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Abstract: Aiming at a special type of ill-defined complicate multiple attributes group decision-making
(MAGDM) problem, which exhibits hybrid complexity features of decision hesitancy, prioritized
evaluative attributes, and unknown decision-makers’ weights, we investigate an effective approach
in this paper. To accommodate decision hesitancy, we employ a compound expression tool of
interval-valued dual hesitant fuzzy unbalanced linguistic set (IVDHFUBLS) to help decision-makers
elicit their assessments more comprehensively and completely. To exploit prioritization relations
among evaluating attributes, we develop a prioritized weighted aggregation operator for
IVDHFUBLS-based decision-making scenarios and then analyze its properties and special cases.
To objectively derive unknown decision-makers’ weighting vector, we next develop a hybrid model
that simultaneously takes into account the overall accuracy measure of the individual decision matrix
and maximizing deviation among all decision matrices. Furthermore, on the strength of the above
methods, we construct an MAGDM approach and demonstrate its practicality and effectiveness using
applied study on a green supplier selection problem.

Keywords: multiple attributes decision-making; group decision-making; unbalanced linguistic set;
prioritized average operator; maximizing deviation model

1. Introduction

After decades of extension and exploitation research [1], multiple attributes decision-making
(MADM) approaches have been widely applied to many practical problems in social and technical
systems, such as supply chain management [2–5], business intelligence evaluation [6,7], emergency
management [8–10], teaching evaluation [11], product design evaluation [12], energy management [13],
and waste management [14], among others. Due to increasing complexity in socioeconomic scenarios,
and limitedness and uncertainty in human cognition, a single decision-maker is quite often incompetent
when confronted with complicated decision-making scenarios. Therefore, multiple attributes group
decision-making (MAGDM) methodologies have been developed and deeply studied regarding
the strength of fuzzy tools for preferences expression [15–23], such as fuzzy sets [24], intuitionistic
fuzzy sets [25,26], hesitant fuzzy sets (HFS) [27,28], dual-hesitant fuzzy sets (DHFS) [29–32],
etc. Especially, HFS and DHFS are capable of addressing the common phenomena of decision
hesitancy, that is, decision-makers are often irresolute about possible membership degrees to a fuzzy
set [27,28]; comparatively, DHFS manages to reflect decision hesitancy more completely than HFS by
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accommodating both membership degrees and non-membership degrees when depicting decision
hesitancy [29].

Regarding ill-structured decision-making problems with higher complexity that cannot be
quantified by the above-mentioned fuzzy tools, effective MAGDM approaches have also been put
forward by employing the linguistic term set [33] to qualitatively express decision-makers’ opinions
directly [34,35]. However, decision-makers quite often approximate the most-preferred linguistic label
in a certain linguistic term set but still hesitate about possible membership degrees or non-membership
degrees with regard to that linguistic label [36]. Consequently, by fusing the merits of both the linguistic
term set and the hesitant fuzzy set, more effective and comprehensive expression tools have been
further introduced and exploited to construct multiple attributes decision-making approaches, such as
hesitant fuzzy linguistic set [37,38], interval-valued hesitant fuzzy linguistic set [36,39], dual-hesitant
fuzzy linguistic set [40], interval-valued dual hesitant fuzzy linguistic set [41], etc. As can be seen,
nearly all the above approaches drew on the presumption that linguistic labels must be distributed in
a symmetrical and balanced manner [34,35]. However, practical investigations [42,43] have indicated
that decision-makers preferred non-uniform or asymmetric linguistic term sets, i.e., the unbalanced
linguistic term set (ULTS) [44], to express their complicate assessments more precisely and objectively.
Most recent studies [45,46] also verified that ULTS attains better adaptability and flexibility. So,
coherently, to tackle complex decision-making more effectively under ill-structured scenarios with
decision hesitancy, there are actual needs to develop hybrid hesitant fuzzy linguistic expression tools
that are capable of inheriting advantages of both ULTS and hesitant fuzzy sets. However, thus far,
to the best of our knowledge, only Qi et al. [47] developed the interval-valued dual hesitant fuzzy
unbalanced linguistic set (IVDHFUBLS) and its power aggregation operators. Although IVDHFUBLS
manages to be more effective and flexible in depicting complicated assessments with interval values
for both membership degrees and non-membership degrees to a designated unbalanced linguistic
label, their MAGDM approaches were only developed to cope with the special type of decision-making
problems with mutually supportive assessments in decision matrices. Obviously, it is still substantively
necessary to investigate various hesitant fuzzy unbalanced linguistic expression tools and exploit their
derivative multiple attributes decision-making approaches to resolve practical complex problems.

In fact, in determination of appropriate weights for attributes in MAGDM, decision-makers are
generally required to reciprocally compare evaluating attributes so that AHP-like method can be used
to derive attributes weights [48]. However, quite often, due to limited expertise on ill-structured
problems, decision-makers need many iterations to achieve acceptable consistency or are even
unwilling to fulfill the reciprocal comparisons, while on the contrary, for difficulties of high uncertainty,
Delphi-like analytical processes provide decision-makers with ways of utilizing collective knowledge
to approximate fairly accurate prioritization relations among evaluating attributes [49,50]. For instance,
considering four indicators to select emergency response plans for chemical spills events: response
efficiency (A1), environmental impact (A2), social impact (A3) and cost (A4). If the event location
L1 was in districts with scarce any residence but freeways, decision-makers would naturally deduce
the prioritization relation among the indicators as A1 � A4 � A3 � A2, while if L1 was nearby
a residence district, decision-makers would derive different prioritization as A1 � A3 � A2 �
A4. In viewing of the common existence of prioritization relations among assessing attributes in
multiple attributes decision-making, ref. [49,51] introduced the prioritized average (PA) operator
and the prioritized ordered weighted average (POWA) operator, which provide effective ways with
which to consider decision information from both assessments under attributes and prioritization
relation among the attributes. Since then, prioritized operators have been extended to complicated
decision environments of high uncertainty, such as prioritized operators for decision-making under
intuitionistic fuzzy environments [52–55], multi-granular uncertain linguistic environments [56],
hesitant fuzzy environments [50], dual hesitant fuzzy environments [57], and hesitant fuzzy linguistic
environments [58]. Nevertheless, there is still a lack of investigation on prioritized operators in hesitant
fuzzy unbalanced linguistic environments. Therefore, aiming at resolving these types of practical



Information 2018, 9, 145 3 of 24

multiple attributes decision-making problems with prioritization relation among evaluating attributes,
on the basis of IVDHFUBLS [47], we focus on studying prioritized average operators for IVDHFUBLS
and corresponding effective MAGDM approaches.

To do so, in this paper, we first propose a fundamental prioritized aggregation operator for fusing
preferences in the form of IVDHFUBLS and simultaneously considering prioritization relation among
evaluative attributes, i.e., the interval-valued dual hesitant fuzzy unbalanced linguistic prioritized
weighted aggregation (IVDHFUBLPWA) operator. We then investigate its desirable properties and
discuss its special cases. Further, to objectively determine decision-makers’ weights, which cannot be
obtained up-front in complex problem scenarios, we develop a hybrid model that takes into account
overall accuracy measure of the individual decision matrix and the maximizing deviation among all
decision matrices. Subsequently, on the strength of the above-developed aggregation operator and
decision-makers’ weighting model, an effective approach is constructed to tackle practical MAGDM
problems that take features of decision-makers’ decision hesitancy, prioritization relationships among
evaluative attributes, and unknown decision-makers’ weights.

The remainder of this paper unfolds as follows. Section 2 presents a literature review to discuss the
limitations of existing approaches, thereby showing the motivation of this paper. In Section 3, necessary
preliminaries for the interval-valued dual hesitant fuzzy unbalanced linguistic set (IVDHFUBLS)
are detailed. In Section 4, we firstly define the interval-valued dual hesitant fuzzy unbalanced
linguistic prioritized weighted aggregation (IVDHFUBLPWA) operator and discuss its properties,
as well as special cases; next, the hybrid model is developed for determining unknown weights for
decision-makers; then, an effective MAGDM approach based on the above methods is constructed
in detail. In Section 5, an illustrative example of the green supplier selection problem is given to
demonstrate the effectiveness and practicality of our proposed approach. Finally, conclusions and
future research directions are given in Section 6.

2. Literature Review on Hesitant Fuzzy Linguistic MADM Approaches

With support of fuzzy set and its extensions, classic MADM methodologies have been successfully
extended and enhanced to accommodate complicated decision-making environments in which
decision-makers have imprecise, uncertain, or vague assessments [15], while for those decision
scenarios of ill-structured definition, fuzzy expression tools cannot directly apply. Zadeh [59] thus
suggested employing linguistic variables to facilitate expression of judgments. However, no matter
whether assigning membership degrees to given fuzzy set or utilizing linguistic labels to depict
decision-makers’ complicate judgments, there is a common phenomenon that decision-makers quite
often hesitate among possible values [27,28]. Torra and Narukawa [27] and Torra [28] thus use hesitant
fuzzy set (HFS) to describe the decision hesitancy. In viewing of same importance of membership
degrees and non-membership degrees in depicturing decision hesitancy, Zhu et al. [29] further extended
HFS to dual hesitant fuzzy set (DHFS).

Regarding linguistic decision-making scenarios, Rodríguez et al. [60] introduced the hesitant fuzzy
linguistic term sets (HFLTSs) to allow decision-makers to directly express their uncertain opinions
with possible linguistic labels, based on which the authors then developed a group decision-making
model through comparative linguistic expressions [61]. Using HFLTSs, Beg and Rashid [62] endowed
conventional TOPSIS with the ability to deal with decision hesitancy. From another perspective,
when using linguistic variables to denote their judgments, decision-makers commonly are capable of
efficiently determining the most approximate linguistic term while having decision hesitancy with
regard to the one selected. Therefore, Lin et al. [37] proposed the effective compound expression tool of
hesitant fuzzy linguistic set (HFLS) that employs hesitant fuzzy set to describe decision hesitancy with
regard to the selected linguistic label. Wang et al. [36] then introduced the interval-valued hesitant
fuzzy linguistic set (IVHFLS) to help decision-makers express their decision hesitancy with possible
interval values, on the basis of which they developed a single-person MADM approach. Be aware
that above hybrid linguistic expression tools only took into account possible membership degrees
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but neglected same importance of non-membership degrees; Yang and Ju [40] introduced the dual
hesitant fuzzy linguistic set (DHFLS) by incorporating both possible membership degrees and possible
non-membership degrees. However, in Yang and Ju [40], they also yet investigated a single-person
MADM approach. Qi et al. [41] took a step further to study the interval-valued dual hesitant fuzzy
linguistic set (IVDHFLS) and constructed a multiple attributes group decision-making approach based
on a family of generalized power aggregation operators. Recently, researchers have started to extend
classic MADM methodologies by utilizing the above compound hesitant fuzzy linguistic tools; for
example, Wang et al. [63] developed a MADM approach based on TOPSIS and TODIM methods in
which attribute values take the form of hesitant fuzzy linguistic numbers. As can be seen, recent
studies have verified effectiveness of the compound hesitant fuzzy linguistic expression tools at
eliciting complicate uncertain assessments under ill-structured decision situations.

Unfortunately, all the formerly discussed hesitant fuzzy linguistic decision-making models
presumed that linguistic labels must be distributed in a symmetrical and balanced manner [34,35].
However, Herrera-Viedma and López-Herrera [42] revealed from their studies on information retrieval
system that users (decision-makers) preferred more labels on the right side of a non-uniform or
asymmetric linguistic scale, which further was verified by the experiments of olive sensory evaluation
in Martínez et al. [43]. Herrera et al. [44] thus defined this special type of linguistic variable as the
unbalanced linguistic term set (ULTS) and studied its operations. To a deeper extent, Meng and Pei [45]
developed some weighted, unbalanced linguistic aggregation operators and applied them to a multiple
attributes group decision-making problem; Dong, et al. [46] investigated group decision-making
based on unbalanced linguistic preference relations and proposed a consistency reaching method.
Generally speaking, ULTS attains better adaptability and flexibility than strictly symmetrical or
balanced linguistic term set. However, till now, regarding MADM based on compound hesitant fuzzy
linguistic expressions, only Qi et al. [47] introduced the expression tool of interval-valued dual hesitant
fuzzy unbalanced linguistic set (IVDHFUBLS) and investigated its power aggregation operators.
Despite merits of ULTS into IVDHFUBLS, the group decision-making approach in Qi et al. [47] only
applies to decision scenarios with mutually supportive assessments in decision matrices; nevertheless,
the weighting methods for both attributes and decision-makers were derived from and specific to
the mutually supportive relations. For more clarity, representative hesitant fuzzy linguistic MADM
methods from above discussion and their properties have been compared in Table 1.

Table 1. Representative hesitant fuzzy linguistic MADM methods and their properties.

Authors
Methodology Properties

Linguistic Variable Description of Hesitancy Prioritized
Attributes

Unknown
Decision-Makers’ Weights

Balanced Unbalanced Hesitant
Fuzzy Set

Dual Hesitant
Fuzzy Set

Lin, et al. [37]
√

×
√

× × Single-person MADM
Wang, et al. [36]

√
×

√
×

√
Single-person MADM

Yang and Ju [40]
√

× ×
√ √

Single-person MADM
Qi, et al. [41]

√
× ×

√
×

√

Wang, et al. [63]
√

×
√

× × ×

Qi, et al. [47]
√ √ √ √

× Power aggregation-based
method

This paper
√ √ √ √ √ Deviation-maximizing

method

Furthermore, to determine unknown attributes’ weights in complex decision problems, analytical
hierarchy process (AHP) generally exhibits an effective way with which to obtain relative importance
among attributes [64]. However, AHP method requires precisely consistent judgments for reciprocal
comparisons to proceed, which quite often cannot be guaranteed for complex problems and thus
result in multiple rounds of adjustments or even failure in decision-making, that is, lack of efficiency
to some extent, while, in fact, decision-makers are generally capable of obtaining rather accurate
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prioritization relations among evaluative attributes thanks to their group intelligence and expertise [49].
For example, suppose we choose the following eight attributes to evaluate alterative response solutions
to specific emergency event: response time to start emergency response solution (C1) [9,48], reasonable
organizational structure and clear awareness of responsibilities (C2) [9,48], economic cost (C3) [65],
operability of the response solution (C4) [9,66], monitoring and forecasting potential hazards (C5) [9,48],
reconstruction ability (C6) [9,48], social impact (C7) [67], and environmental impact (C8) [68,69].
Additionally, features of the target emergency event have already been identified as follows: (i) Located
on an intersection of two highways in a sandstorm desert area where no residences are nearby; (ii)
Truck drivers were injured; (iii) A large amount of highly corrosive fluid materials in both trucks
are leaking; (iv) Accident trucks destroyed a critical sand control dam. Then, decision-makers will
efficiently arrive at the prioritization relations among the eight evaluative attributes (C1) � (C4) �
(C2) � (C5) � (C6) � (C3) � (C7) � (C8). Apparently, there is a practical need to further investigate
IVDHFUBLS-based decision-making approaches that exploit the prioritization relations. Therefore,
based on the prioritized average (PA) operator [49], in the following, we firstly develop PA operator
for IVDHFUBLS to address prioritization relations among attributes. To gain more generality of
decision-makers’ weighting method rather than the problem-specific limitedness of the one devised in
Qi et al. [47], we then develop a deviation-maximizing method to objectively derive decision-makers’
weights. Finally, on the strength of these methods, we manage to construct a practical and effective
IVDHFUBLS-based multiple attributes group decision-making approach.

3. Preliminaries for IVDHFUBLS

By fusing the merits of both unbalanced linguistic term set [44] and interval-valued dual hesitant
fuzzy set (IVDHFS) [32], most recently, Qi et al. [47] introduced the effective hybrid expression
tool called interval-valued dual hesitant fuzzy unbalanced linguistic set (IVDHFUBLS), as shown in
following definition.

Definition 1 [47]. Let X be a fixed set and S be a finite and continuous linguistic label set; then,
an interval-valued dual hesitant fuzzy unbalanced linguistic set (IVDHFUBLS) SD on X is defined as

SD =
{〈

x, si, h̃(x), g̃(x)
〉
|x ∈ X

}
, (1)

in which si is an unbalanced linguistic variable from predefined unbalanced linguistic label set S, which represents
decision-makers’ judgments of an evaluated object x; h̃(x) = ∪

[µL ,µU ]∈h̃(x){µ̃} = ∪
[µL ,µU ]∈h̃(x)

{
[µL, µU ]

}
is a set of closed interval values in [0, 1], denoting possible membership degrees to which x belongs to si;
g̃(x) = ∪[νL ,νU ]∈g̃(x){ν̃}= ∪[νL ,νU ]∈g̃(x)

{
[νL, νU ]

}
is a set of closed interval values in [0, 1], denoting possible

non-membership degrees to which x belongs to si. In h̃(x) and g̃(x), µ̃, ν̃ ∈ [0, 1] and 0 ≤ (µU)
+
+ (νU)

+ ≤ 1,
in which (µU)

+ ∈ h̃+(x) = ∪
[µL ,µU ]∈h̃(x)max

{
µU} and (νU)

+ ∈ g̃+(x) =∪[νL ,νU ]∈g̃(x)max
{

νU} for
all x ∈ X.

Generally, sd =
(

si, h̃, g̃
)

is called an interval-valued dual hesitant fuzzy unbalanced linguistic
number (IVDHFUBLN) and IVDHFUBLNs are all elements of IVDHFUBLS.

Definition 2 [47]. Let sd =
(

sk, h̃, g̃
)

, sd1 =
(

si, h̃1, g̃1

)
, and sd2 =

(
sj, h̃2, g̃2

)
be any three IVDHFUBLNs,

λ ∈ [0, 1]; some operations on these IVDHFUBLNs are defined by

(1) λsd = ∪
(sk ,h̃,g̃)∈sd

(
s

λ∆−1
t0

(TF
tk
t0
(ψ(sk)))

,

∪
[µL ,µU ]∈h̃,[νL ,νU ]∈g̃

{{
[1− (1− µL)

λ, 1− (1− µU)
λ
]
}

,
{
[(νL)

λ, (νU)
λ
]
}})

;
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(2) sdλ = ∪
(sk ,h̃,g̃)∈sd

(
s
(∆−1

t0
(TF

tk
t0
(ψ(sk))))

λ ,

∪
[µL ,µU ]∈h̃,[νL ,νU ]∈g̃

{{
[(µL)

λ, (µU)
λ
]
}

,
{
[1− (1− νL)

λ, 1− (1− νU)
λ
]
}})

;

(3) sd1 ⊕ sd2 = ∪
(si ,h̃1,g̃1)∈sd1,(sj ,h̃2,g̃2)∈sd2

(
s

∆−1
t0

(TF
ti
t0
(ψ(si)))+∆−1

t0
(TF

tj
t0
(ψ(sj)))

,

∪
[µL

1 ,µU
1 ]∈h̃1,[µL

2 ,µU
2 ]∈h̃2,[νL

1 ,νU
1 ]∈g̃1,[νL

2 ,νU
2 ]∈g̃2

{{
[µL

1 + µL
2 − µL

1 µL
2 , µU

1 + µU
2 − µU

1 µU
2 ]
}

,
{
[νL

1 νL
2 , νU

1 νU
2 ]
}})

;

(4) sd1 ⊗ sd2 = ∪
(si ,h̃1,g̃1)∈sd1,(sj ,h̃2,g̃2)∈sd2

(
s

∆−1
t0

(TF
ti
t0
(ψ(si)))×∆−1

t0
(TF

tj
t0
(ψ(sj)))

,

∪
[µL

1 ,µU
1 ]∈h̃1,[µL

2 ,µU
2 ]∈h̃2,[νL

1 ,νU
1 ]∈g̃1,[νL

2 ,νU
2 ]∈g̃2

{{
[µL

1 µL
2 , µU

1 µU
2 ]
}

,
{
[νL

1 + νL
2 − νL

1 νL
2 , νU

1 + νU
2 − νU

1 νU
2 ]
}})

.

In Definition 2, tk, ti, tj are the corresponding levels of unbalanced linguistic terms sk, si, sj in
the linguistic hierarchy (LH) [44], respectively; t0 is the maximum level of sk, si, sj in LH. Using the
transformation function defined in following Definition 3, any 2-tuple linguistic representation format
can be transformed into a term in LH.

Definition 3 [44]. In linguistic hierarchies LH = ∪tl(t, n(t)), whose linguistic term sets are represented
by Sn(t) =

{
sn(t)

0 , . . . , sn(t)
n(t)−1

}
, the transformation function from a linguistic label in level t to a label in

consecutive level t′ is defined as TFt
t′ : l(t, n(t))→ l(t′, n(t′)) , such that

TFt
t′

(
sn(t)

i , αn(t)
)
= ∆t′

∆−1
t

(
sn(t)

i , αn(t)
)
(n(t′)− 1)

n(t)− 1

. (2)

In order to compare any two IVDHFUBLNs, following Definition 4 introduces comparison
rules based on a score function and accuracy function. Taking a step further, Definition 5 defines a
fundamental distance measure to calculate separation degree between any two IVDHFUBLNs.

Definition 4 [47]. Let sd =
(

si, h̃, g̃
)

be an IVDHFUBLN, and then a score function S(sd) can be denoted as

S(sd) = ∆−1
t0

(
TFti

t0
(ψ(si))

)
× 1

2

 1

l(h̃)
∑

[µL ,µU ]∈h̃

µL − 1
l(g̃) ∑

[νL ,νU ]∈g̃
νL +

1

l(h̃)
∑

[µL ,µU ]∈h̃

µU − 1
l(g̃) ∑

[νL ,νU ]∈g̃
νU

, (3)

and an accuracy function P(sd) can be denoted as

P(sd) = ∆−1
t0

(
TFti

t0
(ψ(si))

)
× 1

2

 1

l(h̃)
∑

[µL ,µU ]∈h̃

µL +
1

l(g̃) ∑
[νL ,νU ]∈g̃

νL +
1

l(h̃)
∑

[µL ,µU ]∈h̃

µU +
1

l(g̃) ∑
[νL ,νU ]∈g̃

νU

. (4)

Here, l(h̃) and l(g̃) are numbers of interval values in h̃ and g̃, respectively, and ti is the
corresponding level of unbalanced linguistic term si in the LH; t0 is the maximum level of ti in
LH. Subsequently, given any two sd1 =

(
si, h̃1, g̃1

)
and sd2 =

(
sj, h̃2, g̃2

)
, based on S(sd) and P(sd),

we have following comparison rules:

(1) If S(sd1) < S(sd2), then sd1 < sd2.
(2) If S(sd1) = S(sd2), then

(a) If P(sd1) = P(sd2), then sd1 = sd2;
(b) If P(sd1) < P(sd2), then sd1 < sd2.
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Definition 5 [47]. Let two IVDHFUBLNs sd1 =
(

si, h̃1, g̃1

)
and sd2 =

(
sj, h̃2, g̃2

)
, lh̃1

, lh̃2
, lg̃1

, and lg̃2

are the lengths of h̃1, h̃2, g̃1, and g̃2, respectively, which represent number of elements in the sets of h̃1, h̃2,

g̃1, and g̃2. Suppose I1 = 1
n(ti)−1 ∆−1

t0

(
TFti

t0
(ψ(si))

)
, I2 = 1

n(tj)−1 ∆−1
t0

(
TF

tj
t0
(ψ(sj))

)
, in whiche ti and tj are

the corresponding levels of unbalanced linguistic terms si and sj in the linguistic hierarchy LH, and t0 is the
maximum level of si and sj in LH. Then, a distance measure d based on the normalized Euclidean distance can
be defined as follows:

Situation 1. When lh̃1
= lh̃2

= l1 and lg̃1
= lg̃2 = l2, then d(sd1, sd2) =

(
1
2

(
1
l1

l1

∑
k=1

(∣∣∣I1µ
Lj

h̃1
− I2µ

Lk
h̃2

∣∣∣2 + ∣∣∣I1µ
Uj

h̃1
− I2µ

Uk
h̃2

∣∣∣2)+
1
l2

l2

∑
k=1

(∣∣∣I1ν
Lj
g̃1
− I2ν

Lk
g̃2

∣∣∣2 + ∣∣∣I1ν
Uj
g̃1
− I2ν

Uk
g̃2

∣∣∣2))) 1
2

. (5)

Situation 2. When lh̃1
6= lh̃2

or lg̃1
6= lg̃2 , then d(sd1, sd2) =

 1
2

 1
lh̃1

lh̃2

lh̃1

∑
j=1

lh̃2

∑
k=1

(∣∣∣I1µ
Lj

h̃1
− I2µ

Lk
h̃2

∣∣∣2 + ∣∣∣I1µ
Uj

h̃1
− I2µ

Uk
h̃2

∣∣∣2) +
1

lg̃1
lg̃2

lg̃1

∑
j=1

lg̃2

∑
k=1

(∣∣∣I1ν
Lj
g̃1
− I2ν

Lk
g̃2

∣∣∣2 + ∣∣∣I1ν
Uj
g̃1
− I2ν

Uk
g̃2

∣∣∣2)
 1

2

. (6)

Example 1. Suppose we utilize an unbalanced linguistic term set S0 for evaluation, in which S0 =

{N, L, M, AH, H, QH, VH, AT, T}. Figure 1 demonstrates S0 and its mapping in a linguistic hierarchy.
Then, we got two IVDHFUBLNs sd1 and sd2. Let sd1 = (L,{[0.2,0.3],[0.4,0.5],[0.5,0.6]},{[0.1,0.2],[0.3,0.4]})
and sd2 = (VH,{[0.1,0.4],[0.5,0.6]},{[0.2,0.3]}).

Then, by use of Definition 5, we can directly calculate the distance between sd1 and sd2 without
adding any elements into sd2, and we get d(sd1, sd2) = 0.4771.
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4. Proposed Approach for MAGDM Based on IVDHFUBLS

When confronted with complicate practical MAGDM scenarios, decision-makers usually are
inadequate in determining exact weighting information for evaluative attributes due to time limit
or lack of domain knowledge, while they are capable of deriving relatively exact prioritization
relation among evaluative attributes, such as the talent introduction decision-making problem [70],
teaching quality evaluation problem [54], software selection problem [71], etc. In actuality, Yager [49]
acutely noticed the real-world prioritization phenomena among assessing criteria and thus developed
the prioritized average (PA) operator. PA operator has been verified as a fundamentally effective
aggregation operator that enables classic multiple criteria decision-making methodologies to include
prioritization relations among indicators as decision information in their mechanisms [54,70–72].

Therefore, firstly in this section, we develop the fundamental prioritized average aggregation
operator for IVDHFUBLS and study its desirable properties. Next, considering that decision-makers’
weighting information also quite often cannot be subjectively obtained in advance under complex
decision-making environments, we develop a programming model based on deviation maximizing
method to objectively derive weighting vector for decision-makers. Furthermore, based on the
developed prioritized average aggregation operator and the programming model, we propose an
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algorithm for MAGDM under IVDHFUBLS environment in which prioritization relation among
evaluating attributes exists and decision-makers’ weighting vector is unknown.

4.1. Prioritized Average Aggregation Operator for IVDHFUBLS

Definition 6. For a collection of IVDHFUBLNs sdj(j = 1, 2, . . . , n), which are prioritized such that sdj ≺
sdj−1, the IVDHFUBLPWA operator is defined as follows:

IVDHFUBLPWA(sd1, sd2, . . . , sdn) =
T1

∑n
j=1 Tj

sd1 ⊕
T2

∑n
j=1 Tj

sd2 ⊕ . . .⊕ Tn

∑n
j=1 Tj

sdn (7)

=
n
⊕

j=1

(
Tjsdj

∑n
j=1 Tj

)
(8)

in which T1 = 1, Tj = ∏
j−1
k=1 P(sdk) = P(sdj−1)Tj−1 and P(sdk) is the accuracy value of sdk calculated by

Definition 4.

IVDHFUBLPWA operator also can be rewritten as following Theorem 1.

Theorem 1. Let sdj =
(

sj, h̃j, g̃j

)
be a collection of IVDHFUBLNs. By noticing that aggregation results

obtained from Definition 6 have been transformed to the form of interval-valued dual hesitant fuzzy balanced
linguistic numbers (IVDHFBLNs), we have

IVDHFUBLPWA(sd1, sd2, . . . , sdn) = ∪(sj ,h̃j ,g̃j)∈sdj

s n
∑

j=1

T(sdj)

∑n
i=1 T(sdi)

∆−1
t0

(TF
tj
t0
(ψ(sj)))

,

∪
[µL

j ,µU
j ]∈h̃j ,[νL

j ,νU
j ]∈g̃j

{{[
1−

n
∏
j=1

(1− µL
j )

T(sdj)

∑n
i=1 T(sdi) , 1−

n
∏
j=1

(1− µU
j )

T(sdj)

∑n
i=1 T(sdi)

]}
,{[

n
∏
j=1

(νL
j )

T(sdj)

∑n
i=1 T(sdi) ,

n
∏
j=1

(νU
j )

T(sdj)

∑n
i=1 T(sdi)

]}})
.

(9)

Proof.

(1) When n = 1, obviously, it is right.

IVDHFUBLPWA(sd) = ∪
(s0,h̃,g̃)∈sd

(
s

∆−1
t0

(TF
t0
t0
(ψ(s0)))

,∪
[µL ,µU ]∈h̃,[νL ,νU ]∈g̃

{{
[µL, µU ]

}
,
{
[νL, νU ]

}})
;
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(2) When n = 2, T(sd1)

∑2
i=1 T(sdi)

sd1 = ∪
(s1,h̃,g̃)∈sd1

(
s T(sd1)

∑2
i=1 T(sdi)

(∆−1
t0

(TF
t1
t0
(ψ(s1))))

,

∪
[µL

1 ,µU
1 ]∈h̃1 ,[νL

1 ,νU
1 ]∈g̃1

{{[
1− (1− µL

1 )

T(sd1)

∑2
i=1 T(sdi ) , 1− (1− µU

1 )

T(sd1)

∑2
i=1 T(sdi )

]}
,

{[
(νL

1 )

T(sd1)

∑2
i=1 T(sdi ) , (νU

1 )

T(sd1)

∑2
i=1 T(sdi )

]}})
,

T(sd2)

∑2
i=1 T(sdi)

sd2 = ∪
(s2 ,h̃,g̃)∈sd2

(
s T(sd2)

∑2
i=1 T(sdi )

(∆−1
t0

(TFt2
t0
(ψ(s2))))

,

∪
[µL

2 ,µU
2 ]∈h̃2 ,[νL

2 ,νU
2 ]∈g̃2

{{[
1− (1− µL

2 )

T(sd2)

∑2
i=1 T(sdi ) , 1− (1− µU

2 )

T(sd2)

∑2
i=1 T(sdi )

]}
,

{[
(νL

2 )

T(sd2)

∑2
i=1 T(sdi ) , (νU

2 )

T(sd2)

∑2
i=1 T(sdi )

]}})
,

T(sd1)

∑2
i=1 T(sdi)

sd1 +
T(sd2)

∑2
i=1 T(sdi)

sd2 =

∪
(s1 ,h̃1 ,g̃1)∈sd1 ,(s2 ,h̃2 ,g̃2)∈sd2

s 2
∑

j=1

T(sdj )

∑2
i=1 T(sdi )

(∆−1
t0

(TF
tj
t0
(ψ(sj))))

,∪
[µL

1 ,µU
1 ]∈h̃1 ,[µL

2 ,µU
2 ]∈h̃2 ,[νL

1 ,νU
1 ]∈g̃1 ,[νL

2 ,νU
2 ]∈g̃2{{[

1− (1− µL
1 )

T(sd1)

∑2
i=1 T(sdi ) (1− µL

2 )

T(sd2)

∑2
i=1 T(sdi ) , 1− (1− µU

1 )

T(sd1)

∑2
i=1 T(sdi ) (1− µU

2 )

T(sd2)

∑2
i=1 T(sdi )

]}
,{[

(νL
1 )

T(sd1)

∑2
i=1 T(sdi ) (νL

2 )

T(sd2)

∑2
i=1 T(sdi ) , (νU

1 )

T(sd1)

∑2
i=1 T(sdi ) (νU

2 )

T(sd2)

∑2
i=1 T(sdi )

]}})
.

So, when n = 2, Theorem 1 also is right.
(3) Suppose that when n = k, Theorem 1 is right; then, we have

IVDHFULPWA(sd1, sd2, . . . , sdk) = ∪(sj ,h̃j ,g̃j)∈sdj

s k
∑

j=1

T(sdj)

∑n
i=1 T(sdi)

∆−1
t0

(TF
tj
t0
(ψ(sj)))

,

∪
[µL

j ,µU
j ]∈h̃j ,[νL

j ,νU
j ]∈g̃j

{{[
1−

k
∏
j=1

(1− µL
j )

T(sdj)

∑n
i=1 T(sdi) , 1−

k
∏
j=1

(1− µU
j )

T(sdj)

∑n
i=1 T(sdi)

]}
,{[

k
∏
j=1

(νL
j )

T(sdj)

∑n
i=1 T(sdi) ,

k
∏
j=1

(νU
j )

T(sdj)

∑n
i=1 T(sdi)

]}})
.

Then, when n = k + 1,

IVDHFUBLPWA(sd1, sd2, . . . , sdk, sdk+1) =(
k
⊕

j=1

T(sdj)

∑n
i=1 T(sdi)

sdj

)
⊕ T(sdk+1)

∑n
i=1 T(sdi)

sdk+1 = ∪
(sj ,h̃j ,g̃j)∈sdj

sk+1
∑

j=1

T(sdj)

∑n
i=1 T(sdi)

∆−1
t0

(TF
tj
t0
(ψ(sj)))

,

∪
[µL

j ,µU
j ]∈h̃j ,[νL

j ,νU
j ]∈g̃j

{{[
1−

k+1
∏
j=1

(1− µL
j )

T(sdj)

∑n
i=1 T(sdi) , 1−

k+1
∏
j=1

(1− µU
j )

T(sdj)

∑n
i=1 T(sdi)

]}
,{[

k+1
∏
j=1

(νL
j )

T(sdj)

∑n
i=1 T(sdi) ,

k+1
∏
j=1

(νU
j )

T(sdj)

∑n
i=1 T(sdi)

]}})
.

So, when n = k + 1, Theorem 1 is right too.

According to steps (1), (2), and (3), we get that Theorem 1 is right for all n. �

Theorem 2. IVDHFUBLPWA operator holds following properties:

(1) Commutativity: Let (sd1
∗, sd2

∗, . . . , sdn
∗) be any permutation of (sd1, sd2, . . . , sdn), then

IVDHFUBLPWA(sd1
∗, sd2

∗, . . . , sdn
∗) = IVDHFUBLPWA(sd1, sd2, . . . , sdn).
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(2) Idempotency: Let sdj = sd, for all j = 1, 2, . . . , n, then

IVDHFUBLPWA(sd1, sd2, . . . , sdn) = sd.

(3) Boundedness: the IVDHFUBLPWA operator lies between the max and min operators,

sd− ≤ IVDHFUBLPWA(sd1, sd2, . . . , sdn) ≤ sd+.

Proof.

(1) Assume that (sd1
∗, sd2

∗, . . . , sdn
∗) is any permutation of (sd1, sd2, . . . , sdn); then, for each sdj,

there exists one and only one sdk
∗, such that sdk

∗ = sdj and vice versa. Additionally, also we
have T(sdj) = T(sdk

∗). Thus, based on Theorem 1, we have

IVDHFUBLPWA(sd1, sd2, . . . , sdn) =

n
⊕

j=1
T(sdj)sdj

∑n
i=1 T(sdi)

=

n
⊕

j=1
T(sdk

∗)sdk
∗)

∑n
i=1 T(sdi)

= IVDHFULPWA(sd1
∗, sd2

∗, . . . , sdn
∗).

(2) Since sdj = sd for all j = 1, 2, . . . , n, then IVDHFUBLPWA(sd1, sd2, . . . , sdn)

= ∪
(s0,h̃j ,g̃j)∈sd

(
s0,∪

[µL ,µU ]∈h̃,[νL ,νU ]∈g̃

{{[
µL, µU

]}
,
{[

νL, νU
]}})

= sd.

(3) Suppose sd− =
(

s−0 , h̃−, g̃−
)

, sd+ =
(

s+0 , h̃+, g̃+
)

, in which

s−0 = min
j

(
s

∆−1
t0

(TF
tj
t0
(ψ(sj)))

)
, s+0 = max

j

(
s

∆−1
t0

(TF
tj
t0
(ψ(sj)))

)
,

h̃− = ∪
[µL

j ,µU
j ]∈h̃j

{
[µL−, µU−]

}
= ∪

[µL
j ,µU

j ]∈h̃j

{
[ min
1≤j≤n

µL
j , min

1≤j≤n
µU

j ]

}
,

h̃+ = ∪
[µL

j ,µU
j ]∈h̃j

{
[µL+, µU+]

}
= ∪

[µL
j ,µU

j ]∈h̃j

{
[ max
1≤j≤n

µL
j , max

1≤j≤n
µU

j ]

}
,

g̃− = ∪[νL
j ,νU

j ]∈g̃j

{
[νL−, νU−]

}
= ∪[νL

j ,νU
j ]∈g̃j

{
[ max
1≤j≤n

νL
j , max

1≤j≤n
νU

j ]

}
,

g̃+ = ∪[νL
j ,νU

j ]∈g̃j

{
[νL+, νU+]

}
= ∪[νL

j ,νU
j ]∈g̃j

{
[ min
1≤j≤n

νL
j , min

1≤j≤n
νU

j ]

}
.

Obviously,

s−0 = min
j

(
s

∆−1
t0

(TF
tj
t0
(ψ(sj)))

)
≤ s n

∑
j=1

T(sdj)

∑n
i=1 T(sdi)

∆−1
t0

(TF
tj
t0
(ψ(sj)))

≤ max
j

(
s

∆−1
t0

(TF
tj
t0
(ψ(sj)))

)
= s+0 .

Additionally, for all j = 1, 2, . . . , n, we have(
1−

n
∏
j=1

(1− µL+)

T(sdj)

∑n
i=1 T(sdi)

)
+

(
1−

n
∏
j=1

(1− µU+)

T(sdj)

∑n
i=1 T(sdi)

)
≥(

1−
n
∏
j=1

(1− µL
j )

T(sdj)

∑n
i=1 T(sdi)

)
+

(
1−

n
∏
j=1

(1− µU
j )

T(sdj)

∑n
i=1 T(sdi)

)
≥(

1−
n
∏
j=1

(1− µL−)

T(sdj)

∑n
i=1 T(sdi)

)
+

(
1−

n
∏
j=1

(1− µU−)

T(sdj)

∑n
i=1 T(sdi)

)
;

Meanwhile, we have
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(
n
∏
j=1

(νL−)

T(sdj)

∑n
i=1 T(sdi)

)
+

(
n
∏
j=1

(νU−)

T(sdj)

∑n
i=1 T(sdi)

)
≥
(

n
∏
j=1

(νL)

T(sdj)

∑n
i=1 T(sdi)

)
+

(
n
∏
j=1

(νU)

T(sdj)

∑n
i=1 T(sdi)

)

≥
(

n
∏
j=1

(νL+)

T(sdj)

∑n
i=1 T(sdi)

)
+

(
n
∏
j=1

(νU+)

T(sdj)

∑n
i=1 T(sdi)

)
.

Then(
1−

n
∏
j=1

(1− µL+)

T(sdj)

∑n
i=1 T(sdi)

)
+

(
1−

n
∏
j=1

(1− µU+)

T(sdj)

∑n
i=1 T(sdi)

)
−
(

n
∏
j=1

(νL+)

T(sdj)

∑n
i=1 T(sdi)

)

−
(

n
∏
j=1

(νU+)

T(sdj)

∑n
i=1 T(sdi)

)
≥
(

1−
n
∏
j=1

(1− µL
j )

T(sdj)

∑n
i=1 T(sdi)

)
+

(
1−

n
∏
j=1

(1− µU
j )

T(sdj)

∑n
i=1 T(sdi)

)

−
(

n
∏
j=1

(νL)

T(sdj)

∑n
i=1 T(sdi)

)
−
(

n
∏
j=1

(νU)

T(sdj)

∑n
i=1 T(sdi)

)
≥
(

1−
n
∏
j=1

(1− µL−)

T(sdj)

∑n
i=1 T(sdi)

)
+(

1−
n
∏
j=1

(1− µU−)

T(sdj)

∑n
i=1 T(sdi)

)
−
(

n
∏
j=1

(νL−)

T(sdj)

∑n
i=1 T(sdi)

)
−
(

n
∏
j=1

(νU−)

T(sdj)

∑n
i=1 T(sdi)

)
.

According to Definition 4 and Theorem 1, we have

sd− ≤ IVDHFUBLPWA(sd1, sd2, . . . , sdn) ≤ sd+,

which completes the proof. �

Theorem 3. For a collection of IVDHFUBLNs sdj(j = 1, 2, . . . , n), if there is no prioritized relationship
between theme, then IVDHFUBLPWA operator reduces to the interval-valued dual hesitant fuzzy unbalanced
linguistic weighted average (IVDHFUBLWA) operator, in which

IVDHFUBLWA(sd1, sd2, . . . , sdn) =

n
⊕

j=1
(ωjsdj)

∑n
i=1 ωi

(10)

in which ω = (ω1, ω2, . . . , ωn)
T is the weighting vector for sdj(j = 1, 2, . . . , n) with ωj ∈ [0, 1] and

∑n
j=1 ωj = 1.

4.2. A Hybrid Model for Determining the Unknown Experts’ Weights

Generally, when the weighting information for decision-makers cannot be subjectively acquired
in advance, decision matrices given by decision-makers should be taken into account to derive the
unknown weighting vector objectively.

Basically, there are two indispensible aspects with which to exploit assessments in decision
matrices objectively. On one side, the accuracy function for hesitant fuzzy elements [32] can be utilized
to measure the overall fuzziness of individual decision matrix given by each decision-maker; hence,
the less fuzziness there is in a decision matrix, the bigger the weight that should be configured to the
corresponding decision-maker. On the other side, according to deviation maximizing methodology [73],
the smaller the difference between the assessments offered by one specific decision-maker with those
offered by the other decision-makers, the more precise the evaluation information given that specific
decision-maker; a larger weight thus should be correspondingly assigned to the decision-maker.

Therefore, firstly, we apply the accuracy function P(sd) in Definition 4 to indicate information
fuzziness in IVDHFUBL individual decision matrix Rk. There is less fuzzy information contained in
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individual decision matrix Rk than other IVDHFUBL decision matrix, so the kth decision-maker plays
an important role in prioritization process and should be assigned a bigger weight. Then, specifically
from this aspect, we naturally can obtain type of experts’ weights λ̃k(k = 1, 2, . . . , t) by

λ̃k =

1
mn ∑n

i=1 ∑m
j=1 P(rk

ij)

∑t
k=1

(
1

mn ∑n
i=1 ∑m

j=1 P(rk
ij)
) . (11)

Secondly, we here take the divergence degree measure DD(Rk, Rl) = 1− 1
mn

n
∑

i=1

m
∑

j=1
d(rk

ij, rl
ij) to

calculate the deviation between IVDHFUBL decision matrix Rk given by the kth decision-maker and
IVDHFUBL decision matrix Rl given by the lth decision-maker. If the overall divergence of Rk appears
to be larger than other decision matrices, then the kth decision-maker should be assigned a smaller
weight. On the contrary, overall divergence of evaluations in IVDHFUBL decision matrix Rk comes
to be smaller than other decision matrices; then, it can be seen that the kth decision-maker should
be assigned a larger weight. As a result, we establish the following programming model (M-1) for

calculating the divergence-based weighting vector λ
k
(k = 1, 2, . . . , t) for decision-makers.

(M− 1)


maxF(λk

) =
t

∑
k=1

1
t

(
t

∑
l=1,l 6=k

DD(Rk, Rl)λ
k
)

s.t ∑t
k=1 (λ

k
)

2
= 1, λ

k ≥ 0, k = 1, 2, . . . , t

.

Because of DD(Rk, Rl) = 1− 1
mn

n
∑

i=1

m
∑

j=1
d(rk

ij, rl
ij), we rewrite the above model (M-1) to following

model (M-2).

(M− 2)


maxF(λk

) =
t

∑
k=1

1
t

(
t

∑
l=1,l 6=k

(
1− 1

mn

n
∑

i=1

m
∑

j=1
d(rk

ij, rl
ij)

)
λ

k
)

s.t ∑t
k=1 (λ

k
)

2
= 1, λ

k ≥ 0, k = 1, 2, . . . , t

,

in which d(rk
ij, rl

ij) is applied according to Definition 5.
Regarding the model (M-2), we have following Theorems 4 and 5.

Theorem 4. The optimal solution to (M-2) is

λ
k
=

∑t
l=1,l 6=k

(
1− 1

mn ∑n
i=1 ∑m

j=1 d(rk
ij, rl

ij)
)

∑t
k=1

(
∑t

l=1,l 6=k

(
1− 1

mn ∑n
i=1 ∑m

j=1 d(rk
ij, rl

ij)
)) . (12)

Proof. To solve this model, we construct the Lagrange function as follows:

L(λk
, ζ) =

t

∑
k=1

1
t

(
t

∑
l=1,l 6=k

(
1− 1

mn

n

∑
i=1

m

∑
j=1

d(rk
ij, rl

ij)

))
λ

k
+

1
2

ζ
t

∑
k=1

((
λ

k
)2
− 1
)

, (13)

By differentiation on Equation (13) with respect to λ
k
(k = 1, 2, . . . , t) and ζ, and setting these

partial derivatives equal to zero, the following set of equations is obtained:
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
∂L
∂λ

k = 1
t

(
t

∑
l=1,l 6=k

(
1− 1

mn

n
∑

i=1

m
∑

j=1
d(rk

ij, rl
ij)

))
+ ζλ

k
= 0

∂L
∂ζ =

t
∑

k=1

((
λ

k
)2
− 1
)
= 0

. (14)

By solving Equation (14), we get a simple and exact formula for determining the weights of
decision-makers, as follows:

λ
k
=

1
t ∑t

l=1,l 6=k

(
1− 1

mn ∑n
i=1 ∑m

j=1 d(rk
ij, rl

ij)
)

√
∑t

k=1

(
1
t ∑t

l=1,l 6=k

(
1− 1

mn ∑n
i=1 ∑m

j=1 d(rk
ij, rl

ij)
))2

. (15)

Then, by normalizing λ
k
(k = 1, 2, . . . , t) be a unit, we have the optimal solution:

λ
k
=

∑t
l=1,l 6=k

(
1− 1

mn ∑n
i=1 ∑m

j=1 d(rk
ij, rl

ij)
)

∑t
k=1

(
∑t

l=1,l 6=k

(
1− 1

mn ∑n
i=1 ∑m

j=1 d(rk
ij, rl

ij)
)) . (16)

As can be seen, λ
k
(k = 1, 2, . . . , t) is the unique solution to (M-2) and applies to determine DMs’

weights for MAGDM under IVDHFUBLS environment, which completes the proof. �

Theorem 5. If DD(Rk, Rl) = 1, then it is reasonable to assign the experts λ
k
(k = 1, 2, . . . , t) the same weight.

Proof. If DD(Rk, Rl) = 1, then we have d(rk
ij, rl

ij) = 0. By solving the programming model (M-2),

we will obtain the experts weights λ
k
= 1

t (k = 1, 2, . . . , t), which completes the proof. �

Now, to simultaneously consider the fuzziness of individual decision matrix and deviation
measures between decision matrices, based on Equations (11) and (16), we can get the overall experts’
weights λk(k = 1, 2, . . . , t) according to a hybrid model, as follows:

λk = αλ
k
+ βλ̃k(k = 1, 2, . . . , t), (17)

in which α + β = 1, generally α = β = 0.5, or α and β depend on real decision situations.

4.3. Algorithm for MAGDM Based on IVDHFUBLS with Prioritization Relation among Evaluative Attributes
and Unknown Decision-Makers’ Weights

Let X = {x1, . . . , xi, . . . , xn} be the set of response solutions, A =
{

A1, . . . , Aj, . . . , Am
}

be the
set of attributes, E = {E1, . . . , Ek, . . . , Et} be the set of decision-makers. Suppose that, according to
knowledge from decision contexts and Delphi method, decision-makers are capable of determining a
prioritization relation, Aσ(1) � . . . � Aσ(j) � . . . � Aσ(m), among evaluative attributes, which means
the attribute Aσ(j−1) has a higher priority level than the attribute Aσ(j). Suppose Rk = (rk

ij)n×m
(k =

1, 2, . . . , t) constitutes the IVDHFUBL decision matrices given by all t decision-makers, among which
rk

ij denotes assessments presented by the kth decision-maker based on an unbalanced linguistic term

set Sk with respect to alternative xi under attribute Aj, and rk
ij =

(
sk

αij
, h̃k

ij, g̃k
ij

)
and sk

αij
∈ Sk take

the form of IVDHFUBLNs. Then, on the strength of above-developed methods, we here construct
the following Procedure I for MAGDM based on IVDHFUBLS with prioritization relation among
evaluative attributes and unknown decision-makers’ weights.
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Procedure I. MAGDM based on IVDHFUBLS with prioritization relation among evaluative
attributes and unknown decision-makers’ weights.

Step I-1. Compute the weight vector λ = (λ1, . . . , λk, . . . , λt) for decision-makers by applying
Equation (17).

Step I-2. According to the prioritization relation, Aσ(1) � . . . � Aσ(j) � . . . � Aσ(m), among

attributes, transform each individual decision matrix Rk =
(

rk
ij

)
n×m

=
(

sk
αij

, h̃k
ij, g̃k

ij

)
n×m

to the prioritized individual decision matrix Rk
= (rk

ij)n×m
=

(
sk

αij
, h̃

k
ij, g̃

k
ij

)
n×m

,k = 1, 2, . . . , t,

in which h̃
k
ij = ∪

µ̃
k
ij∈h̃

(k)
ij

{
µ̃

k
ij

}
, g̃

k
ij = ∪ν̃

k
ij∈g̃

(k)
ij

{
ν̃

k
ij

}
.

Step I-3. Calculate prioritized levels in prioritized individual IVDHFUBL decision matrices: Rk
=

(rk
ij)n×m

=

(
sk

αij
, h̃

k
ij, g̃

k
ij

)
n×m

, k = 1, 2, . . . , t.

Calculate the score values of rk
ij according to Equation (3) in Definition 4, then compute

the numerical prioritized levels Tk
ij(i = 1, 2, . . . , n; j = 1, 2, . . . , m; k = 1, 2, . . . , t) in each

prioritized individual IVDHFUBL decision matrix, in which

Tk
ij =

j−1

∏
l=1

S(rk
il) = (S(rk

i(j−1)))T
k
i(j−1) (18)

Tk
i1 = 1 (19)

Step I-4. Obtain aggregated results in prioritized individual decision matrices, Rk
= (rk

ij)n×m
=(

sk
αij

, h̃
k
ij, g̃

k
ij

)
n×m

, k = 1, 2, . . . , t, by applying operator IVDHFUBLPWA.

Utilize the IVDHFUBLPWA operator described in Definition 6 to aggregate rk
ij so that we get

the k decision-maker’s decision result rk
i on the alternative xi, in which

rk
i = IVDHFUBLPWA(rk

i1, . . . , rk
ij, . . . , rk

im) = ∪(sk
αij ,hk

ij ,g
k
ij)∈rk

ij

s
∑t

k=1

Tk
ij

∑m
j=1 Tk

ij
∆−1

tij
(TF

tkij
tij

(ψ(sk
αij )))

,

∪
[µLk

ij ,µUk
ij ]∈h̃

k
ij ,[ν

Lk
ij ,νUk

ij ]∈g̃
k
ij



1−

m
∏
j=1

(1− µLk
ij )

Tk
ij

∑m
j=1 Tk

ij , 1−
m
∏
j=1

(1− µUk
ij )

Tk
ij

∑m
j=1 Tk

ij


,


 m

∏
j=1

(νLk
ij )

Tk
ij

∑m
j=1 Tk

ij ,
m
∏
j=1

(νUk
ij )

Tk
ij

∑m
j=1 Tk

ij



.

(20)

Step I-5. Obtain collective results of all alternatives by applying decision-makers’ weighting vector.

Given the weighting vector λ = {λ1, . . . , λk, . . . , λt} for decision-makers, which has
been determined in Step 1, we now aggregate all the individual overall decision values
rk

i (k = 1, 2, . . . , t) into the overall group decision values ri(i = 1, 2, . . . , n) by use of the
IVDHFUBLWA operator described in Equation (10), in which

ri = IVDHFUBLWA(r1
i , . . . , rk

i , . . . , rt
i ) = ∪(sk

αi ,hk
i ,gk

i )∈rk
i

(
s

∑t
k=1 λk∆−1

ti
(TF

tki
ti
(ψ(sk

αi )))
,

∪
[µLk

i ,µUk
i ]∈h̃

k
i ,[νLk

i ,νUk
i ]∈g̃

k
i

({[
1−

t
∏

k=1
(1− µLk

ij )
λk

, 1−
t

∏
k=1

(1− µUk
ij )

λk
]}

,
{[

t
∏

k=1
(νLk

i )
λk

,
t

∏
k=1

(νUk
i )

λk
]}))

.

(21)
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Step I-6. According to Definition 4, calculate the score value S(ri) of the group overall assessments
ri(i = 1, 2, . . . , n) to alternatives xi(i = 1, 2, . . . , n), then rank all the alternatives xi(i =

1, 2, . . . , n) and select the most desirable one(s).

5. Illustrative Examples

5.1. Applied Case Study on Green Supplier Selection Problem

Due to increasing environmental concerns in socioeconomic activities, more and more companies
have been urged to enhance their green images so as to maintain and improve competitiveness. As a
result, leading enterprises like Dell, HP, and IBM have already turned to include green supply chains in
their business processes. Obviously, in order to construct effective green supply chains, core companies
generally are only willing to select suppliers who exhibit better practices regarding green supply chain
management [2]. Therefore, to demonstrate the practicality and effectiveness of our proposed approach,
we apply the Algorithm I to resolve the following example of green supplier selection problem.

Suppose we are evaluating three alternative suppliers, i.e., xi, i = 1, 2, 3, according to eight
attributes Aj: (1) A1—Economic performance, (2) A2—Regulation, (3) A3—Perceived stakeholders’
pressure, (4) A4—Green design, (5) A5—Environmental performance, (6) A6—Recovery and reuse of
used products, (7) A7—Supplier/customer collaboration, and (8) A8—Green purchasing. A panel of
decision-makers, i.e., Ek, k = 1, 2, 3, have been already organized, and decision-makers also reached a
consensus opinion on the prioritization relation, i.e., (A2) � (A5) � (A1) � (A8) � (A4) � (A6) �
(A7) � (A3) among the attributes.

Next, all three decision-makers Ek(k = 1, 2, 3) were invited to provide their preferences in the
form of interval-valued dual hesitant fuzzy unbalanced linguistic numbers. The corresponding
linguistic variables are chosen from two unbalanced linguistic term sets S1 and S2, in which
S1 = {N, L, M, AH, H, QH, VH, AT, T} and S2 = {N, M, H, VH, T}. The relationship between
unbalanced linguistic term sets S1, S2, and linguistic hierarchies is shown in Figure 2. Decisionmakers
E1 and E2 evaluate the three suppliers by the unbalanced linguistic term set S1, while E3 utilizes
the unbalanced linguistic term set S2. Then, three interval-valued dual hesitant fuzzy unbalanced
linguistic (IVDHFUBL) decision matrices, i.e., Rk = (rk

ij)3×8
(k = 1, 2, 3), have been collected, as shown

in Tables 2–4.
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Table 2. The IVDHFUBL decision matrix R1 provided by decision-maker E1.

A1 A2 A3 A4

x1
(VH,{[0.2,0.3]},

{[0.2,0.4],[0.3,0.4]})
(H,{[0.5,0.6]},

{[0.2,0.3]})
(M,{[0.3,0.4]},

{[0.4,0.5],[0.5,0.6]})
(T,{[0.2,0.4]},
{[0.5,0.6]})

x2
(AT,{[0.4,0.5],[0.5,0.6]},

{[0.2,0.3],[0.2,0.4]})
(T,{[0.6,0.7]},
{[0.1,0.2]})

(L,{[0.6,0.7],
[0.7,0.8]},{[0.1,0.2]})

(QH,{[0.3,0.5]},
{[0.2,0.3]})

x3
(L,{[0.1,0.2],[0.1,0.3]},

{[0.6,0.7]})
(H,{[0.2,0.3]},

{[0.5,0.6],[0.6,0.7]})
(AH,{[0.4,0.5]},

{[0.2,0.3]})
(VH,{[0.6,0.7]},

{[0.1,0.2],[0.2,0.3]})

A5 A6 A7 A8

x1
(L,{[0.4,0.5]},

{[0.1,0.2],[0.4,0.5]})
(M,{[0.1,0.2],[0.3,0.5]},

{[0.3,0.5]})
(AH,{[0.4,0.5],[0.5,0.6]},

{[0.2,0.3],[0.2,0.4]})
(L,{[0.1,0.3]},
{[0.4,0.6]})

x2
(M,{[0.6,0.7]},

{[0.1,0.2]})
(VH,{[0.2,0.4],[0.5,0.6]},

{[0.2,0.3]})
(L,{[0.5,0.6],[0.7,0.8]},

{[0.1,0.2]})
(H,{[0.5,0.7]},

{[0.1,0.2],[0.2,0.3]})

x3
(M,{[0.4,0.5],[0.6,0.7]},

{[0.1,0.3]})
(H,{[0.3,0.4]},

{[0.4,0.5]})
(QH,{[0.4,0.5],[0.5,0.6]},

{[0.3,0.4]})
(VH,{[0.4,0.6]},

{[0.3,0.4]})

Table 3. The IVDHFUBL decision matrix R2 provided by decision-maker E2.

A1 A2 A3 A4

x1
(M,{[0.3,0.5]},

{[0.1,0.2]})
(AH,{[0.1,0.4]},

{[0.2,0.3],[0.3,0.4]})
(H,{[0.2,0.4]},

{[0.4,0.5]})
(QH,{[0.2,0.4]},

{[0.5,0.6]})

x2
(AT,{[0.4,0.7]},

{[0.2,0.3] })
(L,{[0.5,0.6]},
{[0.1,0.2] })

(AH,{[0.6,0.7],[0.7,0.8]},
{[0.1,0.2]})

(M,{[0.2,0.3]},
{[0.5,0.6],[0.6,0.7]})

x3
(AT,{[0.6,0.8]},

{[0.1,0.2]})
(H,{[0.4,0.5]},

{[0.3,0.4],[0.4,0.5]})
(H,{[0.4,0.5]},

{[0.2,0.3]})
(AH,{[0.4,0.5]},

{[0.2,0.3]})

A5 A6 A7 A8

x1
(M,{[0.1,0.2],[0.2,0.3]},

{[0.1,0.2]})
(L,{[0.6,0.7]},
{[0.1,0.2]})

(H,{[0.3,0.4]},
{[0.2,0.3],[0.4,0.5]})

(M,{[0.5,0.7]},
{[0.2,0.3]})

x2
(VH,{[0.6,0.7]},

{[0.1,0.2]})
(AT,{[0.2,0.3]},

{[0.5,0.7]})
(H,{[0.5,0.8]},

{[0.1,0.2]})
(AT,{[0.3,0.5]},

{[0.3,0.4]})

x3
(QH,{[0.4,0.5]},

{[0.3,0.4]})
(L,{[0.7,0.8]},
{[0.1,0.2]})

(VH,{[0.2,0.5]},
{[0.3,0.4]})

(H,{[0.3,0.5]},
{[0.3,0.4]})

Table 4. The IVDHFUBL decision matrix R3 provided by decision-maker E3.

A1 A2 A3 A4

x1
(M,{[0.6,0.8]},

{[0.1,0.2]})
(H,{[0.4,0.5]},

{[0.4,0.5]})
(H,{[0.2,0.4],[0.3,0.4]},

{[0.2,0.3]})
(M,{[0.7,0.8]},

{[0.1,0.2]})

x2
(T,{[0.3,0.4]},
{[0.4,0.6]})

(M,{[0.4,0.5],[0.5,0.6]},
{[0.2,0.3] })

(VH,{[0.6,0.7]},
{[0.1,0.3]})

(H,{[0.1,0.3],[0.2,0.4]},
{[0.3,0.5]})

x3
(VH,{[0.4,0.5]},

{[0.1,0.2],[0.3,0.4]})
(VH,{[0.7,0.8]},

{[0.1,0.2]})
(H,{[0.6,0.8]},

{[0.1,0.2]})
(M,{[0.6,0.7]},

{[0.1,0.3]})

A5 A6 A7 A8

x1
(T,{[0.2,0.5]},
{[0.3,0.5]})

(VH,{[0.6,0.7]},
{[0.2,0.3]})

(M,{[0.1,0.2]},
{[0.5,0.8]})

(VH,{[0.3,0.4]},
{[0.1,0.3],[0.2,0.5]})

x2
(M,{[0.4,0.6],

[0.5,0.7]},{[0.1,0.2]})
(VH,{[0.3,0.6]},

{[0.1,0.3],[0.2,0.4]})
(H,{[0.4,0.6]},

{[0.3,0.4]})
(VH,{[0.7,0.8]},

{[0.1,0.2]})

x3
(VH,{[0.6,0.7]},

{[0.1,0.2]})
(M,{[0.5,0.6]},

{[0.3,0.4]})
(H,{[0.3,0.5]},

{[0.4,0.5]})
(H,{[0.6,0.7]},

{[0.1,0.3]})

Now, we apply the proposed Procedure I to solve the above green supplier selection problem.
The following are details steps in Procedure I.

Step I-1. Compute the weight vector λ = (λ
1
, λ

2
, λ

3
) for decision-makers. Firstly, by solving the

programming model (M-2), we obtain deviation-based weighting vector as

λ = (0.3259, 0.3419, 0.3286).
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Then, by applying Equation (11), we get the accuracy-measure based experts’ weighting
vector λ̃ = (λ̃1, λ̃2, λ̃3) as

λ̃ = (0.3125, 0.3195, 0.368).

Finally, according to Equation (17), we here suppose α = β = 0.5; then, the hybrid experts’
weighting vector λ = (λ1, λ2, λ3) is obtained as

λ = (0.3192, 0.3307, 0.3483).

Step I-2. Transform each individual IVDHFUBL decision matrix Rk = (rk
ij)3×8

into the prioritized

individual IVDHFUBL decision matrix Rk
= (rk

ij)3×8
(k = 1, 2, 3) according to the different

priority levels of attributes, as listed in Tables 5–7.
Step I-3. Calculate prioritized levels Tk

ij(i = 1, 2, 3; j = 1, 2, . . . , 8; k = 1, 2, 3) in each prioritized
individual IVDHFUBL decision matrix by Equations (18) and (19), and then we have

T1
11 = 1, T1

12 = 0.6, T1
13 = 0.1125, T1

14 = 0.0566, T1
15 = 0.0099, T1

16 = 0.0084, T1
17 = 0.0028,

T1
18 = 0.0014; T1

21 = 1, T1
22 = 0.8, T1

23 = 0.32, T1
24 = 0.2325, T1

25 = 0.1395,
T1

26 = 0.0737, T1
27 = 0.0435, T1

28 = 0.0087; T1
31 = 1, T1

32 = 0.6375, T1
33 = 0.2391, T1

34 = 0.0493,
T1

35 = 0.0367, T1
36 = 0.0273, T1

37 = 0.0164, T1
38 = 0.0113.

T2
11 = 1, T2

12 = 0.3438, T2
13 = 0.0602, T2

14 = 0.0165, T2
15 = 0.007, T2

16 = 0.0049,
T2

17 = 0.001, T2
18 = 0.0005; T2

21 = 1, T2
22 = 0.175, T2

23 = 0.1225, T2
24 = 0.0919, T2

25 = 0.0646,
T2

26 = 0.0275, T2
27 = 0.0219, T2

28 = 0.0131; T2
31 = 1, T2

32 = 0.6375, T2
33 = 0.4144, T2

34 = 0.3302,
T2

35 = 0.1857, T2
36 = 0.0813, T2

37 = 0.0183, T2
38 = 0.0112.

T3
11 = 1, T3

12 = 0.675, T3
13 = 0.5063, T3

14 = 0.2152, T3
15 = 0.1177, T3

16 = 0.0529, T3
17 = 0.0417,T3

18 = 0.0167;
T3

21 = 1, T3
22 = 0.375, T3

23 = 0.1312, T3
24 = 0.1116, T3

25 = 0.0879, T3
26 = 0.0428, T3

27 = 0.0262,
T3

28 = 0.0167; T3
31 = 1, T3

32 = 0.7875, T3
33 = 0.5513, T3

34 = 0.3376, T3
35 = 0.2152, T3

36 = 0.0915, T3
37 =

0.0412, T3
38 = 0.0262.

Step I-4. Utilize the IVDHFUBLPWA operator described in Definition 6 to aggregate rk
ij, so that we get

the k th expert’s decision result rk
i (k = 1, 2, 3) on alternatives xi(i = 1, 2, 3), in which

r1
1 = (s17

10.181,{[0.439,0.5428],[0.4392,0.5429],[0.4397,0.5438],[0.4399,0.5439]},{[0.1633,0.2744],
[0.1633,0.2744],[0.1633,0.2745],[0.1633,0.2746],[0.1675,0.2744],[0.1675,0.2744],[0.1675,0.2745],
[0.1675,0.2746],[0.2598,0.373],[0.2598,0.373],[0.2598,0.3731],[0.2598,0.3732],[0.2665,0.373],[0.2665,0.373],
[0.2665,0.3731],[0.2665,0.3732]}});
r1

2 = (s17
12.6218,{[0.5479,0.6638],[0.5483,0.6642],[0.5517,0.6676],[0.5521,0.6681],[0.5538,0.6676],

[0.5542,0.668],[0.5576,0.6714],[0.558,0.6718],[0.5579,0.6728],[0.5583,0.6732],[0.5616,0.6766],[0.562,0.677],
[0.5637,0.6765],[0.5641,0.677],[0.5673,0.6802],[0.5677,0.6806]},{[0.1152,0.2172],[0.1225,0.2252],
[0.1152,0.225],[0.1225,0.2333]});
r1

3 = (s17
9.8701,{[0.2778,0.383],[0.2789,0.3841],[0.2778,0.3927],[0.2789,0.3938],[0.3647,0.475],[0.3656,0.476],

[0.3647,0.4832],[0.3656,0.4842]},{[0.2911,0.4718],[0.2948,0.4753],[0.3186,0.5093],[0.3227,0.5131]});
r2

1 = (s17
9.4101,{[0.1186,0.3686],[0.1431,0.3885]},{[0.1649,0.2682],[0.165,0.2683],[0.2188,0.3278],

[0.2189,0.3279]});
r2

2 = (s17
7.2463,{[0.4817,0.6085],[0.483,0.6099]},{[0.1246,0.231],[0.1256,0.2326]});

r2
3 = (s17

12.3335,{[0.4365,0.5779]},{[0.2377,0.3445],[0.2646,0.3745]});
r3

1 = (s17
12.22,{[0.4134,0.5925],[0.4139,0.5925]},{[0.235,0.3833],[0.2487,0.3997]});

r3
2 = (s17

9.5402,{[0.4072,0.5418],[0.4106,0.5452],[0.4294,0.5685],[0.4327,0.5718],[0.4646,0.5954],[0.4676,0.5985],
[0.4846,0.6191],[0.4876,0.6219]},{[0.1748,0.2911],[0.1777,0.2932]});
r3

3 = (s17
13.3978,{[0.6027,0.7085]},{[0.1053,0.2225],[0.1284,0.2522]}).

Step I-5. Aggregate all the individual overall decision values rk
i (k = 1, 2, 3) into the overall group

decision values ri(i = 1, 2, . . . , n) by use of the IVDHFUBLWA operator described in Equation
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(10) and experts’ weighting vector λ = (0.3192, 0.3307, 0.3483) determined in Step 1. Taking
r3 as an example, we have

r3 = (s17
11.8957,{[0.4597,0.5809],[0.46,0.5811],[0.4597,0.583],[0.46,0.5833], [0.4815,0.6021],[0.4817,0.6023],

[0.4815,0.6041],[0.4817,0.6043]},{[0.191,0.3273],[0.2047,0.3419],[0.1979,0.3364],[0.2121,0.3514],
[0.1918,0.328],[0.2055,0.3427],[0.1987,0.3372],[0.2129,0.3522],[0.1966,0.3354],[0.2107,0.3504],
[0.2037,0.3448],[0.2183,0.3601],[0.1974,0.3362],[0.2116,0.3512],[0.2046,0.3456],[0.2192,0.361]}}).

Step I-6. Calculating scores S(ri) of the alternatives ri(i = 1, 2, 3), we have

S(r1) = 0.1019, S(r2) = 0.2234, S(r3) = 0.1916.

Accordingly, then the ranking order of all the alternatives is determined as

x2 � x3 � x1.

Therefore, solution x2 is the most desirable green supplier.

Table 5. The prioritized individual IVDHFUBL decision matrix R1.

Aσ(1) Aσ(2) Aσ(3) Aσ(4)

x1
(H,{[0.5,0.6]},

{[0.2,0.3]})
(L,{[0.4,0.5]},

{[0.1,0.2],[0.4,0.5]})
(VH,{[0.2,0.3

0.2,0.4],[0.3,0.4]})
(L,{[0.1,0.3]},
{[0.4,0.6]})

x2
(T,{[0.6,0.7]},
{[0.1,0.2]})

(M,{[0.6,0.7]},
{[0.1,0.2]})

(AT,{[0.4,0.5],[0.5,0.6]},
{[0.2,0.3],[0.2,0.4]})

(H,{[0.5,0.7]},
{[0.1,0.2],[0.2,0.3]})

x3
(H,{[0.2,0.3]},

{[0.5,0.6],[0.6,0.7]})
(M,{[0.4,0.5],[0.6,0.7]},

{[0.1,0.3]})
(L,{[0.1,0.2],[0.1,0.3]},

{[0.6,0.7]})
(VH,{[0.4,0.6]},

{[0.3,0.4]})

Aσ(5) Aσ(6) Aσ(7) Aσ(8)

x1
(T,{[0.2,0.4]},
{[0.5,0.6]})

(M,{[0.1,0.2],[0.3,0.5]},
{[0.3,0.5]})

(AH,{[0.4,0.5],[0.5,0.6]},
{[0.2,0.3],[0.2,0.4]})

(M,{[0.3,0.4]},
{[0.4,0.5],[0.5,0.6]})

x2
(QH,{[0.3,0.5]},

{[0.2,0.3]})
(VH,{[0.2,0.4],[0.5,0.6]},

{[0.2,0.3]})
(L,{[0.5,0.6],[0.7,0.8]},

{[0.1,0.2]})
(L,{[0.6,0.7],[0.7,0.8]},

{[0.1,0.2]})

x3
(VH,{[0.6,0.7]},

{[0.1,0.2],[0.2,0.3]})
(H,{[0.3,0.4]},

{[0.4,0.5]})
(QH,{[0.4,0.5],[0.5,0.6]},

{[0.3,0.4]})
(AH,{[0.4,0.5]},

{[0.2,0.3]})

Table 6. The prioritized individual IVDHFUBL decision matrix R2.

Aσ(1) Aσ(2) Aσ(3) Aσ(4)

x1
(AH,{[0.1,0.4]},

{[0.2,0.3],[0.3,0.4]})
(M,{[0.1,0.2],

[0.2,0.3]},{[0.1,0.2]})
(M,{[0.3,0.5]},

{[0.1,0.2]})
(M,{[0.5,0.7]},

{[0.2,0.3]})

x2
(L,{[0.5,0.6]},
{[0.1,0.2] })

(VH,{[0.6,0.7]},
{[0.1,0.2]})

(AT,{[0.4,0.7]},
{[0.2,0.3] })

(AT,{[0.3,0.5]},
{[0.3,0.4]})

x3
(H,{[0.4,0.5]},

{[0.3,0.4],[0.4,0.5]})
(QH,{[0.4,0.5]},

{[0.3,0.4]})
(AT,{[0.6,0.8]},

{[0.1,0.2]})
(H,{[0.3,0.5]},

{[0.3,0.4]})

Aσ(5) Aσ(6) Aσ(7) Aσ(8)

x1
(QH,{[0.2,0.4]},

{[0.5,0.6]})
(L,{[0.6,0.7]},
{[0.1,0.2]})

(H,{[0.3,0.4]},
{[0.2,0.3],[0.4,0.5]})

(H,{[0.2,0.4]},
{[0.4,0.5]})

x2
(M,{[0.2,0.3]},

{[0.5,0.6],[0.6,0.7]})
(AT,{[0.2,0.3]},

{[0.5,0.7]})
(H,{[0.5,0.8]},

{[0.1,0.2]})
(AH,{[0.6,0.7],[0.7,0.8]},

{[0.1,0.2]})

x3
(AH,{[0.4,0.5]},

{[0.2,0.3]})
(L,{[0.7,0.8]},
{[0.1,0.2]})

(VH,{[0.2,0.5]},
{[0.3,0.4]})

(H,{[0.4,0.5]},
{[0.2,0.3]})
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Table 7. The prioritized individual IVDHFUBL decision matrix R3.

Aσ(1) Aσ(2) Aσ(3) Aσ(4)

x1
(H,{[0.4,0.5]},

{[0.4,0.5]})
(T,{[0.2,0.5]},
{[0.3,0.5]})

(M,{[0.6,0.8]},
{[0.1,0.2]})

(VH,{[0.3,0.4]},
{[0.1,0.3],[0.2,0.5]})

x2
(M,{[0.4,0.5],[0.5,0.6]},

{[0.2,0.3] })
(M,{[0.4,0.6],

[0.5,0.7]},{[0.1,0.2]})
(T,{[0.3,0.4]},
{[0.4,0.6]})

(VH,{[0.7,0.8]},
{[0.1,0.2]})

x3
(VH,{[0.7,0.8]},

{[0.1,0.2]})
(VH,{[0.6,0.7]},

{[0.1,0.2]})
(VH,{[0.4,0.5]},

{[0.1,0.2],[0.3,0.4]})
(H,{[0.6,0.7]},

{[0.1,0.3]})

Aσ(5) Aσ(6) Aσ(7) Aσ(8)

x1
(M,{[0.7,0.8]},

{[0.1,0.2]})
(VH,{[0.6,0.7]},

{[0.2,0.3]})
(M,{[0.1,0.2]},

{[0.5,0.8]})
(H,{[0.2,0.4],[0.3,0.4]},

{[0.2,0.3]})

x2
(H,{[0.1,0.3],[0.2,0.4]},

{[0.3,0.5]})
(VH,{[0.3,0.6]},

{[0.1,0.3],[0.2,0.4]})
(H,{[0.4,0.6]},

{[0.3,0.4]})
(VH,{[0.6,0.7]},

{[0.1,0.3]})

x3
(M,{[0.6,0.7]},

{[0.1,0.3]})
(M,{[0.5,0.6]},

{[0.3,0.4]})
(H,{[0.3,0.5]},

{[0.4,0.5]})
(H,{[0.6,0.8]},

{[0.1,0.2]})

5.2. Comparison with IVDHFUBLS-Based TOPSIS Method

Due to the fact that there are no directly related decision-making approaches based on
IVDHFUBLS for comparison with our proposed Procedure I, in this section, we firstly develop a
IVDHFUBLS-based TOPSIS method as shown in following Procedure II, in which conventional TOPSIS
method is endowed the ability to address linguistic decision hesitancy and to accommodate group
decision-making scenarios by use of the interval-valued dual hesitant fuzzy unbalanced linguistic
weighted aggregation (IVDHFULWA) operator, which was defined in Section 3. We then apply
the following Procedure II to solve the same problem adopted in Section 5.1 and discuss their
ranking results.

Procedure II. IVDHFUBLS-based TOPSIS method for group decision-making.

Step II-1. Obtaining individual decision matrices from decision-makers, we get Rk =
(

rk
ij

)
n×m

=(
sk

αij
, h̃k

ij, g̃k
ij

)
n×m

.

Step II-2. Aggregate individual decision matrices Rk = (rk
ij)n×m

, k = 1, 2, . . . , t, into individual overall

evaluation values rk
i , i = 1, 2, . . . , n, k = 1, 2, . . . , t, corresponding to each alternative xi

according to IVDHFULWA operator. Here, assume ω = ( 1
m )1×m, and

rk
i = IVDHFULWA(r1

ij, . . . , rk
ij, . . . , rt

ij) = ∪(sk
αij

,hk
ij ,g

k
ij)∈rk

ij

s
∑m

j=1
1
m ∆−1

tij
(TF

tkij
tij

(ψ(sk
αij

)))

,

∪
[µLk

ij ,µUk
ij ]∈h̃

k
ij ,[νLk

ij ,νUk
ij ]∈g̃k

ij

({[
1−

m
∏
j=1

(1− µLk
ij )

1
m , 1−

m
∏
j=1

(1− µUk
ij )

1
m

]}
,

{[
m
∏
j=1

(νLk
i )

1
m ,

m
∏
j=1

(νUk
i )

1
m

]}))
.

(22)

Step II-3. Calculate separating measure from positive and negative ideal solutions.

Determine positive ideal solution (PIS) r+ = (r+1 , r+2 , . . . , r+i , . . . , r+n ) and negative ideal
solution (NIS) r− = (r−1 , r−2 , . . . , r−i , . . . , r−n ), in which r+i = ({[1, 1]}, {[0, 0]}), r−i =

({[0, 0]}, {[1, 1]}).

Then, we calculate the separating measure from the PIS and NIS for each alternative
according to the distance measure introduced in Equation (5), in which

d(r̃ij, r̃+i ) =

(
1
2

(
1
l1

l1

∑
k=1

(∣∣∣I1µ
Lj

h̃1
− 1
∣∣∣2 + ∣∣∣I1µ

Uj

h̃1
− 1
∣∣∣2)+

1
l2

l2

∑
k=1

(∣∣∣I1ν
Lj
g̃1
− 0
∣∣∣2 + ∣∣∣I1ν

Uj
g̃1
− 0
∣∣∣2))) 1

2

, (23)
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d(r̃ij, r̃−i ) =

(
1
2

(
1
l1

l1

∑
k=1

(∣∣∣I1µ
Lj

h̃1
− 0
∣∣∣2 + ∣∣∣I1µ

Uj

h̃1
− 0
∣∣∣2)+

1
l2

l2

∑
k=1

(∣∣∣I1ν
Lj
g̃1
− 1
∣∣∣2 + ∣∣∣I1ν

Uj
g̃1
− 1
∣∣∣2))) 1

2

. (24)

Next, we can obtain

d+i =
m

∑
j=1

d(r̃ij, r̃+i ), d−i =
m

∑
j=1

d(r̃ij, r̃−i ).

Step II-4. Calculate the relative closeness to the ideal solution by

ci =
d−i

d−i + d+i
. (25)

Step II-5. Rank the green suppliers according to the descending order of ci; then, we get the most
desirable supplier.

Now we can apply Procedure II to the same problem adopted in Section 5.1 and compare their
ranking results.

In Step II-1, we directly accept the decision matrices in Section 5.1. In Step II-2, we adopt

ω = ( 1
8 , 1

8 , 1
8 , 1

8 , 1
8 , 1

8 , 1
8 , 1

8 )
T

. Then, according to Equations (23) and (24), in Step II-3, we calculate the
separating measure from the PIS and NIS for each alternative, and we get d+1 = 2.1661, d−1 = 2.6042,
d+2 = 2.0799, d−2 = 2.6879, d+3 = 1.8427, and d−3 = 2.7484. Subsequently, in Step II-4, according to
Equation (24), we obtain the relative closeness to the ideal solution: c1 = 0.5459, c2 = 0.5638, and
c3 = 0.5986. Therefore, Step II-5 generates the ranking result of x3 � x2 � x1, which means the most
desirable alternative is x3.

By comparing the ranking results obtained by Procedure I and Procedure II, we find out that
the two algorithms unanimously identify that the supplier x1 is the worst alternative. However,
the permutation of suppliers x2 and x3 changes in the ranking results. The reasons are that Algorithm
II takes equal weights for both attributes and decision-makers and obviously is incapable of more
completely including decision information in complicated decision-making scenarios. Contrariwise,
Procedure I manages to exploit prioritization relations among attributes and objectively deduce relative
importance among decision-makers, thus producing a different result.

In sum, when tackling ill-structured MAGDM problems, our proposed Procedure I provides
decision-makers with an effective expression tool with which to depict their complicated assessments
more comprehensively. Using the developed prioritized aggregation operator, Procedure I manages to
exploit more efficiently group opinions on prioritization relations among evaluative attributes, rather
than multiple rounds adjustments in conventional AHP-based methodologies under decision-making
environments of high complexity. Additionally, the maximizing deviation model help Procedure
I achieves more generality and objectivity in deriving unknown weights for decision-makers.
Therefore, the proposed Procedure I performs an effective and efficient approach to complicate
decision-making problems.

6. Conclusions

Focusing on the special type of ill-structured complex multiple attributes group decision-making
problems, which characterize facets of decision-makers’ decision hesitancy and prioritization
relationships among evaluative attributes and unknown weighting information for decision-makers,
we have developed an effective approach by employing IVDHFUBLS to elicit hesitant assessments
more precisely and completely. To accommodate prioritization relationships among evaluative
attributes, the proposed interval-valued dual hesitant fuzzy unbalanced linguistic prioritized
weighted aggregation (IVDHFUBLPWA) operator is capable of simultaneously considering both
assessments given by decision-makers and prioritization relationships. As for deducing unknown
weights for decision-makers, the devised hybrid model succeeds in objectively determining rational
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decision-makers’ weights by exploiting the overall accuracy measure of the individual decision matrix
and maximizing the deviation among all decision matrices. Applied study on a green supplier selection
problem has demonstrated the effectiveness and practicality of our approach.

Although we have constructed an effective approach for MAGDM under IVDHFUBLS
environments, the approach applies to only the homogeneous format of assessments in group
decision-making scenarios. However, sophisticated MAGDM approaches for tackling more complex
practical problems should allow decision-makers to denote their specific preferences with various
expression tools so as to attain better flexibility and adaptability. Therefore, future research should be
firstly directed to investigate heterogeneous MAGDM approaches under IVDHFUBLS environments
to deep depth, and more application studies on real problems as well, such as sustainable supplier
selection, risk evaluation, etc.
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