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Abstract: The Border Gateway Protocol (BGP) is the current state-of-the-art inter-domain routing
between Autonomous Systems (ASes). Although BGP has different mechanisms to manage outbound
traffic in an AS domain, it lacks an efficient tool for inbound traffic control from transit ASes such as
Internet Service Providers (ISPs). For inter-domain routing, the BGP’s destination-based forwarding
paradigm limits the granularity of distributing the network traffic among the multiple paths of
the current Internet topology. Thus, this work offered a new architecture to manage incoming
traffic in the inter-domain using OpenFlow networks. The architecture explored direct inter-domain
communication to exchange control information and the functionalities of the OpenFlow protocol.
Based on the achieved results of the size of exchanging messages, the proposed architecture is not only
scalable, but also capable of performing load balancing for inbound traffic using different strategies.

Keywords: Software Defined Networking; BGP; OpenFlow

1. Introduction

The Internet is a collection of tens of thousands of independently operated networks. In the
jargon of the Internet, these networks are called Autonomous Systems (ASes). An AS can be an
Internet Service Provider (ISP), a campus, a content provider, or any other independently operated
network. All these ASes can connect with each other as they execute an inter-domain routing protocol
to exchange network reachability information. The Border Gateway Protocol (BGP) [1] is the current
standard for inter-domain routing on the Internet and provides reachability information among
the ASes.

BGP is one of the most successful protocols on the Internet. However, many researchers have
indicated issues related to BGP since its inception, e.g., the lack of end-to-end service guarantees,
long convergence time, and security issues [2]. Furthermore, it is well known that BGP suffers from
the process of “ossification”, where the architecture becomes very dependent on the protocol, and new
features are inherently hard to introduce into the network.

For the BGP, the ossification is due to economic reasons combined with the fact that backward
compatibility has to be assured since there is no flag day to switch to a new architecture. Thus, all BGP
appliances have to execute the same version of the protocol to operate appropriately, or anomalies
in the network may occur (e.g., BGP black holes). Hence, a new feature for the BGP protocol has
to have a minimum integration within heterogeneous networks and interoperate through different
administrative domains (e.g., the Internet). These requirements have frustrated new proposals to
evolve BGP and the ecosystem of inter-domain routing [3].

Although the BGP has some mechanisms to control inbound traffic, for example, Multi-Exit
Discriminator (MED), Communities, AS-Path Prepending and others, the effectiveness of applying
these mechanisms are unclear and are also not guaranteed once they are indirect approaches. Thereby,
BGP inbound traffic control mechanisms try to influence other ASes to change the preference regarding

Information 2018, 8, 92; doi:10.3390/info8040092 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
http://www.mdpi.com/journal/information
http://www.mdpi.com/2078-2489/9/4/92?type=check_update&version=1
http://dx.doi.org/10.3390/info9040092


Information 2018, 8, 92 2 of 23

routes, and often the desired traffic distribution cannot be achieved. Furthermore, another difficulty
for the manipulation of inter-domain traffic is the BGP’s destination-based forwarding paradigm [1].
This approach limits the granularity of selecting the traffic once the decision of forwarding IP packets
only relies on the information of the IP destination header field.

One promising approach to enable network architectures to evolve is Software Defined
Networking (SDN). SDN emerged as a new paradigm that allows network engineers to
elaborate new network designs and includes desirable features for this evolution such as open
programmable interfaces at networking devices, the separation between control and forwarding
planes, and innovation occurs in applications executed inside the control planes [4–7].

A notable SDN technology is the OpenFlow protocol (OF). OF is an open programmable interface
for SDN that gained momentum in academia and industry over the last decade [8]. OF is flow-oriented,
meaning that the sequence of packets identified by a set of common header fields follows a given
path. Thus, OF can provide fine-grain forward capabilities to the network by matching multiple fields
of TCP/IP. This work applies SDN concepts and uses the OpenFlow capabilities to compose a new
network architecture to evolve inter-domain routing systems.

Here, the proposal is to investigate an architecture to manage inbound traffic in an inter-domain
routing system using SDN technologies. The main idea was to depict new mechanisms to be deployed
in transit ASes (often an ISP) that can allow a customer AS to execute control tasks for managing how
incoming traffic can reach its network. Therefore, the main contributions of this work were:

• Presenting and describing an architecture that uses OF networks and is compatible with current
inter-domain routing protocol (BGP);

• Exploring OF features for network traffic engineering tasks in inter-domain routing; and
• Analyzing how the incoming traffic can be managed using the proposed architecture and BGP.

The remainder of the text is organized as follows. Section 2 discusses the related works regarding
SDN solutions for inter-domain routing and Section 3 details the proposed architecture. Then, Section 4
describes how the ASes can apply inbound control to manage network traffic towards its networks
using SDN applications executed inside the architecture and Section 5 performs an evaluation of the
proposal with a proof of concept. Finally, Section 6 provides more discussion on the architecture and
Section 7 presents the final thoughts of this work.

2. Related Works

Applying BGP’s inbound traffic engineering techniques (such as Selective advertisement or
AS-path Prepending) is a counterproductive approach as these techniques do not guarantee its
effectiveness. Moreover, the BGP techniques try to influence the routing decisions of external ASes to
obtain their desired inbound traffic distribution, hence network operators that use these approaches
are led to a trial-and-error process, where each AS will manipulate its own routing system to fulfill
its business goals. Indeed, the problem of inter-domain routing traffic engineering can be seen as
a conflicted one where the interactions between ASes can be modeled as game theory and nonlinear
programming [9].

The idea of overcoming the BGP’s limitation for control inbound traffic with traditional networks
where all the network logic is embedded into network appliances and distributed in the network
topology can be classified into: using a type of overlay network [10–12], a new network protocol [13,14],
or both approaches [15]. All these works shared the drawbacks of requiring executing protocols
embedded to network appliances, or an overhead in network management activities to support
these solutions. Usually, medium and large networks have a myriad of network appliances and the
deployment of solutions with traditional approaches can lead to high CAPEX (capital expenditure)
and OPEX (operational expenditure). Nonetheless, SDN has desirable features with the potential to
create solutions to evolve the inter-domain routing environment.
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Exploring the SDN concepts, the Multi-Dimension Link Vector (MLV) [16] presented a new
mechanism to exchange a network view. MLV enabled SDN networks to improve the Internet routing
flexibility in an inter-domain network federation by using a link vector algorithm to compose a new way
of representing the inter-domain state of the network. With a link vector data structure, the network
operator could decide the routes of the inter-domain routing. Even though MLV was a proposal to
evolve inter-domain routing among SDN networks, it was not compatible with BGP. This requirement
imposed a practical limitation for the wide use of the MLV proposal once SDN networks have not yet
been broadly adopted for inter-domain routing.

Regarding integration between the SDN controller and BGP, almost every modern SDN
controller has mechanisms to exchange BGP information with others BGP speakers (e.g., legacy
routers). For example, the ONF ATRIUM project proposed a framework to support BGPusing
ONOS controller [17] and Quagga [18]. Another widely used SDN controller, the Ryu [19],
supports interworking between OpenFlow and BGP. Once a BGP component (the BGP speaker)
is properly installed in the Ryu SDN framework, the controller can establish BGP sessions with
others BGP speakers. Therefore, proposals to cope with an inter-domain environment that is not
back-compatible with BGP have little practical appeal. The proposed architecture of this paper
is compatible with BGP and provides mechanisms to override the BGP default behavior when it
is required.

One proposal that allows BGP rules to be overridden by SDN rules is the Software-Defined Internet
exchange (SDX) [20], and its extension, the Industrial-Scale Software Defined Internet Exchange Point
(iSDX) [21]. This used the centralized control idea of SDN into an Internet Exchange Point (IXP)
and enabled the creation of more flexible forwarding policies, reducing the forwarding table size
of OpenFlow devices used by the IXP participants and the end-to-end enforcing of QoS. However,
they did not design these proposals to other types of network environments. Here, this paper proposes
an architecture to transit ASes, especially the ISPs, to provide management capabilities to other ASes
to control their inbound network traffic. Furthermore, the new routing logic occurs directly between
the customers and the transit AS that deploys the proposed architecture.

The Route Chaining System (RCS) [22] presented the concept of using SDN networks to allow
ASes to select routes that do not follow the standard BGP algorithm and explore the possibility of
Internet diversity paths. The RCS explores path diversity in inter-domain routing systems with SDN,
focusing on controlling the network traffic in transit ASes from the AS source to their destinations.
The RCS also requires an inter-domain communication layer between the ASes to enable this solution.
The main drawback of the RCS is the propagation of new types of prefix messages in the inter-domain
environment for representing the fine-grain rules. This new inter-domain routing system dramatically
increases the signaling, making the solution inviable once it consumes a lot of bandwidth. Here,
the idea of this architecture is to mitigate the utilization of the bandwidth to control messages between
domains using compression techniques and exchanging the network state by sending it in binary
format, and not in plain text.

Furthermore, regarding routing logic, Kotronis et al. [23] proposed SIREN, a solution to offload
the routing functions of a customer AS to an external trusted contractor. Thus, this contractor would be
responsible for optimizing and managing the network traffic of its customers. The main idea of SIREN
is that, with multiple customers, the contractor would eventually get the global inter-domain network
state, be able to identify conflicts in inter-domain policies and take actions to optimize customer traffic.
The idea of SIREN goes towards the opposite direction of this paper, where it is claimed to give more
control to customer ASes that own and advertise its prefixes. Using the architecture of this work,
a customer AS can manage the network traffic on the Internet that otherwise, using only the BGP,
cannot be achieved. In other words, SIREN pushes more control for ISPs to manage the inter-domain
routing of its customer; here, customers have more control of the inter-domain routing once it is the
customer’s responsibility to apply the routing logic.
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3. The Architecture Proposal

This section is dedicated to presenting the architecture to manage incoming traffic in inter-domain
routing using OpenFlow networks. First, an overview of how the architecture can be integrated with
legacy networks is provided as well as a pure OpenFlow network infrastructure. Then, the proposed
architecture is depicted where each component is described, and the dynamic of how the proposed
architecture works is presented.

Afterwards, the proposed architecture is depicted, each component is described, and the dynamic
of how the proposed architecture works is presented.

3.1. Network Architecture Overview

A well-established design principle is the end-to-end argument [24]. Based on this principle,
the network complexity has to be concentrated in the network edges, making the core simple from the
perspective of network management. Thus, the following proposed architecture applies this design
principle, and the programmable devices (specifically OpenFlow switches) are positioned at the edges
of the network. Hence, two options for the core might occur:

• Legacy network: With the legacy network in the core, the SDN controller is the centralization
logic that acts as Route Server for the BGP routers. Figure 1 depicts a scheme for mixing OpenFlow
switches and legacy network appliances. The legacy core is connected through internal BGP
(iBGP) sessions to the OpenFlow Controller, which distributes external routes to the internal BGP
routers. The infrastructure routes continue to be distributed with the interior gateway protocols
(such as OSPF) executed in the Legacy core perimeter.

• OpenFlow network: In the future, it is expected that all network devices will have some SDN
technology embedded inside an AS. Thus, a domain with SDN technology (OpenFlow devices) is
straightforward, and Figure 2 depicts this scenario. All OpenFlow switches are connected to the
OpenFlow Controller, which manage the flows inside the AS domain.

Figure 1. Scheme for backward compatibility with legacy network.
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Figure 2. AS domain composed of only OpenFlow switches.

3.2. Architecture Components

A more detailed scheme of the proposed architecture is depicted in Figure 3, with the three
planes of the SDN architecture. The control plane is the place where the OpenFlow controller
is executed, and the four main components are deployed for enabling the proposed architecture:
Network Administrator, Policy Manager, East/Westbound and Path Computer.

Figure 3. The proposed architecture described by the application, control, and data planes of
SDN architecture.

3.2.1. Network Administrator

The Network Administrator component is responsible for performing the authentication and
authorization of connection requests from the Customer AS. It also provides information to the AS app
regarding multiple paths and the bandwidth utilization for a given prefix, and verifies the quantity
of network traffic destined for the prefixes of the Customer AS. If a change in the RIB_IN occurs
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(for example, a drawback prefix network), the Network Administrator component notifies the changes
to the AS app and informs the Policy Manager and Path Computer components to update the new
network state.

To avoid two (or more) AS apps making conflicted decisions about the routing, each AS app is
associated with a customer AS, and each customer has their own prefixes registered inside the Routing
Registry (RR). Thereby, verifying whether a given prefix belongs to a customer AS is conducted through
querying the RR database and, with that information, it is possible to avoid the routing objective of
one AS app negatively affecting the routing objective of the other.

3.2.2. Policy Manager

This component is responsible for applying or repealing the policies of the domain that deploys
the proposed architecture. It acts with the BGP Speaker and the Path Computer components to implement
the domain policies. Thus, if an AS app needs to explore multiple AS-Paths for a given prefix,
the Policy Manager will allow, or not, the use of multiple next hops for that prefix. The policies
are generated inside the Network Administrator component to be executed in the Policy Manager.

Moreover, the Policy Manager is responsible for avoiding two (or more) AS apps creating rules that
go against each other or the AS policies. Then, this component makes routing decisions based on the
policies provided from the domain and from the Network Administrator component.

3.2.3. Path Computer

The Path Computer component computes the paths to be installed into the OpenFlow network
of the domain that uses the proposed architecture. It sends instructions to the OpenFlow Speaker
component to install the OpenFlow rules in the OpenFlow switches. It also receives information about
the states of the OpenFlow table that are used to inform the Network Administrator component about
the bandwidth utilization of each prefix.

3.2.4. East/Westbound

The East/Westbound component allows communication between the ASes and exchanges control
information about the prefixes. Other Network Operators can use this component to perform some
control tasks. The communication uses a secure channel (e.g., HTTPS) to send and receive messages in
JSON format. The data plane elements (BGP routers and OpenFlow switches) are connected to the
BGP Speaker and the OpenFlow Speaker. The first component exchanges NLRI to other ASes through the
BGP protocol. Then, the second component enables the programmability of the OpenFlow switches
using the OpenFlow protocol.

3.3. Dynamic of the Proposed Architecture

This subsection describes how the dynamics of the proposed architecture. Regarding neighbor
peering, the OpenFlow controller has to be informed (all configuration for BGP protocol has to be
provided by the network operator in the same way as the traditional BGP configuration) about the
port where the BGP Speaker component will establish the peer session for a given neighbor. In addition
to the port information, the ASN of the foreign AS and the IP address of the remote router have to be
provided. Furthermore, if the IP address of an AS is a multihop, then the number of networks between
the BGP Speaker and the router of the neighbor AS has to also be provided as by default, all IP packets
from the BGP Speaker to a router neighbor is set with the value 1 in the Time To Live (TTL) IP field
for an external BGP connection.

Then, if everything goes as planned, BGP peering is established, and the exchange of NLRI
between the peer is complete. The NLRI will compose the RIB_IN, and after applying the Import Policies
the LOCAL_RIB is populated. The LOCAL_RIB is generated by executing the BGP decision process.
The RIB information is useful to the AS that deploys the proposed architecture as it can provide
the other ASes with inbound traffic management for the network traffic that passes through its
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infrastructure. Thus, the proposed architecture explores the RIB information and provides more
management control to customer ASes using inter-AS communication.

Furthermore, if the AS that deploys the proposed architecture allows a customer to manipulate the
outbound traffic in its network infrastructure, it will always be limited to the subset of prefixes learned
and valid in the LOCAL_RIB. Furthermore, these prefixes have to be in the Routing Registry database
and assigned to the same customer that requires inbound traffic manipulation. That is, the remote
control of a customer will be limited to only a subset of the local RIB where the destination field must
belong to one of the prefixes owned by the customer AS, and a customer AS cannot change the forward
network behavior of other prefixes that are not registered to it.

For the exchange control between a customer and a provider of the proposed architecture,
it establishes a secure channel between the ASes (e.g., Virtual Private Network (VPN) or Hyper Text
Transfer Protocol Secure (HTTPS)), which connects the AS that provides the services (for example,
an ISP) to its customers’ ASes. With a security channel, the network operator in the customer
AS can exchange management information and monitor the traffic utilization destined to its
network infrastructure.

Thus, the AS app of a customer AS will be responsible for manipulating how traffic is managed.
The organization of the proposed architecture is aligned with one of the SDN principles, where the
logic of the network occurs in applications executed over the controller. The AS app receives the BGP
network state (extracted from the RIBs) for the valid prefixes owned by a customer and the network
bandwidth usage for each path associated with each prefix. Then, the application can export that
information to the customer.

When the network operator in the customer site receives the state of its AS app, it will be able to
configure the parameters of the execution of the AS app. This allows the network operator to manage
how incoming traffic of the inter-domain network will reach its network infrastructure. For example,
the customer AS can send control information that describes how to load balance the traffic that passes
through the transit AS as it has access to the available bandwidth usage information for each prefix
and the available valid AS-paths.

The default forwarding actions are to use the BGP behavior. With the information on how to
treat the traffic, the AS that deploys the proposed architecture can apply the new control for a given
network prefix and then override the BGP default behavior when required. Furthermore, both the
customer and provided ASes can monitor the network traffic to verify if it has fulfilled the customer’s
requirements. Any changes in the BGP global view of the network are rapidly notified to the customer
to take the appropriate action.

4. Controlling Inbound Traffic

The control of inbound traffic is executed inside the application plane of the proposed architecture.
A customer AS initializes the AS app to manage the network prefixes of the transit AS with the goal of
instructing how traffic will be handled. The AS app also receives the network status from the proposed
architecture. For example, the bandwidth utilization of each prefix owned by the Customer AS, or the
available paths to reach its networks. With that information, the network operation of the Customer AS
can send control information to configure how much traffic each path will receive for each prefix in use.

The AS app is responsible for exploring the multiple paths available for a given prefix if it is
required. The information about those paths come from the BGP Speaker component that learned all
the prefixes advertised by the AS neighbors through external BGP peering. Furthermore, with the
information about multiple paths available, the Customer AS can indicate how the traffic will be treated
and distributed to those paths.

The BGP protocol uses just one “best” next hop for each prefix even if other paths to those prefixes
are valid and available. BGP is not a multipath protocol, and one good reason for that is that exploring
multiple paths on the Internet can affect the performance of Transmission Control Protocol (TCP)
connections, the most used transport level protocol in the Internet [25].
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Thus, distributing packets belonging to a connection through multiple paths can result in poor
performance of high-level protocols of the TCP/IP stack [26] (e.g., reordering packets of TCP [27]).
In particular, it is often the case on the Internet, which connects heterogeneous types of network
appliances and protocols, that the network suffers from different delays among paths. To avoid the
problem of exploring path diversity of the Internet, the proposed architecture guarantees that the
association of the source and destination of the IP packets will be forwarded through the same path.
Then, a 2-tuple composed of the IP source prefix and the IP destination prefix is adopted to define
a flow in the OpenFlow network. Therefore, for a given TCP connection, it will use the same path
during its time life (if the path is valid and available).

Aligned with the 2-tuple flow definition, there is an also a probe test from the AS app to a customer
AS that checks the health of each path in use. Thus, if an inter-domain path suffers a problem (such as
a link failure) or a transient loop occurs, the AS app will be notified to not use that problematic path.

Regarding the inbound traffic control, the proposed architecture allows any innovation in the
logic behind the AS app for a customer AS. As well explained by Silva [28], there are different strategies
for SDN load balancers. However, in this work, it was decided to develop three types of strategies
for the load balancers to be used as the control application in the AS app:

1. Reactive Random Load Balancer (Random)
2. Reactive Round-Robin Load Balancer (RR)
3. Reactive Round-Robin Load Balancer with Threshold (RRT)

These three strategies use the reactive flow creation approach [29] where the flows are created
on-demand in the response of a packet that requires a new flow. The baseline for the comparative will
be the default behavior of the BGP that uses the “best” next hop to the forward packets. The remainder
of this section is dedicated to depicting each approach.

4.1. Reactive Random Load Balancer (Random)

A reactive load balancer creates flows on-demand. Consequently, when there is no OpenFlow rule
installed in the data plane’s devices that match against the incoming packet, the controller is notified.
Thus, the work of a reactive load balancer with random selects a path from a list of valid and available
paths by submitting that list to a Random algorithm. Then, it randomly selects one of those paths to
compose a new rule for that flow. Algorithm 1 depicts the Reactive Random Load Balancer (Random).

Algorithm 1 Reactive Random Load Balancer

Input: The list of valid and available next hop to a prefix L, and a random function that selects an item
from a list random.

Output: Select a next hop for a given destination.
1: next_hop← random(L)
2: return next_hop

4.2. Reactive Round-Robin Load Balancer (RR)

Instead of a Random algorithm, a reactive load balancer with Round-Robin applies the
Round-Robin algorithm to the list of available and valid paths. The Round-Robin scheduling algorithm
is the simplest and easiest to be deployed once the first element in the list is selected and added in
the tail of that list. This process is continuously repeated following the list in a circular order and
selects each path in the list equally. Algorithm 2 presents the Reactive Round-Robin Load Balancer
(RR) scheme.
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Algorithm 2 Reactive Round-Robin Load Balancer

Input: The list of valid and available next hop to a prefix L.
Output: Select the next hop for a given destination.

1: next_hop← L.pop(0)
2: L.append(next_hop)
3: return next_hop

4.3. Reactive Round-Robin Load Balancer with Threshold (RRT)

The reactive load balancer with Round-Robin and threshold is an extension of the aforementioned
strategy where a threshold of bandwidth usage is provided for each path in the list. Thus, if the
bandwidth of a path overcomes this threshold, the algorithm must consider the associate path
congested and not able to be used for flow creation until the usage becomes lower than the threshold
value. Algorithm 3 depicts the RRT algorithm.

To be clear, all the already created flows assigned to the path that has overcome the threshold will
continue to use that path, even when the path state is congested. This decision will avoid degradation
in the transport level protocols that require keeping the state of established connections.

Algorithm 3 Reactive Round-Robin Load Balancer with Threshold

Input: The list of valid and available next hop to a given prefix L, the BGP best hop best for the prefix,
and the bandwidth usage list of outbound links in the domain D, a threshold for bandwidth
utilization t.

Output: Select the next hop for a given destination.
1: length_of_L← get_length(L)
2: last_next_hop← L[length_of_L]
3: for next_hop in L do
4: next_hop← L.pop(0)
5: L.append(next_hop)
6: if D[next_hop] ≤ t then
7: return next_hop
8: end if
9: if next_hop equal last_next_hop then

10: return best
11: end if
12: end for

5. Proof of Concept

The goal of this evaluation is the execution of the proposed architecture to control inbound
traffic by exploring the available outbound links of a given ISP to a prefix destination. First, however,
a common topology is extracted from the Internet topology information, and afterwards, a prototype
network based on that topology is depicted. Then, the definition of workloads to be used in the
prototype is followed by two scenarios. The first explores the management of inbound traffic using
different strategies, and the other scenario investigates the prototype when an external link fails and
the OpenFlow technologies take place.

This section finishes with a study of the signaling overhead of the proposed architecture seeking
to investigate the architecture’ scalability. This was done by using a worst case for the size of
East/Westbound messages, and the evaluation of how it impacted the utilization of bandwidth
for an AS.

5.1. Topology Adopted

To adopt a topology for composing the evaluation scenario, the CAIDA’s AS relationship
database [30] was used for the characterization of multi-homed ASes. It was expected that those
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ASes get more advantages of the proposed architecture as they can allow them to control and explore
the path diversity of the Internet.

The period from December 2015 to October 2017 was considered. Figure 4 presents the total
number of public ASN in CAIDA’s AS relationship database as well as the total number of stub ASes
with public ASN and a subset of this total representing the total number of multi-homed stub ASes
with two relationships of customer-to-provider. Thus, as the multi-homed customer ASes with two
ISPs are typical in recent months of the Internet, and, considering the hardware resources of this
research, the evaluation testbed of the proposed architecture adopted a topology with two outbound
links, one for each ISP, and a multi-homed customer AS.

Based on the data above extracted from CAIDA’s relationship database, the topology adopted
its depiction in the Figure 5. It consisted of four ASes, where three of them were transit ASes (AS 00,
AS 300, and AS 200), and a stub AS (AS 400). The relationship of customer-to-provider was: AS 400 to
AS 300, AS 400 to AS 200, AS 300 to AS 100, and AS 200 to AS 100. As AS 100 deployed the proposed
architecture, a new relationship of customer-to-provider was created between AS 100 and AS 400,
with the goal of managing inbound traffic to the customer (in this case, AS 400).

Figure 4. The total number of multi-homed stub ASes is common in recent months of the Internet.

Figure 5. The topology adopted.

The RIB of the AS 100 for the customer AS 400 was indicated in Figure 5, where AS 400 advertised
the network prefix 172.16.0.0/24 and the AS 100 learned this prefix propagated through eBGP sessions
between all the ASes in the topology. The AS 100 learned that it could reach network 172.16.0.0/24
either through the AS-path [200,400] or through the AS-path [300,400].

The default behavior of the proposed architecture followed the outcome of the BGP decision
process where the preferable next hop to reach the Server of AS 400 was by using the path of AS 200.
This preferable path is indicated in Figure 5 with the character “>”, and the character “*” indicates that
both routes were valid as the result of the BGP decision process. The length of the AS-Path was equal
for both paths to the network 172.16.0.0/24. The BGP decision process selected the path [200,400] to
be the next hop for that prefix; however, as the Network Operator in AS 400 could use the proposed
architecture executed in AS 100, it could explore the use of both paths, if the AS 100 allowed it.
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Once there was a relationship between AS 400 (Customer) and AS 100 (Provider) using the
proposed architecture, the AS 100 could offload the control of traffic that went to the network prefixes
of AS 400. In the topology adopted, only one prefix was available for the customer AS 400 to manipulate
it, and two options of paths to reach that prefix. When the AS app of AS 400 did not apply the load
balancing, it followed the standard BGP behavior and forwarded all network traffic to just one “best”
next hop (per prefix).

5.2. Prototype Environment

To set up the prototype environment, two physical machines were required to implement
the topology adopted (see Figure 5). One physical machine executed the following components
of the prototype environment: the OpenFlow Switch, the SDN Controller of AS 100, and the
50 Networks. Each 50 Networks propagated its prefix and had only one virtual machine to generate
traffic. For convenience, those prefixes ranged from 192.168.1.0/24 to 192.168.50.0/24. Furthermore,
the configuration of the physical machine was an 8 CPU core with a maximum clock rate of 2.20 GHz,
8 GB of RAM, and a network card of 1 Gbps. For the AS 100 configuration, each virtual machine in the
50 Networks was emulated using a container (lightweight virtualization). For the OpenFlow Switch,
the Open vSwitch [31] was used. The protocol enabled in the Open vSwitch was OpenFlow version 1.3.
The proposed architecture was executed in the modules of the Ryu SDN controller [19].

The other machine had a 3 GB of RAM, CPU with a maximum clock rate of 2.4 GHz, and a network
card of 1 Gbps. This machine was used to create AS 300, AS 200, and AS 400. Those ASes were an
instance of the full virtual machines executed in Virtualbox [32] with Quagga [18]. The terminal of
the virtual machine of AS 400 was used to send and receive JSON messages between the OpenFlow
Controller in the AS 100 and the AS 400.

A crossover Ethernet cable was used to connect the physical machines. However, to avoid
interference between the OpenFlow Switch and the AS 300 and AS 200, it divided the 1 Gbps bandwidth
between the two machines with the Linux tc tool (traffic control), allocating two virtual interfaces of
100 Mbps. Thus, the connection between AS 300 and the OpenFlow Switch had an available 100 Mbps
as well as the connection between AS 200 and the OpenFlow Switch. Hence, the network traffic from
AS 100 to AS 400 is limited to the 100 Mbps passing through path AS 200 and AS 400, as well as the
path AS 300 and AS 400.

Regarding the network traffic, the perform network throughput tests tool iperf [33] was used.
Each of the virtual machines in 50 Networks used the iperf to generate UDP packets in a controllable
way. Furthermore, for the Server component, it was executed in the iperf [33] in UDP server mode,
which was started in the AS 400 network. The server was set up with the IP address of 172.16.0.1/24,
and connected to the BGP router in the AS 400 infrastructure.

5.3. Workloads

To test how the management of inbound traffic could be performed using the proposed
architecture, several workloads schemes were designed to investigate the bandwidth usage in
the prototype environment when applying the three types of strategies presented in Section 4.
The workloads were:

1. Maximum constant network traffic for BGP behavior: This workload produces 100 Mbps of
bandwidth usage during the 50 Networks 30 s of use iperf in client mode to generate the UDP
packets. The workload was designed to explore the BGP behavior of using just one “best” next
hop (per prefix). Thus, based on the adopted topology in Figure 5, this workload will only use
one path to carry this traffic, either path [200,400] or path [300,400], but not both to reach prefix
172.16.0.0/24 of AS 400.

2. Constant network traffic with balanced rate: Different from the Maximum constant network
traffic for BGP behavior, this workload produces 200 Mbps of bandwidth from the 50 Networks.
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The total volume of traffic is split equally into each network. Hence, each one will be responsible
for producing 4 Mbps of network traffic using UDP packets during the 30 s.

3. Constant network traffic with unbalanced rate: Similar to constant network traffic with
a balanced rate workload, however, with network traffic it will be configured to become
unbalanced. Thus, the 50 Networks is split in half, and 25 of the 50 Networks will generate 7
Mbps and the other 25 will generate 1 Mbps of network traffic using UDP packets for 30 s, where
the total number of bandwidth produced is 200 Mbps in this interval.

5.4. Scenario I—Manage Incoming Traffic Using Different Strategies

This scenario investigated how the different strategies could play a role in managing incoming
traffic. It used the topology adopted (see Figure 5), and explored the strategies for controlling inbound
traffic explained in Section 4.

Figure 6 presents the execution of Workloads 2 and 3 using the standard BGP behavior. Due to
the BGP’s destination-based forwarding paradigm, all 200 Mbps of the network traffic generated from
the 50 Networks to the Server is strangled into one of the “best” next hops. Hence, the selected next hop
to the Server is the path [200,400], and then the network traffic was forwarded to AS 200. Once the
maximum available bandwidth to this path is 100 Mbps, the results in Figure 6 reflect that limitation.
Hence, even if the workload is balanced or unbalanced, the maximum bandwidth reaching the Server
is 100 Mbps. For convenience, the unbalanced workload will be used as a reference for analyzing the
results for the other control applications.

Figure 6. BGP behavior for network traffic to the server 192.168.0.1/24 in AS 400.

The results of the reactive Random load balancer control application (see Section 4.1) to Workloads
2 and 3 is depicted in Figure 7. Practically, both workloads were distributed equally to the valid and
available paths [200,400] and [300,400]. Compared against the reference of BGP behavior (uses just
one “best” path per prefix), the Random optimized and used all of the 200 Mbps available bandwidth
to reach the Server. This doubled the utilization of the inbound links of AS 400 for both workloads
(balanced or unbalanced) when compared against the BGP reference.
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Figure 7. Random load balancer results.

Considering the Round-Robin load balancer (RR), Figure 8 presents the results. The RR reached
the full bandwidth utilization only for the workload that generated the balanced network traffic.
The unbalanced traffic was not well distributed and did not explore the full potential of the available
and valid paths of the topology. The unbalanced workload produced a more similar result to the BGP
behavior (BGP–unbalanced workload) than when the balanced workload was used.

The Round-Robin load balancer with the threshold (RRT) was also used. The threshold selected
was 95% of the bandwidth for each available path. If this threshold was crossed, then the inbound
control application used just the “best” next hop selected from the BGP. The results are shown in
Figure 9. As expected, with the balanced workload, the RRT reached the full bandwidth utilization
for the prefix 172.16.0.0/24 of the AS 400. These results corroborated with that found for the RR control
application. However, for the unbalanced workload, the RRT was close to the 200 Mbps of bandwidth,
and was a better result than RR.

Figure 8. Round-Robin load balancer.

Figure 9. Round-Robin load balancer with the threshold.
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5.5. Scenario II—External Link Failure

This scenario captured the dynamic of a disruption of an external link when the domain that
deployed the proposed architecture was protected with the FF rules of OpenFlow. The main goal
of this scenario was to mitigate the unavailable time of the domain during the disruption of an
external link, taking into account the FF mechanism and exploring the multiple paths allowed by the
proposed architecture.

This scenario used Workload 1 and the prototype environment describing the adopted topology
(see Figure 5). To avoid any delay or packet loss that could be caused during the OpenFlow rules
installation process, all FF rules were installed before the execution of the workload. An example of
the state of the table rules is depicted in Table 1.

Suppose that OpenFlow Switch of Figure 5 is the edge device of AS 100. As the workload was
designed to explore the BGP’s destination-based forwarding paradigm, the best next hop for the prefix
172.16.0.0/24 is through the AS 200. If the domain AS 400 can apply inbound control over the prefix
172.16.0.0/24 in the AS 100, then all traffic from the 50 Networks can be forwarded as the AS 400 wishes.

The first 50 lines of the OpenFlow Switch flow table reflected this scenario, and used the group
table Group1 identifier, where it forwarded packets to AS 200 when the external link to this AS was live
(not failed), or otherwise to AS 300. The last OpenFlow rule is the routing safety rule, where all the
remaining traffic that does not match against previous rules will be forwarded. The Group2 identifier
was used to forward network traffic for path [200,400], which was the “best” next hop for the BGP AS
400’s prefix.

Table 1. Flow table and group table for the OpenFlow Switch using OpenFlow Fast Failover Group Table.

Flow table at OpenFlow Switch.

Match Fields Instruction

ine IP_src:192.168.1.0/24 and IP_dst:172.16.0.0/24 Group1

ine IP_src:192.168.2.0/24 and IP_dst:172.16.0.0/24 Group1

ine (...) Group1

ine IP_src:192.168.50.0/24 and IP_dst:172.16.0.0/24 Group1

ine IP_dst:172.16.0.0/24 Group2

Group table at OpenFlow Switch.

Group Identifier Group Type Action Buckets

ine Group1 Fast Failover
Watch: AS 200 port; Outport: AS 200

ine Watch: AS 300 port; Outport: AS 300

ine Group2 Fast Failover Watch: AS 200 port; Outport: AS 200

Regarding the experiments, Figure 10 depicts the average bandwidth received by the Server
during the execution of Workload 1. The workload was executed more than 30 times with a confidence
interval of 95%. As the disruption of the link was not perfectly synchronized with the start of the
capture (in milliseconds time), the computation of the average bandwidth produced a graph that did
not present a discontinued interval around the 15th second. However, Figure 10 indicates that the FF
mechanism did not affect the total bandwidth available to the workload once the maximum available
bandwidth was used practically during the entire 30 s interval.
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Figure 10. The average of multiple measurements for the network traffic during a link failure around
the 15th second with a confidence interval of 95%.

In fact, a sample of the execution of the selected workload is presented in Figure 11, which shows
how the traffic used different paths to reach the Server. Although Figure 11 describes the network
behavior of the traffic generated during the 30 s, it does not provide details about the disruption event
that occurred in the 15th second. Next, Figure 12 details what happened in between the times of 14.95 s
and 15.05 s of this scenario.

Figure 11. An execution of link failure in the 15th second.

Figure 12. Details of network traffic for the link failure around the 15th second.

The workload produced 100 Mbps of network traffic and used the path [200,400] as the “best”
next hop and path [300,400] as a backup path. In the 15th second, the link connecting AS 100 and AS
200 failed. After the link failure in the 15th second, the FF mechanisms took a few milliseconds to
discover the disruption. Once this occurred, the traffic automatically shifted from path [200,400] to
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path [300,400]. This process was done exclusively in the data plane (OpenFlow switches) and took less
than ten milliseconds, which is an acceptable value for disruption in an inter-domain environment (less
than 50 ms [34]). The measured millisecond interval was coherent with the FF mechanism recovery
times found in the literature [35,36].

The main result of this scenario was that, by exploring the valid and available multiple paths
of BGP, the proposed architecture avoided the application of the BGP decision process for selecting
a new best next hop when an external link failed. The BGP convergence is a time consuming process
(dozens or hundreds of seconds [37,38]) when deciding a new route, and with the application of the
proposed architecture mechanisms, if it exists, a valid next hop will then always be already computed
and installed in the data plane, and then the domain can immediately use the spare route. Therefore,
the proposed architecture can bring the unavailability of paths to the milliseconds time after an external
link failure, instead of being subject to the long BGP convergence time.

5.6. Signaling Overhead

The evaluation metrics for the SDN protocols were highlighted by the survey of Mendiola et al. [4]
who indicated that the number of messages and the size of the messages were criteria for the
measurement scalability of the SDN solutions. Based on this claim, the signaling overhead was
measured of the proposed architecture for the size of East/Westbound messages.

The dataset of CAIDA contained IPv4/IPv6 Prefix-to-Autonomous System (AS) mappings [39].
With that dataset, it was possible to verify the size of the messages required to update the network
state of a customer. Thus, from the CAIDA database, the AS that owned the most number of prefixes
on the Internet (in 2017) was extracted, which was value of 5416 prefixes. This value was the worst
case possible as no other AS would require a bigger network state message. Furthermore, with that
quantity of prefixes (worst case message), a JSON message was generated using the East/Westbound
component, and the size of this message was measured.

The bandwidth required to transmit the size of the message in the worst-case scenario, and various
intervals of time were used with the goal of diluting the size of the message through those intervals,
hence decreasing the bandwidth needed. The results are presented in Table 2, where the various
intervals of time were adopted, and the bandwidth required for transporting the worst-case message.

Table 2. The bandwidth required to send the biggest message of the network state using the
communication mechanism of the proposed architecture.

Interval Uncompressed (in Kbps) Compressed (in Kbps)

ine 0–1 4472 292

ine 0–5 894 58

ine 0–10 447 29

ine 0–15 298 19

ine 0–20 223 14

This was applied through ZIP compression to reduce the bandwidth required for the worst-case
message (see Table 2). Therefore, the quantity of bandwidth required to transmit the biggest
network update was relatively small when considering peer-to-peer communication, especially if
some compression was applied. Furthermore, gaining better control of the utilization of available
bandwidth for inbound traffic had the potential to overcome the waste of bandwidth in the use of
signaling messages between a domain that deployed the proposed architecture and its customers.

6. Further Discussion

The Internet is intrinsically heterogeneous and distributed where network operators execute
independent network management tasks into their AS domain [40]. Additionally, the lack of direct
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BGP mechanisms to control inbound network traffic contributes to the over-provisioning of ASes
infrastructure, leading to an inter-domain environment consisting of expensive, high-performance,
and specialized hardware. Consequently, these network resources are underutilized by around
30% to 60% [41] to cope with disruption or unpredictable changes of connectivity in the
inter-domain environment.

Moreover, the BGP does not provide an effective mechanism to control inbound traffic for prefixes
advertised to other ASes. All traffic engineering tools available with BGP only rely on techniques
that try to influence other BGP speakers to generate the network traffic distribution desired. Thus,
this work explored the possibility of adopting SDN technologies in the inter-domain environment
(for example, an ISP) and providing new routing network services to customers of the transit ASes
that deploy the proposed architecture.

A prototype was used to execute an experiment of how to perform load balancing for inbound
traffic to a given AS. Although the scenario adopted consisted of few ASes, a common configuration
in current Internet topology was extracted, which was expected to be represented in a real scenario
deployment. Furthermore, based on the achieved results, the proposed architecture was effective
for allowing customers of a transit AS to control the inbound traffic.

6.1. Number of Network Rules

It is evident that exploring multiple paths of customers prefixes can increase the demand
for OpenFlow rules. For example, in the topology adopted (see Figure 5), the execution of a load
balancer application increased n + 1 times the number of OpenFlow rules required to forward a given
customer prefix, where n is the number of source network prefixes needed to be managed by the
transit AS. Thus, instead of just one forward rule to the prefix 172.16.0.0/24 to the AS 400 (the default
“best” next hop of BGP rule), 51 OpenFlow rules were required to manage the inbound traffic for the
customer AS from the 50 prefixes of the 50 Networks.

Regarding the number of network rules, the OpenFlow protocol required multiple match fields to
compose a single rule, and the OpenFlow switches often deployed a flow rule using the Ternary Content
Addressable Memory (TCAM). TCAM memories are a high-speed memory, but with the limitation of
very high monetary costs. Moreover, TCAM requires a lot of space in its chip hardware and has
a notoriously high energy consumption. Thereby, due to the fine-grain of the OpenFlow rules, these
rules can be cumbersome to an inter-domain environment where the number of prefixes (or flows)
is tremendously high [42]. Thus, it is worth noting that any OpenFlow based solution requires
appropriate flow management. The rule placement problem inside an OpenFlow network is further
detailed in the excellent and extensive survey of Nguyen et al. [43].

Furthermore, OpenFlow specification, and hence the OpenFlow switches, aims to make the data
plane elements flexible and efficient as Application Specific Circuits Integration (ASCI) used in the
BGP routers (traditional network approach). However, to increase the flexibility of the OpenFlow
protocol, the number of TCP/IP protocols supported for each new version of the OpenFlow protocol
stumbles into the TCAM limitations. Therefore, a trade-off between flexibility (e.g., number of match
fields) and performance (for example, number of rules) must be reached. Ideas for allowing OpenFlow
data plane elements to be more flexible and programmable are at the very beginning such as P4 [44] or
OpenState [45] and can be an answer for the flexibility and performance of OpenFlow switches.

6.2. Adopting a Routing Registry

One major concern in BGP inter-domain routing is the exploration and impersonation of the
ownership of IP prefixes for ASes. Hijacking, misconfiguration, and errors [46] can lead to the
disconnection of portions of the Internet (black hole routing), Man-In-The-Middle attacks (MITM),
Distributed Denial of Service (DDoS), and other security issues. These issues occur because the control
plane of BGP does not provide security mechanisms for discovering what an AS owns and is allowed
to advertise for a given prefix.



Information 2018, 8, 92 18 of 23

To be reachable on the Internet, an AS has to inform the prefixes its network is configured and
passes those values to its ISP (or its Peers). Often, this is done basically by signed contracts between
ASes during the establishment of their AS relationships, and an agreement of which Routing Registry
(RR) is used. An Internet Routing Registry (IRR) is a database on ASNs and IP routing prefixes.
A registry in an IRR is used for configuring BGP routers to avoid security issues between ASes [47].

When a RR is adopted, it is possible to build filters based on the registries of that database.
Although there are some global IRRs (for example, ARIN’s IRR [47]), often the providers run their
Routing Registries. The problem of using a global Internet Routing Registry is that the current efforts
do not provide extensive, updated, and reliable databases of most of the ASes, and hence the registries
usually do not reflect the reality of the ASes relationships and the ownership of their prefixes.

6.3. East/Westbound Discussion

Regarding the East/Westbound SDN interfaces, SDN technologies (such as OF) can centralize
the control of the network and require network functions such as monitoring capabilities or import
and export data to exchange control information between the different controllers. As recent surveys
have indicated, there is no standard to exchange network control information between different SDN
controllers [40,48], although some initiatives have tried to standardize an East/Westbound for SDN
controllers, for example, ALTO [4,49].

To communicate among the SDN controllers in the inter-domain ecosystem, the authors in [40]
proposed an interface for the SDN to exchange reachability and topology information. The goals
were to present a peer-to-peer mechanism to exchange network information and be resilient and
secure for ASes. As highlighted by [6], the SDN does not have a universal interface (East/Westbound
API) for the integration of heterogeneous SDN controllers as it is easy to develop (it is just software,
no hardware development involved). This interface is also dependent on niche markets where a given
SDN controller has to satisfy the business requirements where it has to be deployed.

The proposed architecture uses its East/Westbound interface to allow a more in-depth integration
with the business systems of its customers. It is different from other approaches that only integrate
legacy routers with SDN technology. For example, RouteFlow [50] uses Quagga as the main engine to
control and configure flows of OpenFlow switches via a proxy for the OpenFlow controller, and all
the network logic follows traditional network protocols, which in the case of inter-domain routing is
the BGP protocol. Here, it is possible to refine the control task of managing inbound network traffic,
when a customer is allowed to do so, by overriding the BGP behavior and exploring multiple available
and valid paths in the inter-domain environment.

This work is a step forward in the understanding of adopting an East/Westbound interface between
different domains, especially in the inter-domain environment. Furthermore, regarding classification,
the solution of using an East/Westbound interface for the proposed architecture makes it classified as
a Peer-to-Peer application (P2P) based on the work of Nobre et al. [51].

6.4. The Proposed Architecture in the Internet

To investigate the potential of the proposed architecture on the Internet, the CAIDA’s database [52]
was used to rank the ASes that provide transit to other ASes. The ranking was based on the
Customer Cone metric, which measures the number of direct and indirect customers of a given AS.
The data for ranking the ASes was based on the Customer Cone metric and was extracted from the
topological data collected by CAIDA and BGP routing in June 2016. A total of 54,772 ASes comprised
the dataset used.

Thus, the first ten ASes in this ranking were selected and the number of ASes in their Customer Cone
were measured. Figure 13 depicts the potential of the proposed architecture in the Internet. The first 10
ASes in the ranking had an expressive quantity of direct or indirect customer relationships that could
allow those customers to use the benefits of the deployment of the proposed architecture. Therefore,
if one of those 10 ASes provided network services to control the inbound management of network
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traffic to its customer in the cone, those customer ASes could explore the path diversity of the Internet
by using an AS app, as shown in the previous section.

Figure 13. The potential number of customers affected by the proposed architecture deployed on
the Internet.

Furthermore, the proposed architecture acted in the BGP decision process and allows an AS
that deployed this technology to offload its control for customer ASes. Next, a customer could
manage inbound traffic by applying control mechanisms for network traffic toward its prefixes.
The premise was that stub ASes would be willing to have that control and eventually could establish
new relationships to transit ASes on the Internet.

This type of relationship, where any AS can create a relationship with any other AS, is very difficult
in the current Internet architecture. The benefits for the customers’ ASes is the appropriate management
of their inbound network traffic and for the transit ASes to provide new network value-added services.
Obviously, the offload of control from the transit AS would hardly be available for free and will
probably provide those new network services if and only if it had some political or financial incentives.
Thereby, a transit AS that executes the proposed architecture could explore the new routing services
economically and hence increase its profit that would be reachable via collaboration among ASes or due
payment. Therefore, a new economy plane for the Internet [53] could emerge and the financial appeal
of the proposed architecture is the incentive to transform and evolve the inter-domain environment [3].

Besides having more control of the inbound network traffic, increasing control in the inter-domain
routing could also be beneficial for the security of the Internet. For example, it is well known that
the mitigation of Distributed Denial of Service (DDoS) is more effective when applying defense
mechanisms as close as possible to the source of the attack [54]. As the detection is more precise in
the AS suffering a DDoS attack, it can respond by expanding its defense mechanism through other
ASes. This will have the potential to inhibit the occurrence of DDoS once the defense mechanism
can be expanded to being as close as possible to the source of the attack. Future works will focus on
mitigating DDoS flooding attacks with the proposed architecture.

6.5. Future Works and Limitations

All the network logic in the SDN architecture resides inside applications executed over SDN
controllers. The three strategies for load balancers used in this work followed the reactive flow creation.
Hence, for future works, it is interesting to investigate the different approaches for the manipulation of
flows in an OpenFlow network, for example, proactive and active strategies [29]. Another idea in this
line of thought is to manage and apply a more aware congestion control for the flows, e.g., a switchover
mechanism [36] that changes congested flows to different paths during the lifetime of the flows.

For future works, the execution of different protocols to compose the workload has been
considered. One limitation of this work is that it only used UDP flows. The exclusivity of this
protocol in the experiments was justified for the sake of space and time, and the metric adopted in this
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work, the bandwidth of the paths. However, the use of the iperf tool to set up and generate TCP flows
will be the next step.

TCP flows will be designed to be as representative as possible to typical Internet TCP flows.
The importance of this investigation will discover the sensitivity of the throughput of TCP flows
to dropped packets as realistic Internet traffic tends to be highly dynamic, with individual flows
varying in their bandwidth utilization. Thus, with more realistic traffic, it will be possible to analyze
whether there is any improvement in the throughput, as was seen in the described experiments using
UDP flows.

Another idea to be explored is the creation of a numerical network model to be executed over
BGP topology. A good question to be answered will be how much path diversity on the Internet can
be improved with a large adoption of the proposed architecture. Exchange Internet Points (IXPs) and
Content Distributed Networks (CDNs) can contribute to increasing the capillarity of the Internet traffic,
which is reflected in the BGP topology. The proposed architecture can make it interesting for transit
ASes to provide a new type of network services to stub ASes, principally for the management inbound
network traffic.

7. Conclusions

The BGP protocol does not provide an effective mechanism to control inbound traffic of advertised
network prefixes. This work tackled this gap in the literature and proposed a new architecture to
manage incoming traffic to multi-homed ASes where their ISPs, using OF networks, provide new
services to allow customer ASes to apply network management tasks into the ISPs infrastructure.
This work proposed and executed experiments on how the proposed architecture could be used
to provide more network traffic control using the capabilities of OpenFlow networks. The results
indicated that the effective of the inbound control mechanisms to manage incoming traffic for the
inter-domain routing was dependent on the logic executed in applications of the proposed architecture.

Furthermore, the proposed architecture was extensively discussed including the limitation of the
OpenFlow technology, previous works, the mechanisms to exchange control information among SDN
domains, the attractiveness of deploying the architecture in the current Internet, and future works.
In conclusion, the results and the extensive discussion of the proposed architecture makes this work
a step further in the literature of the mechanisms for managing Internet traffic.
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