp.com/dataset
http://jmcauley.ucsd.edu/data/amazon/
http://www.chokkan.org/software/crfsuite/
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aspect terms is w2(S), the number of elements in w1 is pre(S) (the number of the aspect terms that are
predicted), the number of elements in w2 is true(S) (the number of true aspect terms), and the number
of intersections between the two sets is cor(S) (the number of the aspect terms that are predicted
correctly). The test text set as D. The formulae of Precision Recall and F1 are as follow:

Precision =
∑S∈D cor(S)
∑S∈D pre(S)

, (8)

Recall = ∑S∈D cor(S)
∑S∈D true(S)

, (9)

F1 =
2× Precision× Recall

Precision + Recall
(10)

Precision reflects the proportion of the aspect terms that are predicted correctly to the terms that
are predicted. Recall reflects the ratio of the aspect terms that are predicted correctly to all the terms,
and F1 is the harmonic mean of Precision and Recall.

4.3. Results Comparison and Analysis

4.3.1. Overall Assessment

The results of MFE-CRF and each benchmark model for restaurant and laptop datasets are shown
in Table 4. Regarding aspect term extraction, the bottleneck of CRF models using the general features
was the value of Recall. Concerning the laptop dataset, the Recall rate of CRF1 was only 56.7%, but the
Precision reached 83.09%. The reason for this phenomenon is that the general features had a poor
ability to recognize conjunctions but had a high recognition accuracy for aspect terms.

Table 4. Results of the Aspect Term Extraction.

Models
Restaurant Laptop

Precision Recall F1 Precision Recall F1

CRF1 84.91 73.83 78.98 83.09 56.70 67.71
CRF2 86.53 79.52 82.88 84.37 60.71 70.61
CRF3 86.27 80.02 83.03 85.92 64.63 73.77

CRF3+Stem 86.24 81.33 83.71 87.07 67.02 75.74
CRF3+WP 86.19 82.16 83.05 87.64 66.39 75.55
CRF3+ALL 86.41 82.35 84.33 87.81 67.82 76.53

CRF2 and CRF3, which introduced word clustering, achieved a significant improvement compared
with CRF1. F1 was improved by 3.9% and 2.9% respectively through CRF2, compared to CRF1 in the
restaurant and laptop data set. Recall was increased by 5.69% and 4.01% in two data sets respectively.
Word clustering as the position features captured more features of context, improved the accuracy of
CRF in identifying aspect term and strengthened its ability to recognize conjunctions. Additionally,
F1 was increased by 1.30% and 2.76% respectively through CRF3+ALL in comparison with CRF3.
CRF3 combined with CBOW and Skip-Gram word clustering further improved the experimental
effect, which proves that the CRF model with multi-clustering classes can obtain a better ability of
identification. Compared with CRF1, CRF3+ALL increased Recall rate up to 8.52% and 11.12%, but the
precision rate was only 1.5% and 4.72%. The improvement of MFE clustering in the laptop data set
was more obvious because MFE clustering improved the recognition accuracy by identifying the
semantics of proper nouns in the laptop data. To summarize, MFE clustering greatly improved the
Recall rate of the CRF model and it also improved the Precision rate of recognition when the semantics
were complex.
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4.3.2. Comparison with Other Methods on F1

To further validate the performance of the current model on aspect term extraction, the authors
selected some models to compare against this model:

• HIS_RD, DLIREC(U), EliXa(U) and NLANGP(U): HIS_RD was the best result of restaurant
dataset in SemEval2014 [29], DLIREC(U) was the best result of laptop dataset in SemEval2014 [11];
EliXa(U) was the best result of restaurant dataset in SemEval2015 [30]; NLANGP(U) was the best
result of restaurant dataset in SemEval2016 [31]. U means unconstrained and using additional
resources without any constraint, such as lexicons or additional training data.

• LSTM, Bi-LSTM and Deep LSTM: These deep learning models were provided by Wu et al. [21].
• MTCA: MTCA was a multi-task attention model that learned shared information among different

tasks [32].

Table 5 shows the results of these models in F1 on SemEval2014, 2015 and 2016 datasets.
Compared to the best results in SemEval2014, 2015 and 2016, CRF3+ALL achieved 1.98%, 0.32%,
0.26% and 1.47% F1 score gains over HIS_RD, DLIREC(U), EliXa(U) and NLANGP(U) on L-14, R-14,
R-15 and R-16. Compared with the basic models of deep learning, CRF3+ALL showed a significant
advantage. F1 was increased by 12.26% and 6.66% respectively compared with the best system,
Deep LSTM, in the basic models of deep learning, which indicates the current model has a better effect
than the basic deep learning models. Even compared with MTCA, CRF3+ALL still gave the best score
for L-14, R-14, R-16 and a competitive score for R-15. Overall, considering all the results, it can be seen
that the current model can capture contextual semantic information effectively. The good performance
in the laptops dataset reflects the current model has an improvement when the semantics of text is
complex. Additionally, compared to other clustering features, CRF3+ALL can capture more semantic
information to enrich features and show a big improvement in laptops and restaurants datasets.

Table 5. Comparison in F1 on SemEval2014, 2015 and 2016 datasets.

Models L-14 R-14 R-15 R-16

HIS_RD 74.55 79.62
DLIREC(U) 73.78 84.01 - -

EliXa(U) - - 70.05 -
NLANGP(U) - - 67.12 72.34

LSTM 62.72 75.78 - -
Bi-LSTM 61.98 78.63 - -

Deep LSTM 64.27 77.67 - -
MTCA 69.14 - 71.31 73.26

CRF3+Stem 75.74 83.71 68.74 72.73
CRF3+WP 75.55 83.05 69.42 73.49
CRF3+ALL 76.53 84.33 70.31 73.81

4.3.3. The Evaluation of K

Using Kmeans++ clustering, the selection of k is of vital importance. When the value of k is too
high it leads to low efficiency and over-fitting, while if the value of k is too low it leads to inaccurate
clustering results. Thus, the choice of k directly affects the recognition of aspect terms. Selected 10–300
as the value of k to cluster the word vector and MFE. The experiments of aspect term extraction were
conducted for each model and F1 values were used for comparison in R-14 and L-14. Figures 3 and 4
show the changing trend of F1 with the increase of k.
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It can be observed that the word and MFE clustering made the CRF model achieve the best
result at a certain point. Due to the complexity of the clustering model, the increase of k will result
in over-fitting, which means the F1 will decline. Concerning the R-14, the best choice of k was
approximately 100, while it was about 200 in the L-14 that had more complex semantics. The optimal k
was also the value used in the previous experiments.

Additionally, a low value of k still brought a visible improvement. When k = 10, F1 of the
improved CRF model was significantly higher than CRF1. Concerning the case of k = 10, the F1
of CRF2 exceeded 81% and CRF3+ALL exceeded 82% in the restaurant data set. To summarize,
the value of k should not be selected too high, otherwise it will result in a low efficiency of training
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and decrease the effect of recognition. Furthermore, the effect of clustering is related to the field of text;
when the text contains more proper nouns and more complicated semantics, the value of k should be
improved accordingly.

5. Conclusions and Future

MFE clustering reinforcement is introduced on the basis of CRF using the general position features.
First, the authors improved the text representation by MFE to capture more semantic information.
Second, MFE and word clustering were obtained by kmeans++ algorithm to enrich the position
features of CRF and get a better effect of training. The function of MFE clustering to capture implicit
contextual information was validated through the experiment of aspect term extraction on SemEval
datasets. During the experiments, the effect of MFE-CRF was significantly higher than the CRF models,
which only used the general position features and word clustering features.

This paper has achieved visible results in aspect term extraction by improving text representation.
However, there are still the following properties that need to be further explored:

• Better MFE vector training strategy: MFE in this paper is a derivative of word vector
technology; the vector training algorithm is not thoroughly studied and improved. Additionally,
the introduction of more additional semantic features also brings more burdens to training. Thus,
more efficient MFE training methods need to be developed.

• Apply and improve deep learning in aspect term extraction: the MFE-CRF presented in this
paper is still in the realm of traditional machine learning, so it is still necessary to explore how to
introduce deep learning into aspect term extraction.
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