
  information

Article

The Supply and Demand Mechanism of Electric
Power Retailers and Cellular Networks Based
on Matching Theory

Yinghui Kong, Wenchan Huang * and Baogang Li

Department of Electronic and Communication Engineering, North China Electric Power University,
Baoding 071003, China; kongyh2005@163.com (Y.K.); baogangli@ncepu.edu.cn (B.L.)
* Correspondence: Irn1225@163.com; Tel.: +86-0312-752-2472

Received: 25 June 2018; Accepted: 19 July 2018; Published: 27 July 2018
����������
�������

Abstract: With the rapid increase of wireless network traffic, the energy consumption of mobile
network operators (MNOs) continues to increase, and the electricity bill has become an important
part of the operating expenses of MNOs. The power grid as the power supplier of cellular networks
is also developing rapidly. In this paper, we design two levels of bilateral matching algorithm
to solve the energy management of micro-grid connected cellular networks. There are multiple
retailers (sellers) and clusters (buyers) in our system model, which determine the transaction price
and trading energy respectively and have a certain influence on the balance of energy supply and
demand. Retailers make more profits by adjusting the price of electricity in matching algorithm M-1,
depending on the energy they capture and the level of storage. At the same time, clusters adjust
the electricity consumption through matching algorithm M-2 and power allocation on the basis of
ensuring the quality of users’ service. Finally, the performance of the proposed scheme is evaluated
by changing various parameters in the simulation.

Keywords: user association; supply and demand mechanism; matching algorithm

1. Introduction

In recent years, the prelude of a new round of the energy revolution has commenced, since the
distributed energy resources, which have the properties of low environmental costs, renewability,
and world-wide distribution, have been increasingly integrated into the power system [1–3].
Traditional power systems will face a significant transition to cope with the new changes and challenges.
In view of this, micro-grids that are comprised of networked groups of distributed loads and renewable
generators become an appealing solution. Micro-grids have the characteristics of flexible location and
decentralization, which is well adapted to the distributed power demands and resource distribution,
so that the reliability of power supply can be improved effectively. Furthermore, it is very important to
coordinate the energy management of power generation and electricity consumption in the micro-grid.
On the other hand, cellular networks as power users are consuming more and more energy. The cellular
network can flexibly adjust the electricity consumption according to its own demands and external
environment, which makes the cellular network play a very important role in the micro-grid. Therefore,
energy management will be a fundamental challenge in micro-grid connected cellular networks.

A micro-grid is a small decentralized independent system, which can realize self-control,
protection and management of autonomous systems. It can be connected to the grid or run in isolation.
Micro-grids may transform between these two modes because of scheduled maintenance, degraded
power quality or a shortage in the host grid, faults in the local power grid, or for economic reasons [4,5].
The micro grid works in island mode if it has enough local supply from the renewable farm; otherwise,
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it connects to the main grid to purchase on-grid energy [6]. When the micro grid is connected to
the power grid, it can play the role of peak load shaving in the large power grid, which is a strong
support for the stable operation of the large power grid. When the power grid fails, the micro grid
can be separated quickly from the big power grid and operates independently, providing continuous
power supply for the government, hospitals and transportation hubs, and improving the reliability of
the power supply. By means of modifying energy flow through micro-grid components, micro-grids
facilitate the integration of renewable energy generation, such as photovoltaic, wind and fuel cell
generation, without requiring re-design of the local power grid system [5,7,8]. Modern optimization
methods can also be incorporated into the micro-grid energy management system to improve efficiency
and flexibility [8]. The micro-grid not only solves the large-scale access problem of distributed power
supply, but also takes the advantages of distributed power supply and brings other benefits to users.
Micro-grids will fundamentally change the traditional way of coping with load growth, and have great
potential in reducing energy consumption and improving the reliability and flexibility of power system.

With the rapid increase of wireless network traffic, the energy consumption of mobile network
operators (MNOs) continues to rise and the electricity bill has become an important part of operating
expenses of MNOs. Based on the characteristics of a cellular network, it can reduce the energy
consumption flexibly by regulating their own traffic. Therefore, a cellular network can play a certain
role in energy management of a micro-grid. The work in [9] considers that the base stations are
aggregated as a micro grid with hybrid energy supplies and an associated central energy storage,
which can store the harvested renewable energy and the purchased on-grid energy over time to
minimize the on-grid energy cost of a large-scale green cellular network. A novel architecture for
micro-grid connected cellular networks is proposed in [10], which are equipped with renewable energy
generators and finite battery storage to minimize energy cost. In fact, base stations can reduce energy
consumption through business cooperation or energy cooperation. The resource and traffic can be
reasonably allocated among the base stations through coordinated multiple points (CoMP), which can
always guarantee the minimum overall transmit power consumption while meeting the throughput
requirement of each user (UE) and also each base station (BS)’s power constraint [11–13]. In practice,
there may be multiple MNOs at the same time, and they are cooperative or non-cooperative [14,15].
In the literature [14,15], each MNO reduces the energy cost by sharing energy and management
strategies between them, and also reduce the energy cost of the network through batteries and
renewable energy harvesting devices. In this paper, MNOs are treated as independent power users in
the micro-grid, and their own strategy is to maximize their own benefits.

In a smart grid, the power grid allows two-way power flow and the distributed renewable energy
generators as the sellers in the micro grid can supply the captured energy to users or the power grid.
In the literature [16,17], the electricity retailers as the leaders in the Stackelberg game sell energy to
a cellular network, meanwhile multiple clusters in the cellular network adjust the energy consumption
with sleep mode. Wu et al. [18] investigates a hybrid energy trading market that is comprised of
an external utility company and a local trading market managed by a local trading center with its
own electricity price. In this paper, the retailers optimize their strategy through the electricity price,
determine whom to sell and how much electricity they sell, and store the remaining electricity in
storage for future use.

In this paper, we propose an optimized energy management framework for micro-grid connected
cellular networks. In the micro-grid involving multiple retailers and clusters, the buyers (clusters) and
sellers (retailers) make strategies and influence each other, determine the transaction price and trading
energy, and have a certain influence on the balance of energy supply and demand. Each cluster can adjust
the energy consumption flexibly and also ensure the quality of service (QoS). According to the different
price of electricity and the level of traffic, MNOs can adjust the electricity consumption on the basis of
ensuring the quality of uses’ service. At the same time, retailers make more profits by adjusting the price of
electricity, depending on the energy they capture and the level of charge they can store.
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Furthermore, we not only consider the energy demand of clusters, but also consider the electricity
price strategy of retailers. The operation of the cellular network depends on the price, channel condition
and service requirement of the users. The clusters decide on which retailers to procure electricity from
and how much electricity to procure, considering the price of each retailer. We design two levels of
bilateral matching model: the first is the matching M-1 between the retailers and the clusters, and the
other is the matching M-2 between the base stations and the users. We utilized the distributed matching
algorithms as the solution to the above problem.

The rest of this paper is organized as follows: Section 2 presents the system model and energy
consumption of BS. Section 3 presents problem formulation. In Section 4, we propose distributed matching
algorithms. Simulation results are analyzed in Section 5. Finally, conclusions are drawn in Section 6.

2. The System Model and Energy Consumption of BS

2.1. The System Model

We assume that there is a wireless cellular network comprised of M clusters denoted as {CLm}M
m=1

and powered by Z retailers denoted as {REz}Z
z=1, as shown in Figure 1. We assume that each cluster

belongs to different MNO, so we denote the kth BS and the nth UE in mth cluster by BSm
k and UEm

n ,
respectively. We assume that each retailer is equipped with energy generators and a storage device.
In the system model, we only consider the optimization problem in one time slot, so we define the
amount of power captured by the retailer in this time slot as ENz. We assume that the maximum
capacity of the storage is denoted by BEmax

z and the amount of energy stored at this time slot is denoted
by BEz. In the paper, each cluster has K base stations denoted by {BSk}K

k=1 serving N users denoted by
{UEn}N

n=1. For convenience, we define the index sets M = {1, . . . , M}, Z = {1, . . . , Z}, K = {1, . . . , K},
and N = {1, . . . , N}. Each UE is required to associate with base station and each cluster needs to buy
electricity from the retailers to meet the user’s service requirement.

Figure 1. The system model.
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2.2. The Energy Consumption of BS

In the system, cellular networks purchase electricity from retailers to service users. Each cluster
needs to consider both the traffic needs of users and the electricity price provided by the retailers to
tradeoff between throughput benefit and energy cost. The energy consumption model for the cluster is
described below.

We assume that each cluster has K base stations denoted by
{

BSi
k
}K

k=1 serving N users denoted

by
{

UEi
n
}N

n=1. The energy demand of the cluster is the total energy consumption of the base stations
in it. The power consumption of a base station is divided into two parts: static energy consumption
and dynamic energy consumption. Static energy consumption refers to the power consumption of
a base station without any traffic load. Dynamic energy consumption refers to the additional power
consumption caused by the traffic load on the BS. Suppose that the dynamic energy consumption is
zero when the base station has no traffic. The energy consumption function of the kth base station is
as follows:

Pk = Pst,k + ζPdy,k (1)

where Pst,k denotes the static energy consumption of BS according to the different type of base station
and usually is set to a constant, ζ denotes the weight ratio of the dynamic energy consumption of

BS, Pdy,k =
N
∑

n=1

J
∑

j=1
mj

n,kPj
n,k denotes the dynamic energy consumption of the kth BS. mj

n,k ∈ {0, 1} is

a matching parameter, when mj
n,k = 1 denotes that the user n is served by the jth sub-channels of base

station k, otherwise mj
n,k = 0. Pj

n,k represents the transmit power of the base station k to serve user
n. The relationship between the matching parameters of the BSs and the user with the transmission
power can be denoted as follows: {

mj
n,k = 1⇔ Pj

n,k > 0

mj
n,k = 0⇔ Pj

n,k = 0
(2)

When the dynamic energy consumption of BS is zero, the total traffic load of BS is zero, indicating
that there is no user needs service.

3. Problem Formulation

In this paper, the system model has three layers, which are the retailer layer, the cluster layer,
and the user layer. Two bilateral-matchings are used in the whole system model, which are the
matching (M-1) between the power retailers and the clusters, the matching (M-2) between the base
stations and the users in the cluster.

In the system model, the retailers provide power or energy to the clusters as the commodity in the
electricity market. For convenience, each time slot is normalized to unity unless otherwise specified,
thus the terms “energy” and “power” will be used interchangeably in the sequel [19]. In the side of
selling energy, retailers make a profit by selling as much electricity as possible at higher prices than
its cost price, and retailers can’t sell more than the sum of the energy they capture and the energy
stored in their storage. When the matching process ends, if the remaining energy of the retailer is
more than the capacity of storage, retailers will sell the remaining energy to the main grid at cost price,
so that there will be no profit loss. In the side purchasing energy, the clusters can allocate resources
reasonably to users to improve the throughput of the whole cluster through matching algorithm and
power allocation, which can reduce the purchase cost while satisfying the quality of service. In order
to better study the strategy changes of retailers’ price and clusters’ energy demand, we consider
one-to-many matching model, where each retailer sells electricity to multiple clusters while each
cluster only purchases electricity from one cluster. In the matching process, sellers (retailers) and
buyers (clusters) optimize their utility and influence each other through the energy price and the
energy demand as the decision variable, respectively. In the paper, the matching (M-1) between the
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retailers and clusters and the matching (M-2) between the BSs and users are used to optimize the
utility of each individual participating in the system (e.g., increasing the profit of power retailers and
reducing the energy cost of clusters). The next section will formulate two matching issues and give
their constraints.

The proposed algorithms are based on matching theory. To model the competitive behavior of
UEs, BSs, clusters and retailers, we first define their utility functions.

3.1. The Matching (M-1) between Retailers and Clusters

In this section, we formulate the matching algorithm M-1 to solve the system’s utility optimization
problem. We first define retailers’ and clusters’ utility functions as follows. The increase of the demand
for energy from the clusters will result in the increase of the retailer’s profit, so one of the most common
criteria for retailers to select clusters is to consider the power demand of the cluster. The utility of
retailer z when it is connected to cluster m can be written as

UM−1
REm,z

= vm.zqm,z(ez − cz) (3)

Then we define the utility function UM−1
REz

of retailer m as the sum of the electric profit of REz,
as follows:

UM−1
REz

=
M

∑
m=1

vm.zqm,z(ez − cz) (4)

where vm,z is the component of matrix V, m ∈ M, z ∈ Z, which indicates if REz and CLm are matched
or not, qm,z denotes the amount of power purchased by cluster m at retailer z, ez denotes the price of the
retailer z selling electricity to clusters, cz denotes the cost of the retailer z selling electricity to clusters.

In the process of matching, the cluster is expected to increase the transmission rate as much as
possible while reducing the purchase cost. Therefore, the utility of the cluster is divided into two parts.
We define the utility UM−1

CLm,z
of cluster m when it is connected to retailer z can be written as:

UM−1
CLm,z

= vm,z(αR(ϕm)− ezqm,z(ϕm)) (5)

Then the utility of cluster m can be written as follows:

UM−1
CLm

=
Z

∑
z=1

vm,z(αR(ϕm)− ezqm,z(ϕm)) (6)

where R(ϕm) denotes the total throughput of cluster m, α is the positive real number, which is to

unify the units of the two parts of throughput and energy cost. qm,z(ϕm) =
K
∑

k=1
Pm

k denotes the

amount of power purchased by cluster m at retailer z. ezqm,z(ϕm) represents the cost of the cluster m
purchasing power.

In M-1, each retailer can sell electricity to multiple clusters, but cannot exceed the maximum
amount of electricity sold, so the utility function and constraints of retailers can be written as:

(7)



Information 2018, 9, 192 6 of 18

where V is the matrix comprising of elements vm,z, ∀m ∈M, z ∈ Z. Constraint (a) states that retailer z
can sell qmax

z = ENz + BEz of electricity at most. Constraint (b) guarantees that each cluster will be
matched with only one retailer and constraint (c) states that the values of vm,z can be only 0 and 1.

Each cluster can only buy electricity from one retailer, so the utility function and constraints of
clusters can be written as:

(8)

In the process of solving the problem (7), the retailers adjust the price according to matching
algorithm (M-1), then the energy demand and utility of clusters are obtained through matching
algorithm (M-2) and power allocation. In the next section, we’ll give you a detailed description of the
sub-matching algorithm (M-2))

3.2. The Matching (M-2) between Base Stations and Users

In the algorithm mentioned above, the power demand of each cluster is obtained through the
following matching algorithm (M-2). At the first, we discuss the matching algorithm between the base
stations and the users in a single cluster.

We use a three-dimensional N × K × J pairing matrix X =
{

xn,k,j

}
, where each element

xn,k,j = {0, 1} is a binary variable to represent the set of resource allocation strategies. For example,
xn,k,j = 1 denotes that user n is established between BS k and sub-channel j. Accordingly, the binary
decision variables xn,k,j and the continuous power variables Pk should be jointly designed to optimize
the system performance. The problem of matching M-2 is formulated as:

(9)

Constraint (a) states each UE will be matched with only one BS and sub-channel, constraint
(b) states that a maximum of omax UEs can be matched with each BS and constraint (c) states that
a maximum of `max UEs can be matched with each sub-channel. Constraint (d) states that the values
of xn,k,j can be only 0 or 1.
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3.3. Power Allocation

After the matching algorithm M-2 allocates the user to the appropriate base station and
sub-channel, the optimal power allocation can be formulated as:

(10)

Condition (a) guarantees that the sum of the allocated powers to each base station is not more
than the maximum transmission power Pmax, condition (b) guarantees that each user’s transmission
rate is not lower than rmin.

4. Distributed Matching Algorithm

In the process of bilateral matching, in order to make each agent satisfied with the matching object,
the matching tendency can be ranked from high to low by preference list, and finally get the optimal
utility of the agent. In the whole matching algorithm, M-1 and M-2 algorithms solve the problem
through the following steps. In the M-1 algorithm, first all retailers announce the electricity price to
clusters. After that, the distribution of resources and the demand energy in the cluster are calculated
by M-2 matching algorithm based on the electricity price and channel conditions. Each cluster
establishes a preference list for retailers and applies to the first retailer in the list. Then retailers
decide which clusters to match and update the electricity price by comparing the energy demand of
clusters that apply to match with the maximum energy available for sale. The above is an iterative
process. Each iteration in the matching process will update the electricity price of retailers and the
energy demand of the clusters. Specific steps for the M-1 and M-2 algorithms are explained in the
following sections.

In this section, we propose distributed matching algorithms to solve the problems formulated
in Section 3. We use the following two matching algorithms, M-1 and M-2 algorithms, to solve the
matching problems M-1 and M-2, respectively. From Definition 1, we define matching functions
ΨM−1 :

{
REz, CLm, qmax, PM−1} and ΨM−2 :

{
UEn, BSk, SUBj, omax, lmax, PM−1} for the M-1 and M-2,

respectively, where qmax, omax and `max are the maximum number that can be matched. PM−1 and
PM−2 are the price allocation matrices corresponding to functions ΨM−1 and ΨM−2, respectively.

4.1. The Matching (M-1) between Retailers and Clusters

In M-1 we propose a bilateral matching algorithm where both retailers and clusters selfishly and
rationally interact to maximize individual utility function. Retailers increase their profits by changing
the price of electricity. At the beginning of M-1 matching algorithm, the price of the retailer’s electricity
will be set as its cost price. In the matching process, the retailer z will raise the price of electricity by
step-number and then sell energy to the cluster if the amount of power exceeds the maximum that
REz can sell. Clusters will adjust the demand of electricity according to channel state and the price
of the retailers, then reduce the cost of purchasing electricity and increase the rate through M-2 and
power allocation. The aim of the M-1 is to optimally solve the optimization problem in (7) through
matching algorithm between the retailers sets {REz, z ∈ Z} with the serving clusters {CLm, m ∈M}.
The specific details of the algorithm are described in Algorithm 1, with the notations defined below.

First, REz, z ∈ Z will announce the price of unit electricity to the cluster according to its cost
price. Then, CLm, m ∈M will form a descending preference list CLLISTm in terms of its utility over all
the potentially available retailers, that is, the first retailer in CLLISTm is obtained from the following
formula (M-1-Step 1)

RE∆ = argmaxβUM−1
CLm,β

β ∈ Z (11)
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Thus, CLLISTm =
{

REβ

}Z
β=1 such that UM−1

CLm,β
> UM−1

CLm,β ′ if and only if β > β′.
To summarize the M-1, to increase the throughput and reduce the cost of electricity, each cluster

first chooses the best retailer and bids for it (M-1-Step 2-1). We will define a bid function as

gCL
m,β(gen) =

{
1, i f CLm bids f or REβ

0, otherwise
(12)

REβ has a descending ordered list of the clusters that bid for REβ. The list is ordered based
on the received utility, that is, the first CL in REBIDβ(gen) corresponds to CL∆ = argmaxmUM−1

REm,β
,

m ∈ {m′, m′ ∈M, gCL
m′ ,β(gen) = 1} (FM-1-Step 2-1).

Thus, REBIDβ = {CLm}
Mβ

BID
m=1 such that UM−1

REm,β
> UM−1

REm′ ,β
if and only if m > m′. In M-1-Step

3, retailers will decide if they want to match with the clusters that bid for them. There are three
possibilities. The first possibility (M-1-Step 3-1) is that REβ receives no bids from clusters after
increasing its price-allocation number, but in the previous iteration, REβ had received bids from
multiple clusters. REβ will choose these clusters which could maximize the utility of REβ to be
matched with. The second possibility is that REβ has bid from multiple clusters (M-1-Step 3-2-a).
REβ will increase its price allocation number by δ for the next (gen+1)st iteration. Note that δ ∈ R+

represents the price-step number, which indicates the price-allocation number offered from the clusters
to the source increases at each step. The third possibility (M-1-Step 3-2-b) is that REβ has received
a bid from only one cluster. In this case, REβ will be matched with this one. The last iteration of the
M-1 is denoted as tEnd.

To study the stability of the matching problem between retailers and clusters, we adopt the
following theorem used in the assignment game problem in [19] and adapt it to our two-sided
matching algorithm:
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Algorithm 1 The bilaterally matching algorithm between the retailers and the clusters.

Step 1: Initialization

(1) Set gen = 1, t = 1, q = 0, ez(gen) = cz, z ∈ Z.

(2) Set ∀gCL
m,z(gen) = 0, m ∈M, z ∈ Z.

(3) Construct the list of all the clusters that are not matched, MATCHLIST2 = {CL1, . . . , CLM}, m ∈M and

CL′ms preference list to all the retailers denoted by CLLISTm =
{

REβ

}Z

β=1
, m ∈M.

Step 2: Clusters’ Demand of Power

(1) Each REz, z ∈ Z announces its price-allocation number ez(gen) to all the unmatched clusters
CLm ∈ MATCLLIST2.

(2) For all CLm ∈ MATCHLIST2

(a) If CLLISTm 6= ∅, then

(i) Calculate the demand of power qm,z(gen) at the price ez(gen). Then figure out its utility of CLm to
REz, z ∈ Z denoted by UM−1

CLm,z
(gen), and construct CL′ms preference list CLLISTm, m ∈M.

(ii) CLm sends an access request to RE that is the first in its preference list CLLISTm, denoted by RE∆ that its
index is denoted by ∆ (i.e., gCL

m,∆(gen) = 1).

(b) Else CLm does not bid, set gCL
m,z(gen) = 0, z ∈ CLLISTm

(3) Construct the descending ordered list of clusters that bided for RE∆ in terms of RE′∆s utility, REBID∆(gen).

(4) Tag the clusters in REBID∆(gen) by index t as {CLm(t)}M∆
BID

t=1 , t ∈ IN

Step 3: Retailers’ Decision Making

(1) For all REβ, β ∈ Z

(a) If ∑
m∈M

gCL
m,β(gen)qm,β > qmax

β , then

(i) If q + qm(t),β(gen) ≤ qmax
β , ΨM−1(CLm(t)) =

{
REβ, qm,z(gen), ez(gen)

}
and remove CLm(t) from

MATCHLIST2

(ii) If q + qm(t),β(gen) > qmax
β , REβ reject CLm(t) thus ΨM−1(CLm(t)) 6=

{
REβ, qm,z(gen), ez(gen)

}
, let

CLm(t) join MATCHLIST2 and remove REβ from CLLISTm.

(iii) Set t = t + 1, em,z(gen + 1) = em,z(gen) + δ.

(b) If 0 < ∑
m∈M

gCL
m,β(gen)qm,β ≤ qmax

β , for all CLm(t) ∈ REBIDβ(gen)

(i) ΨM−1(CLm(t)) =
{

REβ, qm,z(gen), ez(gen)
}

.

(ii) Set CLm = CLm(t) and remove CLm(t) from MATCHLIST2.
(iii) Set em,z(gen + 1) = em,z(gen).

(c) If ∑
m∈M

gCL
m,β(gen) = 0, then set em,z(gen + 1) = em,z(gen).

(2) Set gen = gen + 1.

(3) If MATCHLIST2 is not empty go to Step 2; otherwise, go to step 4.

Step 4: End of the Algorithm

Theorem 1. The algorithm in Algorithm 1 produces matching and price-allocation matrices, which are in
competitive equilibrium for sufficiently small values of δ.

The proof of Theorem 1 is similar as that in the literature [19], which is omitted there.

4.2. The Matching (M-2) between Base Stations and Users

We propose a matching approach to solve the mixed integer programming problem (9). In our
system, we attempt to solve the problem (9) by employing the three-dimensional matching that
user equipment, base stations and sub-channels with each other. To reduce the computational
complexity, we transform the original three-dimensional matching to a two-sided matching. First,
we define a BS-SUB unit, which is composed of one base station and one sub-channel (SUB).
Owing to the existence of K BSs and J SUBs, there are K × J different BS-SUB units, denoted
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by BS-SUB =
{

RCk,j

}k=K,j=J

k=1,j=1
. Thus, the three-dimensional matching problem can be simplified to

a two-sided matching with N UEs on one side and K × J BS-SUB units on the other side.
The distributed algorithm which solves the optimization problem (9) involves each UE and

BS-SUB strategically maximizing their utility functions. From Section 2, we know that the static power
consumption of the base stations in the cluster is constant. Therefore, in the setting of utility function
(13), we’re going to make an analogy to the utility of the user to the function of the cluster. Users’ utility
value is also divided into two parts: throughput benefit and energy consumption. At the same time,
in order to better allocate resources to users, BS-SUB takes the channel condition between the user
applying for it and BS-SUB as its utility. Compared with the utility of all users that apply to match,
BS-SUB allocates its own resources to the best user and matches it.

The utility functions of UEs’ and BS-SUBs’ are respectively expressed as follows:

UM−2
UEn,Λ

= αw log2(1 +
pj

n,k

∣∣∣gj
n,k

∣∣∣2
∑

l 6=k
∑

i 6=n
pj

i,l

∣∣∣gj
n,l

∣∣∣2+ zj
n,k

)− ezqj
n,k (13)

UM−2
BS−SUBn,Λ

= gUE
n,Λ(gen)

∣∣∣gj
n,k

∣∣∣2 (14)

After obtaining the price of electricity published by retailers, the dependent variables of clusters’
utility are channel conditions and power allocation. In order to better analyze the effect of these
two dependent variables on cluster utility, we divided the resource allocation problem into two
sub-problems: M-2 matching and power allocation. In order to distinguish between channel state and
power distribution in the utility function, we do not consider the effects of the distribution of power in
the matching algorithm (M-2). We know that in the same power allocation, the user will transmit at
a higher rate with better channel conditions, so they will be inclined to choose the BS-SUB unit with
better channel state to match. In order to simplify the complexity of the matching process, we denote
the function of the user’s preference for BS-SUBs as:

UM−2
UEn,Λ

′ =
∣∣∣gj

n,k

∣∣∣2 (15)

Then UE will establish the preferences list for BS-SUB based on this function.
The aim of the M-2 is to optimally solve the optimization problem in Equation (9)

through matching the UEs sets {UEn, n ∈ N} with the serving BS-SUBs {BS-SUBΛ, Λ ∈ K× J},
while maximizing the sum rates of all the UEs in the cluster. The specific details of the algorithm are
described in Algorithm 2, with the notations defined below.

First, UEn, n ∈ N will form a descending order preference list UELISTn in terms of its utility
over all the potentially available BS-SUB, i.e., the first BS-SUB in UELISTn corresponds to BS-SUBΘ =

argmaxβUM−2
UEn,Λ

, Λ ∈ K× J. Thus, UELISTn = {BS-SUBΛ}K×J
Λ=1 such that UM−2

UEn,Λ
> UM−2

UE′n,Λ
if and only

if Λ > Λ′.
To summarize the M-2, each UE first chooses the best BS-SUB and bids for its (FM-2-Step 2-1).

We will define a bid function as:

gUE
n,Λ(gen) =

{
1, i f UEn bid f or BS-SUBΛ

0, otherwise
(16)

BS-SUBΛ has a descending ordered list of the UEs that bid for BS-SUBΛ. The list is ordered
based on the received utility, that is, the first UE in BS-SUBBIDΛ(gen) corresponds to UEΘ =

argmaxnUM−2
BS-SUBn,Λ

, n ∈ {n′, n′ ∈ N, gUE
n′ ,Λ(gen) = 1} (FM-2-Step 2-1). Thus, BS-SUBBIDΛ =

{UE n}
MΛ

BID
n=1 such that UM−2

BS-SUBn,Λ
> UM−2

BS-SUBn′ ,Λ
if and only if n > n′.
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Because each BS-SUB can serve at most one user, we can make the following two cases in M-2-Step
3. The first possibility (M-2-Step 3-1-a) is that BS-SUBΛ is not matched with the user, and then selects
the highest utility value user match in the iteration and rejects the rest users. The second possibility
(M-2-Step 3-1-b) is that the BS-SUBΛ has already matched user n and it will compare the current
matching user with the user who is applying for the iteration, and selects the user with the highest
utility value. If the user has no higher utility value than the current matched user, the current matching
result is retained. Otherwise, replace it and reject the remaining users.

In M-2-Step 4, BSs and SUBs will decide if they want to match with the UEs that bid for them
respectively. There are two possibilities. The first possibility (M-2-Step 4-1-a) is that the BSk receives
more than omax bids from UEs. BSk will choose select the top omax users in the bid list BSBIDk(γ) and
reject the remaining UEs. The second possibility (M-2-Step 4-1-b) is that the BSk receives applications
less than omax. In this case, BSk will be matched directly with this UE. SUBs can also get results in the
same way. Then we will end the bilaterally matching algorithm until MATCHLISTn is empty.

In order to study the stability of Algorithm 2 proposed by matching theory, first, we adopt
the following concept used in the so-called college admissions problem in [20] and adapt it to our
matching approach:

Definition 1. An assignment of BS-SUBs to users will be called unstable if there are two BS-SUBs α and β

which are assigned to users A and B, respectively, although β prefers A to B and A prefers β to α.

In the proposed approach, the users bid to the first BS-SUBs of their preference list. Each BS-SUB
is allocated to the user with the higher preference, that is, the user with the larger value. If α is assigned
to A rather than B, A has a higher preference value on α when compared to B. Similar reasoning can be
made for user B and BS-SUB β. Then certainly, A prefers α to β; otherwise user A would be allocated
subcarrier β and not α. If α is allocated to A instead of B, then the value of A is higher than B over
BS-SUB α. Thus, the assignment that is performed in our proposed algorithm abides by the preferences
of the users and BS-SUBs, and therefore it is a stable assignment. The assignment is stable at each
iteration of the algorithm. In fact, after utility evaluation, the preference list of each user is updated
and the matching routine is repeated, each time resulting in a stable assignment.

We refer to the analysis of the stability of three-dimensional matching in literature [21], and finally
reach the following conclusions: the matching process would end with finite iterations; the proposed
Algorithm 2 can converge to a two-sided stable matching in finite iterations; and the solution of
three-dimensional matching is weak Pareto optimal for users on combinations of base stations
and sub-channels.
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Algorithm 2 The bilaterally matching algorithm between BS-SUBs and UEs.

Step 1: Initialization

(1) Set γ = 1, m = 1, t = 1, c = 1, gUE
n,k,j(γ) = 0, n ∈ N, k ∈ K, j = J.

(2) Construct UE′ns preference list, UELISTn, n ∈ N and the list of all UEs that are not matched denoted by
MATCHLIST1 = {UE1, . . . , UEN}, n ∈ N.

Step 2: UEs Making Their Decisions

For all UEn ∈ MATCHLIST1

(a) UEn send an access request to the BS-SUB that the first in its preference list UELISTn, denoted by
BS-SUBΛ that its index is denoted by Λ (i.e., gCL

n,Λ(γ) = 1).

(b) Construct the descending ordered list of UEs that bid for BS-SUBΛ in terms of BS-SUB′Λs utility
BS-SUBBIDΛ(γ) and we can also construct the descending ordered list for BSs and sub-channels,
BSBIDk(γ) and SUBBIDj(γ).

(c) Tag the UEs in BS-SUBBIDΛ(γ) by index x as {UEn(x)}MΛ
BID

x=1 , x ∈ IN.

Step 3: BS-SUBs’ Decision Making

(1) For all BS-SUBΛ, Λ ∈ K× J

(a) If ∑
n∈N

gUE
n,Λ(γ) > 1, then

(i) If m = 1, let ΨM−2(UEn(m)) = BS-SUBΛ and remove UEn(m) from MATCHLIST1.

(ii) Else, BS-SUBΛ reject UEn(m) thus ΨM−2(UEn(m)) 6= BS-SUBΛ, let UEn(m) join MATCHLIST1 and
remove BS-SUBΛ from UELISTn.

(iii) Set m = m + 1.

(b) Else, for all UEn(x) ∈ BS− SUBBIDΛ(γ)

(i) ΨM−2(UEn(m)) = BS-SUBΛ.

(ii) Set UEn = UEn(x) and remove UEn from MATCHLIST1.

(2) γ = γ + 1.

(3) If MATCHLISTn is not empty go to Step 2; otherwise, go to step 4.

Step 4: BSs’ and subs’ Decision Making

(1) For all BSk, k ∈ K

(a) If ∑
n∈N

∑
j∈J

gUE
j
n,k

(γ) > omax, then

(i) If t > omax, BSk reject UEn(t) thus ΨM−2(UEn(t)) 6= BS-SUBΛ, let UEn(t) join MATCHLIST1.
(ii) Set t = t + 1.

(2) For all SUBj, j ∈ J

(a) If ∑
n∈N

∑
k∈K

gUE
j
n,k

(γ) > `max, then

(i) If c > `max, SUBj reject UEn(c) thus ΨM−2(UEn(c)) 6= BS-SUBΛ, let UEn(c) join MATCHLIST1.

(ii) Set c = c + 1.

(3) γ = γ + 1.

(4) If MATCHLIST1 is not empty go to Step 2; otherwise, go to step 5.

Step 5: End of the Algorithm

4.3. Power Allocation

After the result of matching algorithm M-2 is obtained, each user will allocate the optimal power
in order to maximize its own utility. The optimal power allocation problem (10) can be solved by
referring to the Lagrange dual algorithm similarly in literature [19] and the optimal power pj

n,k
′ can

be obtained.
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5. Simulation Results

In this section, we provide simulation results to validate our theoretical analysis and evaluate
the performance of the proposed scheme. According to Section 4, clusters derive the optimal solution
based on reasonable resource allocation to decide how much electricity is procured from the retailer.
Retailers also derive the optimal solution to decide the electricity price. To evaluate the performance of
the proposed algorithms, we consider there are three retailers denoted by {RE1, RE2, RE3} which
provide energy to six different clusters denoted by {CL1, CL2, CL3, CL4, CL5, CL6}. We set the
maximum capacity of each storage is BEmax

z = 2000 mW, z ∈ Z, only for the traffic of the clusters is low
in our setting. In the simulation, BEz is randomly distributed between 0 and 2000 mW and retailers
to capture for 300~500 mW in the time slot. The retailers’ cost price and initial electricity price are
cz = {0.2/mW, 0.3/mW, 0.4/mW} and ez = {0.4/mW, 0.5/mW, 0.6/mW}, respectively, where the
price unit is normalized without loss of generality [20]. There are 4 base stations and 32 users, which are
randomly deployed in each cluster with a cell radius of 300 m. We set the path loss exponent to 4 and
the thermal noise level to −110 dBm. We assume the maximum transmission power of the base station
as 200 mW and the minimum transmission rate of the user as 200 kbit/s. Finally, we set w = 40 kHz
and the number of sub-channels is 8.

Figures 2 and 3 show the users’ satisfactions versus various satisfaction thresholds with N = 32,
K = 4, J = 8 and N = 64, K = 8, J = 8. We obtain the numerical results of Figures 2 and 3 by averaging the
results of 100 times running the simulation. In the case of N = 32, K = 4, J = 8, the probability of being
matched to the first three choices for users under M-2 is 55.47% and the probability of being matched
to the first ten choices for users is as high as 94.53%. In contrast, the corresponding probability under
random matching is only 9.38% and 31.25%. In the case of N = 64, K = 8, J = 8, there is 40.23% and
93.75% of users that have been matched to the first three and ten choices, respectively. At the same
time, the corresponding probability under random matching is decreased to only 4.69% and 15.63%.
We can see that the matching M-2 algorithm can achieve significant satisfaction gains compared to the
random matching.

In Figures 2 and 3, we can see that users in the greedy matching algorithm only choose the best
BS-SUB, so the user satisfaction of the greedy matching algorithm is higher than the M-2 algorithm
in the first few options. However, the M-2 algorithm is more concerned with the overall resource
allocation of the cluster, which can reach 100% user satisfaction in the first 20 choices or even the
first 15 choices. Therefore, the M-2 algorithm is superior to greedy matching algorithm in the overall
performance of the cluster.

Figure 2. Users’ satisfactions versus satisfaction threshold (n = 32, K = 4, J = 8).
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Figure 3. Users’ satisfactions versus satisfaction threshold (n = 64, K = 8, J = 8).

Figures 4–6 show the variation trends of throughput benefit, energy consumption and utility
value of a cluster versus the number of users in a cluster, respectively. At the same time, we calculate
these three values according to three different electricity prices ez. As we can see from the Figures 4–6,
the increase in the number of users in a cluster will result in a significant increase in the throughput
benefit of the cluster, and electricity consumption will also rise. However, the optimal power allocation
algorithm can smooth the growth trend of energy consumption due to its negative utility in the cluster.
Therefore, we conclude that the increase of the number of users in a cluster will lead to the increase
of the utility value of the cluster. When the number of users in a cluster increased from 32 to 60,
the energy consumption of the cluster increased by 22.32%, 25.43% and 16.01% and the utility value of
the cluster increased by 499, 475 and 416 under different electricity prices (ez = 0.5; ez = 1; ez = 3). At the
same time, the throughput benefit of the cluster is not very different, while the energy consumption
increases but does not show a multiple relationship. In the case of N = 32, ez = 0.5 as the reference
group, we can know that the energy consumption of ez = 1 and ez = 3 are 1.948 and 4.81 times of the
reference group, respectively. From Figure 6, we can see that the utility value of the cluster decreases
as the price of electricity rises, and the trend of utility value changes with the price of electricity is
analyzed in Figure 7.

Figure 4. Throughput of cluster versus the number of user in a cluster (K = 8, J = 8).
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Figure 5. Energy consumption of cluster versus the number of user in a cluster (K = 8, J = 8).

Figure 6. Utility value of cluster versus the number of user in a cluster (K = 8, J = 8).

Figure 7. Utility value of cluster versus the electricity price of the retailer (N = 32, K = 8, J = 8).
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In Figure 7 we can see that the utility value of each cluster is gradually decreasing when the
electricity price of the retailer increases. The clusters will weaken the growth trend of energy demand
when the price of electricity rises, but cannot effectively reduce the impact of the increase of electricity
price on the continuous increase of electricity consumption.

Figures 8 and 9 show the change of utility value of cluster and retailer with the number of
iterations. We set the electricity price of three retailers as ez1 = 0.4, ez2 = 0.5, ez3 = 0.6, and the price
step-number as δ = 0.1. In Figure 8, we select three typical clusters to analyze the change trend of utility
value with the number of iterations. Initially, each cluster will buy as much electricity as possible at
the lowest price, and then the rejected cluster reduces utility (because the electricity price of retailer is
higher) by buying electricity from another retailer. In the process of matching, the retailer will reject
the existing matching cluster if the retailer is asked to match by the cluster with a higher profit, so the
retailer’s utility value will gradually increase in the matching process and finally converge to stable
matching. In fact, if the number of retailers increases, the cluster becomes more optional and the utility
value will increase as competition decreases, and vice versa.

Figure 8. Utility value of cluster versus the number of iterations (N = 32, K = 8, J = 8).

Figure 9. Utility value of retailer versus the number of iterations (N = 32, K = 8, J = 8).
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6. Conclusions

This paper considers the energy management of a micro-grid connected cellular network,
involving multiple retailers and clusters. The simulation results show that the M-2 matching algorithm
can significantly improve user satisfaction, and the cluster utility increases with the increasing number
of users in the cluster, and decreases as the electricity price of the retailers increases. At the same time,
the retailer’s profits will gradually increase in the process of the M-1 algorithm and finally converge to
stable matching. If the number of retailers increases, the cluster has more options and the retailer’s
utility decreases with less competition between the clusters, and vice versa. Optimizing resource
allocation for clusters with multiple time slots in a multi-retailer energy supply scenario could be an
interesting future topic.
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