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Abstract: For more than 30 years, data warehouses (DWWs) have attracted particular interest both
in practice and in research. This success is explained by their ability to adapt to their evolving
environment. One of the last challenges for D)Ws is their ability to open their frontiers to external
data sources in addition to internal sources. The development of linked open data (LOD) as external
sources is an excellent opportunity to create added value and enrich the analytical capabilities of
DWs. However, the incorporation of LOD in the DWW must be accompanied by careful management.
In this paper, we are interested in managing the evolution of DWW systems integrating internal and
external LOD datasets. The particularity of LOD is that they contribute to evolving the DW at
several levels: (i) source level, (ii) DWW schema level, and (iii) DV design-cycle constructs. In this
context, we have to ensure this co-evolution, as conventional evolution approaches are adapted
neither to this new kind of source nor to semantic constructs underlying LOD sources. One way of
tackling this co-evolution issue is to ensure the traceability of DV constructs for the whole design
cycle. Our approach is tested using: the LUBM (Lehigh University BenchMark), different LOD
datasets (DBepedia, YAGO, etc.), and Oracle 12¢ database management system (DBMS) used for the
DW deployment.
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1. Introduction

Endowing data with semantics is a crucial task for many applications. Motivated by the emergence
of ontologies and linked open data (£LOD) in different fields (e.g., Cyc, DBpedia, Freebase, and YAGO),
the amount of semantic data is rapidly increasing in various domains (e.g., the New York Times,
BBC, and Thomson Reuters semantic data) and their involvement in different data centric systems
is growing. Business intelligence (BI) systems are no exception. Data warehouses (D)Vs) are data
management systems at the core of Bl applications, used in small, medium, and large organizations for
decision support. DWs integrate operational data coming from heterogeneous sources, and organize
data using a multidimensional perception that identifies central subjects of analysis (called the Facts)
according to different dimensions of analysis, to be exploited by OLAP (on-line analytical processing)
techniques and tools.

The DWW community has undergone an important event materialized by the spectacular
development of Semantic Web technologies that are intensively used in designing and exploring
DWs (for more details, refer to the survey paper [1]). Many studies have used ontologies (an ontology
is defined as a specification of a conceptualization) [2] in order to facilitate D)V design. Unlike the
traditional vision of DWW construction which concentrates on internal sources, the new generation
of DWs integrates both internal and external sources. Among external sources, recent research
efforts have identified the interest of integrating the LOD in designing DW. As part of the Big
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Data landscape, LOD initiatives bring new and publicly available semantic data on the web that
are valuable for data analytics inside DV systems. The value of LOD for DWs manifests in their
capabilities to answer requirements that are unsatisfied from internal sources, and to enrich the
multidimensional expressiveness of the D)WV model. LOD keep adding value to DWs, since they are
continuously changing (new concepts and knowledge). For instance, Yago has evolved from Yago to
Yago3, passing by Yago2. Therefore, the added-value of DWW has to be managed continuously through
an evolution process.

Traditional evolution approaches for D)V manage the evolution of internal sources (usually
conventional relational databases). The use of external semantic data poses new challenges related to
their evolution management: (i) LOD sources bring a new kind of heterogeneity since they are
presented using the semantic formalism, based on the Resource Description Framework (RDF)
(https://www.w3.org/RDF/) language using the triple format to organize data in the form of
< subject, predicate, object >). The set of triples form a graph. (ii) The evolution events of LOD
sources (e.g., addition, deletion, renaming, etc.) are gathered from the web using the triple format,
which requires specific management tasks to identify the impact of such evolution events on the DWW
system. (iii) Finally, different scenarios have been proposed in order to integrate LOD sources in the
DW that can be done at the schema level or at the query level. Contrary to traditional DWs that
manage evolution either from a source perspective or from a requirements perspective, ignoring the
interrelated artifacts composing the D)V design cycle, LOD can be integrated at different steps of the
DW cycle, possibly impacting different artifacts. Such integration scenarios are conducted during
the core phases of DWWV design, namely: requirements definition, the extract—transform-load (ETL) phase
composed of a set of ETL processes used to transform heterogeneous data in the DWW representation,
and the deployment phase which implements the DWWV system. In this context, the D)V system can be
seen as a set of components inherently intertwined with each other. This idea of managing evolution
between different types of software artifacts or different representations of them is called “co-evolution”
in the software engineering field.

Our goal in this study was to define the impact of changes on a DWW system populated by internal
and external sources, by identifying design constructs (in each design phase) impacted by the changes,
and to propagate these changes to the final DWW system. Forward and backward evolution strategies
are required to manage changes. The identification of design constructs is a significant contribution of
our work, since evolution events may concern any of these interlinked constructs of different design
levels. Our approach exploits the correlations between constructs in order to identify which part of
the DW is sensitive to evolution events. The identification of change impact on the D)V design-cycle
requires an explicit representation of the DWW design artifacts, their relationships, and their traces.

To the best of our knowledge, this work is the first study that manages co-evolution in the context
of DW fed by LOD sources. Moreover, the availability of the ontology model allows evolution to be
addressed from the conceptual level, where the understanding of the evolution problem is easier to
follow and to propagate to the other design levels. The main contributions of this work are (Figure 4):
(1) We describe a DWW traceability model that uniformly covers the most relevant D)V constructs and
artifacts. In order to define traces semantically, we extend the ontology meta-model by the design
model. (2) We present an event-based approach for managing the co-evolution of the whole cycle,
including a co-evolution mechanism for the annotation of DV constructs impacted by evolution
events at the semantic level. Evolution events may concern primarily LOD or other design constructs.
Regarding LOD changes, evolution is managed in asynchronously, which we consider to be the most
suitable approach since the LOD receive flows of changes, and only some of them are relevant for the
DW. (3) We demonstrate the efficiency and feasibility of our approach through a case study related to
the University domain.
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Motivating Example

We illustrate our purpose by the following example:

Example 1. Let us consider a DWWV used for analysing the research publications of a university. The number
of publications is analysed according to each department and according to the type of publication (conference
or journal). Information related to publications are collected from internal sources related to the university
researchers, and the characteristics of publications (impact factor, type, editor, etc.) are collected from LOD
like Thomson Reuters datasets. Inspired by DBpedia (one of the most popular LOD portals), we assume that
LOD portals provide the set of changes periodically in the form of N-Triples files containing added, modified,
and deleted triples. Identifying the impact of these changes when dealing with large amounts of triples is a
particularly difficult and error-prone task if it is not automated. An ontological view is required for identifying
the impact of these changes: (1) at the conceptual level (i.e., which concepts are concerned by these changes and
are they involved in any ETL process feeding the DW?); (2) at the requirements level (i.e., which requirements
are concerned by these changes and are they still satisfied after applying the changes?); and (3) at the physical
level (i.e., which ontological instances in the database management system (DBMS) are concerned with the
changes?). Note that the reasoning skills of the ontology can also be used for inferring new traces of the impact of
events evolution.

This paper is organized as follows: Section 2 overviews the related work related to D)V design
(from internal and external sources) and D)WV evolution. Section 3 gives the background and essential
concepts for the comprehension of our approach. Section 4 presents the DWWV traceability model
underlying the proposed approach. Section 5 describes the proposed co-evolution approach. Section 6
presents the case study (related to the University domain) used to evaluate the feasibility and
effectiveness of our approach. The last section concludes the paper.

2. Related Work

This section contains two main parts: it begins by presenting the main studies proposed for
semantic DW design from internal and external sources, then it presents the main studies proposed
for managing D}V evolution.

2.1. DW Design from Internal and External Sources

Conventional Semantic approaches. Figure 1 illustrates the typical design phases of a semantic
D)WV design. Following the conventional DW design [3], a set of sources and a set of user requirements
are considered as inputs. The requirements definition phase allows the definition of the set of concepts
that are adapted to the D)V context. The selected concepts form the DV model. It can be represented
by a local DW ontology (DWO), representing an implementation-independent schema for the DIV .
The DW model is annotated with multidimensional concepts. A multidimensional view identifies
Fact concepts, which are central concepts to analyze and identify Dimension concepts representing
perspectives of analyzing the facts (e.g., analyzing the number of publications (fact) for each university
(dimension)). This schema can be represented according to a specific conceptual design model. The ETL
phase includes three steps: the extraction of data from sources, their transformation, and their loading
into the target DWO schema using mapping assertions defined between target and source schemas.
Mapping assertions are defined using ETL operators (e.g., union, aggregate, convert, etc.), forming an
ETL workflow. We consider ETL processes that define each concept of the DWO according to the
concepts of sources (Global as View approach). For example, the concept University is fed using the ETL
process formed by the Union of concept University from Source S1 and concept School from Source 2
(Universitypwo = Union(Universityg;,Schoolgy)). The deployment design allows the implementation
of the DWW according to the storage model of the database management system (DBMS) chosen.
Managing the co-evolution of the DWW requires identifying the source of changes and predicting the
impact of changes at any design level.
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Figure 1. Data warehouse (DW) design process. ETL: extract-transform-load; LOD: linked open data.

In this process, the usage of ontologies in DWW design impacts all the design phases [4]. The cited
approaches used the ontology schema. Ontologies were first introduced in DW design to facilitate
the process of integrating sources, by exploiting their sharing and descriptive characteristics [5].
The use of ontologies was then extended to different design levels: they have been used for analyzing
users’ requirements [6], for facilitating the definition of DV schema [7-10], for automating the ETL
process [11,12], and for documenting the integration process [13]. Semantic databases, which are
sources containing their own ontology schema and data, have been involved in D)V design as
candidate sources [14]. These studies used semantic web technologies in a closed world where
semantic sources are internal to the environment of the organization. The integration of LOD in DWW
design was introduced with the vision of opening the internal environment to external sources by
using open semantic spaces published on the web [1].

LOD-driven approaches. Tim Berners Lee, the founder of the web, outlined a set of best practices,
known as the “linked data principles” (https://www.w3.org/Designlssues/LinkedData.html) for
publishing and connecting structured data on the Web: (1) use Uniform Resource Identifiers (URIs) as
names for things. (2) Use HTTP URIs so that people can look up those names. (3) When someone
looks up a URI, provide useful information using the standards: RDF language and SPARQL query
language. (4) Include links to other URISs, so that they can discover more things. Linked data principles
provide guidelines on how to use standardized Web technologies to set data-level links between data
from different sources [15]. Over the last three years, an increasing number of data providers have
begun to adopt the linked data principles, creating a global data space containing billions of assertions
about geographic locations, scientific publications, media, clinical trials, etc. [15].

We identify two main types of approaches that combine LOD and OLAP. The first category
OLAP2LOD deals with multidimensional data published in the web as linked data, usually based on
the RDF Data Cube vocabulary (QB) (https://www.w3.org/TR/vocab-data-cube/) recommendations.
This category of approaches aims to achieve business analytics at the web scale, and different
studies have been proposed to manage issues related to such analysis (e.g., query management
and optimization issues) [16,17]. The second category of approaches follows a LOD2OLAP approach
that manages the incorporation of LOD in the existing DV environment. Such approaches deal with
the issue of opening the D)V frontiers to external data like LOD. Our approach follows this second
category. Two main solutions have been proposed for the co-habitation between LOD in the DWW
environment that can be made before or during querying.

In before querying solutions, the cohabitation can be made at the schema level or at the ETL level.
Concerning the first category, the consideration of LOD is proposed for several purposes, such as
reparation of missing information in internal sources as done in [18], or the unification of cubes—the
internal relational cube translated into RDF data, with RDF cube defined from the LOD as proposed
in [19]. The ETL process was not considered in both studies. The second category of approaches handle
this issue like [20] which proposes an incremental fetching and storing of LOD and other external
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resources on-demand. An ETL process is defined to load external data. Motivated by the fact that
some external sources have a limited time access, a process determines the set of extractions from
external data that cover the missing information with a minimum cost. Deb Nath et al. [21] propose
a programmable semantic ETL framework focusing on the integration of external LOD datasets.
Internal relational resources are then linked to external resources by calculating similarity measures.
Kampgen and Harth [22] propose an approach to interpret linked data as a multidimensional model
and to automatically load the data into the DW. This approach does not consider internal sources.
In the studies presented, the DWW is generally considered as operational, except in the work of [23]
which proposes an approach to construct a DV from scratch, considering both internal and LOD
sources using a common ETL process.

In during querying solutions, we can cite the work of [24], which proposes an OLAP (on-line
analytical processing) framework taking as inputs raw data from relational databases and semantic
web data of different formats. A set of specialized OLAP operators is defined for use in queries.
These operators can operate over multiple semantic sources and merge the outputs. Saad et al. [25]
formalize a multidimensional model in terms of RDF data structures following a conceptual
constellation model. Conventional OLAP operations are then translated into SPARQL queries to
fulfill the target requirements. Kampgen et al. [26] define common OLAP operations on input
linked data modeled using the QB (https://www.w3.0rg/TR/vocab-data-cube/) vocabulary. A set of
OLAP queries are transformed into SPARQL queries to analyze the cube. Results are propagated to
OLAP clients.

The cited studies generally focus on specific design issues (multidimensional identification,
LOD remote time access, LOD schema definition, ETL). These studies illustrate the variety of
scenarios proposed for incorporating LOD sources. Contrary to internal sources, LOD sources
can be integrated in the D)V system at different steps of its design cycle (requirements, ETL,
physical schema). This consolidates the solution of the co-evolution approach we are proposing
in this paper, which considers the DV as an ecosystem composed of interrelated artifacts.

2.2. DW Evolution Management

In this section, we review the most important studies that manage evolution in conventional and
semantic DWs. Data-centric systems evolution has recently gained research attention [27], due to its
great significance and practical importance. Vassiliadis et al. consider schema evolution as a process
that can severely impact the life cycle of data-intensive software projects, as schema updates can drive
dependent applications to crash or deliver incorrect data to end users [27]. Three main approaches for
managing DW evolution have been proposed in the literature [28]: view maintenance, D}V evolution,
and DW versioning. View maintenance was first studied at the beginning of data warehousing,
when DWs were considered as collections of materialized views, defined over sources. These studies
ignore the ETL phase, which is an integral part of current DWs. Versioning consists of adapting the
DWW schema by maintaining the history of previous schemas. Our study tackles the DWW evolution
issue which considers that only one version of the D)V is maintained. Many studies have proposed
how to manage evolution for conventional DWs. For instance, Quix et al. [29] propose an approach
to DWW evolution using complementary meta-data that track the history of changes. Some studies
propose to study the evolution of the DV multidimensional schema [30]. Fan et al. [31] present a
framework for managing schema evolution in DWs using a schema transformation-based approach
to handle the evolution of the source and the DWW schema. Hoang [32] proposes a methodology
that handles requirements evolution in the context of on-demand DWs. Papastefanatos et al. [33]
discuss the problem of performing what-if analysis for changes that occur in the sources schema.
Jovanovic et al. [34] present an evolution approach based on a meta-data repository that integrates the
D)W data and meta-data. A historized meta-data repository is proposed to support schema changes.
Studies like the one of Manousis et al. [28] provide a survey of the most relevant evolution approaches
in conventional DWs. Most of the studies manage evolution at the physical level—they manage
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evolution either from sources or from requirements. Few studies approach the concept of co-evolution by
considering several design levels at once. One such study was conducted by Papastefanatos et al. [35],
where they consider relations, queries, views, and ETL activities. The study presents a method for
performing impact prediction for the adaptation of ETL workflows to evolution events occurring at
their sources. Munoz et al. [36] propose a set of design measures related to ETL design used to predict
the effort associated with the maintenance tasks of ETL processes. El Akkaoui et al. [37] propose a
model-driven framework that supports the maintenance of ETL models (based on Business Process
Model and Notation BPMN) according to data source evolution. Papastefanatos et al. [38,39] propose
a set of metrics to predict the vulnerability of relational DV modules to future changes. The above
studies manage evolution from internal sources usually having a relational formalism.

The evolution of semantic DWs remains an open issue, and efforts achieved in the context
of conventional DWs should be revisited for semantic DWW design. Regarding the evolution
management of semantic-driven DWs, few recent studies have been proposed. Romero et al. [40]
proposed to manage the evolution of a mediator integration system using ontologies as intermediary
schema. Unlike D)V systems, mediators do not manage ETL or the persistency of integrated data.
Jovanovic et al. [41] present a semi-automatic method for managing the evolution of events occurring
on requirements. Their approach uses a domain ontology to automatically explore relationships
between concepts. These studies do not consider semantic datasets (neither internal nor external
sources), and no study considers the evolution of design artifacts and their correlations. Even if
these studies use ontologies, they consider them as intermediate schema to unify the sources and the
target DW.

3. Background

In this section, we provide some basic definitions related to co-evolution management and some
related to LOD sources.

3.1. Co-Evolution Management

Co-evolution is a term originating in biology that has been borrowed in software development to
state that modification in one representation should always be reflected by corresponding changes in
other related representations to ensure the consistency of all involved software artifacts [42]. In sharp
distinction to traditional software systems, data-intensive system evolution has hardly been studied
throughout the entire lifetime of the data management discipline [43].

Co-evolution management follows a set of well-defined activities. Starting with a consistent
modeling ecosystem in its original version, the executed phases are as follows [44]:

e change detection: consists of identifying all applied changes in the model,

*  impact analysis: consists of the determination of the impacts of the applied changes on diverse
kinds of artifacts,

* change propagation: consists of the actual propagation of changes to ultimately migrate the
artifacts (to version v1),

e  Validation: this step is optional, it consists of the validation of the migrated artifacts.

In this paper, we adapt these activities to the DWW system fed by internal and external sources.

3.2. LOD, Ontologies, and Knowledge Bases

One interesting characteristic of LOD is that they are structured by ontologies that define the sense
of their knowledge bases (KBs) [45]. Ontologies are usually formalized in Ontology Web Language
(OWL) standard, formalized using a description logic (DL) formalism. In DL terminology, a KB is
composed of two components: the TBOX (terminological box) stating the intentional knowledge (also
called the ontology schema) and the ABOX (assertion box) stating the extensional knowledge or the
instances. Formally, the TBOX is defined as 5-tuples: < C, R, L, Def(R), Ref(C) >, where:
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C: a set of concepts of the TBOX

L: a set of literals (e.g., numbers, strings, or dates)

* R:aset of relationships between concepts or between a concept and a datatype. For some KB3s,
every literal is considered as an instance of its datatype.

Def: R = Cx (C U L) corresponds to the relation definition, where Def(r) = (dom(r), ran(r)) for
reR

Ref: C — (Operator, Exp(C,R)). Ref is a function defining terminological axioms of a DL
TBOX. Operators can be inclusion (E) or equality (=). Exp(CR) is an expression over
concepts and relationships using constructors of description logics such as union, restriction, etc.
(e.g., Ref(Student)—(C, Person M (3 follows.Course))).

Instances of the ABox that represent the extensional part of a source can be formalized as follows:
< I, Pop, Formatrgox, Format; >, where:

I: the set of instance (the ABOX)

e Pop: C — 2! corresponds to the concept instantiation.

PhyFormat: represents the physical format used for the instances part I.
PhyFormatTpox: represents the physical format used for the model part TBOX.

For example, for LOD sources, the schema and instances are stored using the same graph-based
representation. LOD representations are based on the RDF language (Resource Description
Framework: https://www.w3.0org/RDFE/). RDF is a set of 4-tuple < s,0,p,g > forming an RDF
quad, where its subject s has the property p, and the value of that property is the object 0, and the graph
label is g. Note that the graph label ¢ can be omitted, in which case the triples are considered as part of
the default graph of the RDF data-set. Examples of statements from our case study are: (Student#1,
follows, Course#1), (Student#1, type, Student), (Student, subClassOf, Person).

Note that DL formalism also captures the knowledge of conventional conceptual schemas
of relational databases like Entity /Relationship (ER) or Unified Modeling Language (UML) class
diagram [46], which makes our representation generic for conventional internal sources and external
sources. Different studies advocate defining the ETL process at this conceptual level, in order to
facilitate the integration process [47], which is the approach we follow in this paper.

In the following, we use this formalization as a basis for defining the D)V design model that
underlies our proposed co-evolution management approach.

4. DWW Traceability Model for Managing Co-Evolution

We propose a metamodel presenting the co-dependent artifacts used in DW design considering
both internal and external sources, namely: requirements, ETL, and DW model (conceptual artifacts
and physical storage artifacts). The model helps to identify the parts of the overall configuration that
are most prone to being affected by the changes. Several approaches have been proposed to detect and
manage traces in the context of DWWs. We assume that traces are available and correctly maintained.

In our work, we use the traceability model that we proposed in [48], the goal of which is to
keep traces of the DW during its design cycle. The model is illustrated in Figure 2 as a UML class
diagram. The model represents each design phase (framed in a box in the figure) including its main
design artifacts. The central part of the model is related to the ontology model OntologyResource class.
Based on the previous formalization (Section 3.2), this class subsumes three main classes: Concept,
Role and Instance. Note that the OntologyResource class in the model designates the resources of sources
(internal or external) and those of the DWO. Each ontology has a unique identifier (the URI), which is
associated to each resource name composing the resource identifier. These resources are identified
to satisfy some given requirements (Requirement class). The set of resources are alimented using an
ETL workflow composed of a set of ETL operators that defines the OutputSet (an OntologyResource of
the DW) in terms of an expression InputSet (DL expression over resources of internal and external
sources). Skoutas and Simitsis [11] identified ten generic ETL operators for integrating internal
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data sources into the D)V system, namely: Extract, Retrieve, Filter, Union, Aggregate, Convert, Join,
Sort, Merge, and Split. We introduce new ETL operators for managing £OD sources that cover
the integration scenarios cited in Section 2.1: context operator (used for identifying LOD concepts
to extract), synchronize (for synchronizing the internal ETL flow with the external flow), and the
query operator for unifying the result of an ETL flow required by a given with the internal DW.
We classify these operators into five main classes: Source operators, Transform operators, Store operators,
Flow operators, and Query operators. The set of operators of each group is defined as enumerations in the
model. Finally, the set of resources used are translated to their physical format using a set of defined
translation rules.

The traces between design artifacts are illustrated using the trace links presented by the stereotype
<< Trace >>. Each TraceLink involves the source of the trace and its target. For example,
concept University (OntologyResource class) is the source of a trace, and the ETL process alimenting
this concept is the target. Some TraceLinks require the definition of trace rules (TraceRules class) if the
target element is generated from its source using defined rules (e.g., translation from the ontology
layout to the DWW physical format). Source and target trace elements are defined in the model

for each design phase. These traces facilitate the identification of change impact. For example,
concept Organization can be considered as important since it subsumes other concepts (University,
Academic press, Faculty, etc.). One requirement can be considered as sensitive if it involves different
concepts of the DW. We followed a meta-modeling approach for the definition of this traceability
model. The ontology meta-model (class OntologyResource) of the DV is connected to the traceability
model as presented in Figure 3 (upper part). This figure is illustrated using Protege editor, where the
ontology meta-model is extended with the traceability model described. The ontology illustrated in
this figure is a fragment of Lehigh University BenchMark (LUBM) benchmark ontology that will be
used in the case study section. The adoption of a meta-modeling approach is explained by the fact that

traceability data are considered as meta-data. Additionally, this makes the approach independent of
any particular modeling technique.
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Figure 2. DWW traceability model for managing co-evolution.
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Note that the DBMS may keep track of meta-data and some ETL tools also keep track of the ETL
processes, but it is achieved at the physical level and is not centralized in a single model. Extending the
ontology model by the traceability model allows traces to be defined in a common model and allows
semantic identification of all correlations between design constructs of different levels (ontology, ETL,
requirements, etc.). This yields a conceptual representation of event changes (concepts, relationships,
specializations), when the final DWW model normally lacks these concepts. The ontology is also used to
reason on traces, and ontology editors offer powerful visualization tools (Figure 3).

5. Evolution Management Approach

Our general proposed approach is illustrated in Figure 4. The approach identifies the changes
of LOD datasets and their impact on the DWW constructs at different design levels. Two main types
of changes are identified for LOD sources [16,49]: simple and complex changes. Simple changes
(addition, deletion, and modification of triples) are meant to capture fine-grained evolution events.
Complex changes are defined on top of simple changes to capture more coarse-grained changes
(e.g., schema changes, groupings of triple additions). Because it is unrealistic to capture all possible
evolution types of complex changes that can be defined, simple changes can be considered as a “default”
set of changes for describing evolution types [49].

For each of the above events, the approach manages co-evolution by annotating D)V constructs
(DWO fragment) affected by the event and by applying the changes. We propose a co-evolution
management approach that follows these steps:

1. Parsing the input files: The LOD datasets that we analyzed and their different versions
reflecting evolution events are available as ntriples files. Note that the files can be available in other
formats serializing RDF data (e.g., N3 and Turtle). Our approach first considers a parser that analyses
the input files (i.e., ntriple files of changes). The files concerning each type of change (add, delete,
modify) are provided separately. The files can be visualized by the designer using Protege editor.

In these files, the set of changes concerning the dataset and those concerning the schema are
declared without distinction as triples. This first step of our approach aims to semantically define
the set of changes by distinguishing the data from schema changes. For example, the “add” file can
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include (American_Journal_of_Business, academicDiscipline, Business) as a triple of type instance
addition and (publisher, type, Property) as a property addition. Because such triples are not intuitive
enough for human designers, our approach parses the files in order to identify the concepts and all
their instances that are concerned by the changes. This identification is achieved using a java script
that reads the files using the OWL API (http://owlcs.github.io/owlapi/).

The result of this parsing is a set of changes that belong to the space of potential events
comprising the Cartesian product of two sub-spaces: the space of hypothetical actions (addition,
deletion, and modification) over the space of resources of the LOD knowledge base (Concept,
Role, and Instance). Note that annotation properties related to Wikipedia (like WikiPageExtracted,
WikiPagelD, label, ...) are considered as annotations. they are reflected only in the DWO ontology
model, and are not propagated.

Once the concept representing the first impact of change management is identified, it is propagated
to the other design artifacts. Our approach identifies the concepts that are concerned with the changes
in the DWO using the ETL processes. That is, instances of the meta-concept ETLProcess in the ontology
(representing the ETL workflow composed of a set of ETL operators). The identification of the ETL
processes impacted by the change is the first step, because that is what links the DW schema with
its sources. Note that we consider a Global as View (GaV) approach for defining the ETL processes,
which is the approach usually followed in DW design. The GaV approach advocates for defining
the concepts of the target schema (the DWO) in terms of the sources” schemas (internal and external
sources). We also assume that the mappings between sources and target data stores are achieved
at the schema level (not at the instance level). After identifying the set of ETL processes concerned
by the evolution event, the set of artifacts concerned by this event are then identified using a change
propagation mechanism described in the next step.

The changes concerning design constructs (requirements, ETL) can also be defined in ntriples or
OWL files, since our model defines all these constructs as ontological concepts. In this case, the files
must have the same meta-model extension by the traceability model. The files are parsed similarly to
match between concepts of the input files and concepts of the DWO. A simpler approach is to manually
define these changes by the designer, since they occur less frequently than LOD evolution events.

SOURCES Requirements CO-EVOLUTION MANAGEMENT
Definiti
N efrinition e
M "[;G e
TS, —|—0Apply changes ‘

Propagate changes

- . Parsing
SNEP =
YaGOo T u Changes events J

] B 5
ETL Reasoning o

’flu o (*.nt, *.rdf, etc)
Wy @" SDW Ontology
]

=+ + = Contextual mappings e Metadata 23
...... -» ETLmappings management —
Approach flow -

C

Figure 4. Proposed approach.

2. Propagating the changes: The core step of our approach consists of propagating the identified
evolution events. We propose a concept-flow analysis algorithm entitled PropagateChange (presented in
Algorithm 1) to identify the concepts concerned by the changes. When an evolution event is tested,
the impact of the event is automatically computed throughout the ontology subset affected by the
event. After the identification of the first impact of the evolution event on the DWO (the ETL processes
concerned) in the previous step, Algorithm 1 propagates this impact. The propagation is achieved by
identifying the set of concepts C of the DWO that are involved in the ETL processes identified. Then,
the set of concepts related to C are also identified (Usage (C) in Algorithm 1, line 2).
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Example: Assume that the following ETL processes are identified:
Publisherpwo = Publisherpppeqi; Union AcademicPressygg,.

An evolution event on AcademicPress will identify this ETL process as the first impact and
then Publisherpwo as the second impact. The set of concepts related to Publisherpyo are identified
(e.g., Publication). The set of requirements involving these concepts are identified. For instance,
requirement R1 analyzes the number of publications for each university, and it thus involves concept
Publication in its parameters.

To do so, the algorithm uses trace links (instances of class TraceLink in Figure 2). We identify two
types of trace links: defined and inferred links. Reasoning on trace links is based on a transitive rule
used to identify new traces. This rule states that if object x is related to object y and object y is in turn
related to object z, then object x is also related to object z. The rule is formalized in Semantic Web Rule
Language (SWRL) as follows:

Source(?T1, 7X), Source(?T2, ?Y), Target(?T1, 7Y), Target(?T2, 7Z) -> Target(?T1,7Z).

In this rule, Source(?T, ?X) (resp. Target(?1,?Y)) defines that a trace link T has design element
X as source (resp. element Y as target). Source or target elements can be any TraceElement, that is,
any instance of the meta-concepts extending the ontology meta-model as illustrated in Figure 3
(DWO concepts, requirement concepts, ETL concepts, etc.). The algorithm relies on the results of an
ontological reasoner (we used Pellet reasoner) to get inferred trace links. The impact of the evolution
event is thus propagated to all design constructs of the concepts impacted by the change (Algorithm 1,
lines 3—4). This final subset of a concept impacted by the change is consequently identified by including
both its immediate and its transitive consumers. The impacted concepts are added into a queue to be
processed in the next step for applying the changes (Algorithm 1, line 5). For each processed concept,
its meta-concept is identified to apply the adapted evolution process (Algorithm 1, line 9).

Algorithm 1 Change Propagation Algorithm

Input: (1) an event e over a concept C,
(2) the ontology model extended by the traceability model,
(3) Q: Queue of concepts concerned by the event (Q = @)

Output: the fragment of the ontology impacted by the event
Enqueue (Q, usage(C))

for each TraceLink trace involving C do
Get concepts C’ included in trace

Enqueue (Q, C')

end for

while Q # @ do
C = Dequeue Q

Identify meta-concept of C % ETL process, Requirement or DWO concept
ApplyChange (C,event e)

end while

We used Protege editor to visualize the fragment of the DWO concerned by the evolution events.
Protege offers different visualization plugins. We chose the OntoGraph plugin, which provides a
visualization in the form of a graph. Figure 3 (lower part) illustrates the ontology fragment involved
with concept Work (i.e., research works) in LUBM ontology. Note that in the figure the concept
Conference is provided from DBpedia LOD, and other concepts defining design constructs are also
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identified (by their meta-concept). Note also that this mechanism propagates the changes regardless
of the first impact, and consequently allows a forward and a backward strategy propagation of changes.
Backward strategy refers to the ability to follow the trace links from a specific artifact back to its sources,
from which it has been derived. Forward strategy refers to following the trace links to the artifacts that
have been derived from the artifact under consideration. In this step, the impact of evolution events is
propagated to the main design artifacts (source and target).

3. Applying the changes: At this step, the DWO can be reshaped to adjust to the new semantics
incurred by the event. The list of changes is presented to the designer so that she can validate or reject
some changes. This last step applies changes using the following rule: ON <event> TO <construct>
THEN <policy>. The combination of events and annotations determines the policy to be followed
for the handling of a potential change. For each annotated concept, the corresponding evolution
policy is applied. For some cases, designer intervention is required to decide what should be done.
We distinguish the following scenarios:

(i) Event in the DWO: This scenario concerns changes in DWO concepts (to be stored in the
DW). We define the evolution policy for each change type and for each design level as follows.
We distinguish the schema level from the instance level. Table 1 summarizes the change policies
required for each type of change.

If the event is an addition of a concept or a role from the LOD knowledge base, two types of
additions are distinguished: adding a new concept C in the LOD knowledge base, or adding a
sub-concept to concept C alimenting the DWW (i.e., extending the hierarchy of concepts). In the first
case, no traces are identified because the new concept cannot be included in any ETL process. If the
designer chooses to include this concept, this scenario requires redefining the design, which has been
treated in existing studies (Section 2.1). We focus on the second scenario of addition. In this case,
the ETL traces are identified. This addition event is then propagated to the design artifacts detected
by Algorithm 1 (requirements and DWO). The new concept is added to the identified requirement
parameters. For instance, requirement R1 analyzes the number of research works for each university,
and thus involves ResearchWork in its parameters. The addition of a new type of ResearchWork will
impact this requirement. The new concept is added as an instance of the meta-concept “TargetElement”
of the “TraceLink” concerning R1. The new concept may include a set of instances, which requires the
re-execution of the identified ETL traces (processes).

For example, the ETL process ResearchWorkpywo = Union (Workg;,Workg,), and Source S2 adds
a new concept C (subclass of Work) in its hierarchy. After identifying the traces, the impacted ETL
processes must consider this new concept. The maintenance of the ETL process at the implementation
level will be described in scenario (iii).

If the event requires adding instances Inst, the approach first identifies the set of classes C,
such as (Inst rdf:type C). The class is described in the input file if it is well-formed, otherwise it is
possible to retrieve it from the SPARQL endpoint of the LOD dataset. Then, the same process as
described previously is achieved: the ETL processes involved, the set of classes of DWO, and the set
of requirements concerned by the change are identified as traces. The ETL processes identified are
re-executed to load the new instances.

Modification events may concern the schema level (concepts and role) or the instance level.
The modification of concepts and roles requires the identification of traces concerning the ETL processes,
the set of DWO concepts, and the set of requirements. The concept/role modified is updated in these
traces. In cases where the type of role changes, the update of the ETL process requires the validation of
the designer and its re-execution. The modification of instances (Inst) requires first identifying the set
of classes C (Inst rdf:type C) of the LOD knowledge base, then follows a similar process described for
concepts and roles.

Deletion events require more careful treatment since they can impact some requirements and thus
analysis possibilities. The validation of the designer is required for these events. A deletion event of a
concept or a role first identifies the set of traces (ETL processes, DWO, and requirements) impacted by



Information 2018, 9, 174 12 of 19

the event. The concept/role is then deleted from ETL processes and from the requirement parameters.
The modified ETL processes are first validated by the designer and are then re-executed. The deletion
of instances is easier to achieve. It requires the identification of traces and the re-execution of ETL
processes concerned by the event.

Table 1. Change management policies. DWO: DWW ontology.

Event on Construct Policy
Identify ETL traces (ETL activities)
Identify DWO traces
Add Concept (in hierarchy)/Add Role Identify requirements traces

Add Concept/Role to requirements parameters
Re-execute ETL activities

Add new Concept Redefine Design
Get Class (rdf:type)
Identify ETL traces (ETL activities)
Add Instance Identify DWO traces

Identify requirements traces
Re-execute ETL activities

Identifiy ETL traces (ETL activities)
Identify DWO traces
Modify Concept/Role C Identify requirements traces
Update C in traces
if type of Role changes: Re-execute ETL activities (requires validation)

Get Class (rdf:type)
Identify ETL traces (ETL activities)
Modify Instance Identify DWO traces
Identify requirements traces
Re-execute ETL activities

Identify ETL traces (ETL activities)
Identify DWO traces
Identify requirements traces
Delete ETL activities containing C (requires validation)
Delete C from requirements
Re-execute ETL activities

Delete Concept/Role C

Get Class (rdf:type)
Identify ETL traces (ETL activities)
Delete Instance Identify DWO traces
Identify Requirements traces
Re-execute ETL activities

(ii) Event in requirements constructs: An addition event in the requirements indicates the
addition of a new requirement (performed by the designer). In this case, the requirement and its
definition (defined in input file) are added in the traceability model. If the requirement needs new
concepts, this is managed in the first scenario (i). Modification events are handled similarly by
modifying related concepts in the traceability model. A deletion event is handled by the deletion of
the requirement in the traceability model (without the deletion of the concerned concepts). For all the
events, the traces are automatically updated using the reasoning rule defined.

(iii) Event in ETL processes: An evolution event in the ETL process may concern any ETL activity
(input, output, or ETL operator) performed by the designer. All types of events require the re-execution
of the new/modified ETL process. This can be achieved in two ways: (i) the re-execution of the ETL
process concerned. Each ETL scenario is coded as PL\SQL stored procedures in the DBMS (Oracle in
our case). (ii) The use of the Protege Plugin for Oracle Database (https:/ /protegewiki.stanford.edu/
wiki/Protege_4_Plugin_for_Oracle_Database), which provides the ability to view, edit, and save
ontologies in Oracle Database with Protege Desktop (Figure 5). This approach can be more suitable,
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as it provides a visualization tool associated to traces. Note that this option may not be available for all
semantic DBMSs, which do not provide plugins for ontology editors.
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Figure 5. Protege plugin for the Oracle semantic database management system (DBMS).

The deletion of an ETL process requires the validation of the designer if it concerns its
output concept, since this will imply a concept in the DV that will not be alimented by instances.
The consistency of the DWO is checked using a reasoner. Note that evolution events may also concern
a new translation rule. Our model stores the translation rules. If new rules are needed (in the case of a
new storage design model), they can easily be stored in the proposed model to be executed. However,
these events require the implementation of the rules to be executed in the DBMS. These evolution
events are not implemented in our approach, but they are supported by the proposed model.

6. Case Study and Experiments

We conducted a set of experiments using the LUBM benchmark (http://swat.cse.lehigh.edu/
projects/lubm/) related to the University domain. LUBM provides an ontology schema called
Univ-Bench which describes universities, departments, the activities that occur at them (courses,
research activities, programs, publications, etc.), and the actors related to these activities (students,
teachers, researchers, etc.). LUBM also provides a data generator tool (called UBA) used to create data
over Univ-Bench ontology in the unit of a university. UBA provides synthetic data with varying size.
We used these data-sets to simulate internal sources. We considered Univ-Bench as the DWO (Figure 6).
We also considered LOD as external sources, which were: DBpedia (http://wiki.dbpedia.org/),
Yago (https://www.mpi-inf. mpg.de/departments/databases-and-information-systems/research /
yago-naga/yago/), Scholarlydata (http:/ /www.scholarlydata.org/dumps/), and Thomson Reuters
(https:/ /permid.org/download) LOD. We used the 14 queries of LUBM to express requirements.
We defined ETL processes for each DWW concept from an internal source and from at least one
LOD source.

The LOD datasets are usually available as ntriples files. DBpedia extracts structured information
from Wikipedia, interlinks it with other LOD, and freely publishes the results on the Web using
Linked Data and SPARQL. DBpedia release processes are heavy-weight, and releases are sometimes
based on data that are several months old. DBpedia-Live solves this problem by providing a
live synchronization method based on the update stream of Wikipedia. The set of changes are
provided as ntriples files (http://live.dbpedia.org/changesets/) that we considered as input files to
test our approach. We considered 60 files (20 files for addition events, 20 for deletion, and 20 files
for modification events) chosen so that they included concepts defined in Univ-Bench ontology.
The distribution of events in these files is almost 80% events related to instances and 20% related
to schema changes. In order to balance the set of events, we considered Bdpedia and other
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LOD (Yago, Scholarlydata and Thomson Reuters) by downloading datasets (ntriples) related to
the University domain (e.g., Author, AcademicJournal, AcademicPress, ResearchProject, Book)
matching with Univ-Bench conceptualization, that we considered as triples randomly concerned
by the three types of events (addition/deletion/modification). For instance, we considered the
AcademicPress concept and its instances, downloaded from Yago LOD as a new concept enriching
the hierarchy of Organization concept of Univ-Bench ontology (schema addition event). All the
steps of our approach were implemented in a Java script that uses OWL API for interacting
with the ontology and the LOD. We implemented this minimal prototype only for defining the
input sources and running the propagating and evolution algorithms. We used Protege editor to
visualize the DWO and Oracle Database Management System (RDF Semantic Graph 12c version
(https://docs.oracle.com/database/121/RDFRM/title.htm)) to implement the DW (Figure 7).
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Figure 7. D)V implementation in Oracle semantic DBMS.

The first experiment shows the amount of triples (inserted, deleted, or modified) in the DWW after
applying the approach for change management. The purpose of this experiment was to illustrate the
impact of the evolution management at the instance level of the DW. Figure 8 shows the amount of
triples asserted, the amount of triples inferred (using the ontology reasoner Pellet), and the amount
of triples inferred using the reasoning rule we defined. We could assess the effort gain of a designer
using the highlighting of affected concepts compared to the situation where this process had to be
performed manually.
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Figure 8. Amount of triples (asserted and inferred) affected by the changes.

Figure 9a illustrates the amount of nodes (number of nodes and percentage) impacted by changes
at different design levels: requirements, DWO, and ETL. We considered the set of concepts (including
the traces) and roles (attributes and relationships) as nodes. The goal of this experiment was to illustrate
the impact of co-evolution management at the schema level of the DWW, and the number of design
constructs affected by changes. The designer knowledge of these constructs and their visualization is
an integral part of the co-evolution management.

Figure 9b illustrates the precision of the process proposed for managing the changes. The precision
was calculated as follows: the number of instances affected by the changes/total number of instances
that should be affected (from the LOD). Since there is no “standard” for the precision measure in our
study context, we used study [50] to define this measure. We adapted the proposed precision measure
to our context of DWW co-evolution management. We can conclude from the figure that the DWW could
be effectively adapted to different kinds of events. Exceptions regarding the three types of events
are due to the fact that for some concepts from the LOD that had to be added/deleted /modified,
our process did not find a match with the corresponding concepts of the DWO.

As explained in the previous section, the process for propagating the changes starts by projecting
the change events on the ETL processes, because they describe the link between the sources and the
DW. During the parsing of files, our matching is strictly terminological (term matching). For instance,
for the event <Event Add on Construct Concept>, the process tries to find if concept C is used in the
ETL processes and then identifies the DWO concepts and the requirements concerned by this event.
Because this matching is terminological, some concepts were missed (e.g., AcademicJournal is part
of the evolution events that should be detected as a subclass of Publication). The matching can be
enriched with other types of ontology matching mechanisms (semantic, conceptual, etc.), which is
planned in further research.

Finally, we analyzed the set of requirements that were impacted to check if they can be satisfied
after change propagation. The set of requirements can be translated to queries reflecting the analysis
performed on the D)V. We noticed that even for requirements where deletion events occurred,
they could be answered after applying the changes. This is because the set of requirements are those of
LUBM, referring to concepts from local sources that we extended to reference concepts from external
sources. In the case of addition, modification, or deletion, the results of queries may change but
requirements remain satisfied.

Note that comparing these results with other state-of-the-art papers is difficult to achieve because
there is no study managing DV co-evolution, and in the context of D}V evolution, most studies focus
on the automation of the evolution process and not the precision quality of the results. In the context
of database evolution management, we consider [50] as the most detailed study—their precision results
were above 90%.
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7. Conclusions

Building a DWW with internal and external data published in LOD formats requires managing the
evolution of DWWs that deal with “open world” sources and their specific characteristics. We proposed
and implemented a co-evolution management approach that identifies the impact of changes
semantically, for all design stages of the D)WV. Our approach relies on a coherent maintenance of
traces. The goal of the approach is to provide a complete and semantic view of the real impact of
the evolution event on the DW. Our approach was tested using different LOD, LUBM benchmark,
Protege editor to visualize the impact of changes, and Oracle semantic DBMS to implement the DIWV.
Our future research will include: (i) automatic detection of the most relevant changes in LOD that
can be synchronously triggered in the DW. (ii) Management of fine-grained changes like constraints
and multidimensional events. (iii) Managing the evolution events on the decisional application
level (OLAP queries and operations). (vi) Managing different versions of the DWW to track the most
relevant changes.
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