
 information

Article

Auction-Based Cloud Service Pricing and Penalty
with Availability on Demand

Xiaohong Wu 1,2,* ID and Jingti Han 1,3

1 School of Information Management and Engineering, Shanghai University of Finance and Economics,
Shanghai 200433, China; hanjt@mail.shufe.edu.cn

2 School of Information Engineering, Huzhou University, Huzhou 313000, China
3 Institute of Fintech, Shanghai University of Finance and Economics, Shanghai 200433, China
* Correspondence: xhwu@zjhu.edu.cn

Received: 19 March 2018; Accepted: 9 April 2018; Published: 11 April 2018
����������
�������

Abstract: Availability is one of the main concerns of cloud users, and cloud providers always try to
provide higher availability to improve user satisfaction. However, higher availability results in higher
provider costs and lower social welfare. In this paper, taking into account both the users’ valuation and
desired availability, we design resource allocation, pricing and penalty mechanisms with availability
on demand. Considering two scenarios: public availability in which the desired availabilities of
all users are public information, and private availability in which the desired availabilities are
private information of users, and, analyzing the possible behaviours of users, we design a truthful
deterministic mechanism with 2-approximation in public availability scenario and a universal truthful
mechanism with 1

1+γ approximation in private availability scenario, where γ is the backup ratio of
resources with the highest availability. The experiment results show that our mechanisms significantly
improve the social welfare compared to the mechanism without considering availability demand
of users.

Keywords: cloud computing; availability; auction mechanism; service credit

1. Introduction

Quality of service is a significant factor affecting the service selection of cloud users, which has
attracted the attention of many researchers [1–3]. As a crucial metric for quality of service, availability
is the most discussed attribute, which is included in almost all cloud service level agreements (SLAs).
According to Pan et al. [4], above about 70 percent of user/provider SLA included availability
concerns. Thus, many research works focused on improving the availability by various optimization
approaches [5–8]. To improve the user satisfaction, the infrastructure as a service (IaaS) cloud provider
provides higher and higher availability for their users, and provides a penalty when the SLA is violated.
Figure 1 shows the penalty named service credit in different clouds [9–11], which is a percentage of the
corresponding price.

However, in terms of the types of applications, users might have different availability demands.
For instance, a non-critical web hosting service always has a lower availability demand than a
mission-critical banking service. According to the discussion in literature [12], all high availability
techniques increase administrative costs and resource needs. Therefore, existing solutions in the cloud
center, which try to provide higher and higher availability without considering different availability
demand, will result in higher provider costs and consume more resources. Especially in the scenario of
insufficient resources, it will make more users lose service. Thus, the social welfare, which is the sum
of users’ valuation, will decrease. Figure 2a shows the resource allocation for the service requests with
fixed availability and price.

Information 2018, 9, 87; doi:10.3390/info9040087 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0001-9464-1092
http://www.mdpi.com/journal/information
http://www.mdpi.com/2078-2489/9/4/87?type=check_update&version=2
http://dx.doi.org/10.3390/info9040087

Information 2018, 9, 87 2 of 15

90 92 94 96 98 100

Availability

0

20

40

60

80

100

S
e
rv

ic
e
 c

re
d
it
 %

Microsoft Azure

Amazon EC2

Google GCE

Figure 1. Comparison of three service credit functions in availability.

Figure 2. Illustration of two resource allocation approaches: (a) allocation with fixed availability and
price; (b) allocation according to different availability demands and valuation of users with different
price. Different colors represent different availability, and different sizes of grey blocks represent a
different backup ratio.

To overcome the shortcomings above, some researchers have noticed the importance of resources
allocation according to users’ demands on availability. Shen et al. [13] proposed a mechanism named
availability on demand (AoD), which allows data center users to specify dynamically availability

Information 2018, 9, 87 3 of 15

requirements, and dynamically manages computing resources using an availability-aware scheduler
based on user-specified requirements. Shahrad et al. [14] proposed the Availability Knob (AK),
which provides user-defined availability in IaaS clouds, allowing the IaaS cloud user to express their
desire for availability to the cloud provider. This approach can reduce provider costs, increase provider
profit, and improve user satisfaction when compared to that without considering different availability
demands. In the system of user-selected availability, the penalty mechanism is another important
ingredient that affects the users’ service selection. The negotiations on availability generally include the
penalty, which should be paid by the cloud provider if the cloud cannot meet the requested availability.
Yuan et al. [15] proposed a competitive penalty model and a corresponding penalty based profit
maximization algorithm for cloud providers. In [14], considering service credit as a penalty to the user
when her requested availability cannot be met, the authors proposed the pricing strategy based on
game theory. However, the studies above did not consider the valuation of services to users, resulting
in low social welfare. Taking the service valuation to users into account, auctions have been applied
widely [16–21]. Mashayekhy et al. [16] proposed mechanisms consisting of a winner determination
algorithm that selects the users, and provisions the virtual machines (VMs) to physical machines;
Zhang et al. [21] considered a flexible pricing model for instance reservation. However, most of those
works investigate the allocation of resources without worrying about the availability demands of users.

In this paper, taking both the users’ valuation and desired availability into account, we investigate
resource allocation, pricing and penalty mechanism to maximize the social welfare based on the
works in [13,14,16]. Figure 2b shows a cloud scheduler that allocates resources according to different
availability demands and valuation of users with different prices. We allow each user to request the
desired availability and report the valuation that she is willing to pay for the service with requested
availability. As shown in Figure 2, user 1 would like to pay $5 to the service with 99.9% availability.
In our work, we consider two scenarios: (1) the desired availabilities of all users are public information
of users (public availability); and (2) the desired availabilities are private information of users (private
availability). Then, by analyzing the possible behaviours of users, we design a truthful deterministic
mechanism in a public availability scenario and a universal truthful mechanism in a private availability
scenario for resource allocation, pricing and penalty.

The rest of the paper is organized as follows. Section 2 introduces the problem model. In Section 3,
we design a truthful deterministic mechanism in a public availability scenario and a universal truthful
mechanism in a private availability scenario. In Section 4, we compare the proposed mechanisms to
optimal resource allocation and an allocation mechanism without considering the availability demand.
Finally, Section 5 concludes our work in this paper.

2. System Model

2.1. Availability on Demand and Service Credit

Availability of an application can be measured as the fraction of its uptime in a specified period of
time, which can be expressed by

Availability =
service uptime

service uptime + service downtime
,

where service uptime is the duration during which the system delivers the given service, while service
downtime is the period during which the service is not delivered [22].

Providers always adopt different fault tolerance schemes to realize different availabilities of
a given application. In [23], it shows that most of the cloud providers use redundancy models
with 1-active and 1-standby, 1-active and X-standby, and X-active assignments. We denote the set
of all availability options by A, A = {A1, A2, ..., AL}, where A1 is the lowest option, and AL is the
highest availability. Each Availability option Al corresponds to a backup ratio of virtual machine
ϕ(Al) ∈ [0, X].

Information 2018, 9, 87 4 of 15

On the other side, SLA templates are always provided by cloud providers in most clouds. When a
user agrees to purchase a service, it also implies that she has signed the service level agreement with the
provider. When the cloud services cannot meet availability commitment of the SLA, providers would
pay back service credits to make up for their violation, which is also included in the SLA. Service credit
is calculated in different manners. Figure 1 shows the service credit functions of Amazon EC2,
Google GCE, and Microsoft Azure. Of course, cloud providers can use other penalty schemes such as
linear function, arbitrary function, etc. These penalty mechanism only applies to the scenarios with
fixed availability provisioning.

In our work, we assume that the provider only provisions one type of virtual machine.
The resource (virtual machine) number needed by the user i is ni. To simplify, we call it resource
demand ni. Each user can select an availability from set A according to the service demand. We assume
that the total resource number occupied by each user i denoted by ni(1 + ϕ(ai)) is no more than total
capacity of the cloud. The definition of desired availability is as follows:

Definition 1 (Desired Availability). Given the resource demand ni, ai is desired availability of user i if
∀a < ai, Vi(ni, a) = 0 and ∀a ≥ ai, Vi(ni, a) = vi, where Vi(·) is the valuation function of user i, vi is
a constant.

Our resource allocation for service requests with desired availability is named as Allocation
with Availability on Demand. Then, we denote SCk

Ai
(Aj) as the absolute service credit for service

k, where Ai, Aj are the requested availability and delivered availability, respectively. It implies that,
when the requested availability is Ai, the provider needs to pay back service credit SCk

Ai
(Aj) if the

delivered availability is Aj and Aj < Ai. Of course, SCk
Ai
(Aj) = 0 if Ai ≤ Aj.

2.2. Description of the Problem

LetN denote a set of cloud users who want to request services. The type of user i can be expressed
by (ni, ai, vi), where ai ∈ A is the desired availability, ni is the resource demand and vi is the service
valuation to user i. In our work, we assume that all the bidders are single-minded,the definition of
which is as follows:

Definition 2 (Single-minded). A valuation function V is called single-minded if there exists a number of
items n∗, an availability a∗ and a value v∗ ∈ R+ such that V(n, a) = v∗ for all n ≥ n∗ and a ≥ a∗ and
V(n, a) = 0 for all other (n, a). A single-minded bid is the pair (n∗, a∗, v∗).

In this paper, we design resource auction mechanisms for the cloud center, and the objective is to
maximize the sum of users’ valuation, which is the social welfare. The formalization problem can be
expressed as follows:

max ∑
i∈N

xivi,

s.t. ∑
i∈N

xini(1 + ϕ(ai)) ≤ C,

xi = 0 or 1, ∀i ∈ N ,

(1)

where C is the total capacity in cloud, xi is the allocation outcome for user i. xi = 1 if user i is allocated;
otherwise, xi = 0.

Now, the critical work is to obtain a mechanism including resource allocation, pricing and penalty.
To achieve the objective in problem (1), the mechanism should be truthful so that it can incentivize all
users to bid their true type.

Let bi be the true type of user i, b−i the true type of other users. Let bid b̂i be the report type of
user i, b̂−i the report type of other users. The utility function of i is denoted by ui(·). The definition of
truthfulness of an auction mechanism is as follows:

Information 2018, 9, 87 5 of 15

Definition 3 (Truthful). An auction mechanism is truthful if bidding true type maximizes the utility of any
user i irrespective of the bid of other users. Formally, ∀b̂i, b̂−i,

ui(bi, b̂−i) ≥ ui(b̂i, b̂−i).

Intuitively, it means that user i whose type is bi would prefer “telling the truth” bi to the mechanism
rather than any possible “lie” b̂i , since this gives her higher utility.

In the next section, we will design truthful mechanisms under two scenarios: public availability
in which the desired availabilities of all users are public information, and private availability in which
the desired availabilities are private information of users.

3. Truthful Auction Mechanism with Availability on Demand

3.1. Public Availability

In this subsection, we consider the setting that the desired availability of each user is public
information to the auctioneer, and the valuation function is single-minded. Then, bi = (ni, vi),
it becomes a two parameter mechanism design problem. The problem is very similar to the knapsack
problem. Our auction mechanism for public availability is presented in Algorithm 1.

Algorithm 1: Auction for multi-unit request: HalfGreedy.
input :User bids: b = {bi, i ∈ N}
output :Allocation:X; Payment:P

1 S1 ← ∅; S2 ← ∅;
2 i1 = arg maxi{vi};
3 V1 = vi1 ;
4 S1 ← S1 ∪ {i1};
5 U′ ← {i | ni(1 + ϕ(ai)) ≤ C/2};
6 while ∑i∈S2

ni(1 + ϕ(ai)) ≤ C/2 do
7 i′ ← arg maxi∈U′

vi
ni(1+ϕ(ai))

;

8 S2 ← S2 ∪ {i′};
9 U′ ← U′ \ {i′};

10 end
11 Let i1, i2, ...ik be the users selected to S2 according to their entry order;
12 V2 = ∑k−1

i vi +
vk

nk(1+ϕ(ak))
·min{nk(1 + ϕ(ak), C/2−∑k−1

i ni(1 + ϕ(ai))};
13 if V1 > V2 then
14 xi ← 1, ∀i ∈ S1;
15 else
16 xi ← 1, ∀i ∈ S2;
17 end
18 for each i s.t. xi = 1 do
19 pi = vixi −

∫ vi
0 xi((ni, ai, u), b−i)du;

20 end

Algorithm 1 begins by computing two candidate allocation set. The first candidate allocation
set denoted by S1 is the singleton set that only consists of the user i1 who has the highest valuation
among all the users, and V1 denotes the valuation of S1. The computing process of first candidate
allocation set and corresponding valuation is shown in Lines 2–4 of Algorithm 1. The second candidate
allocation set S2 is computed as following steps. First, we select all users whose requested capacity is
less than C/2 to set U′ in Line 5. Let value density of user i be vi

ni(1+ϕ(ai))
. Then, we select the cloud

Information 2018, 9, 87 6 of 15

users from set U′ to S2 based on a greedy approach with respect to the value density of users in Lines
6–10. Lastly, we calculate the total valuation V2 about the second allocation in Line 12. It is worth
noting that V2 is not the overall valuation from set S2, but the maximal sum of valuation allocated in
exactly half of the capacity. After computing two candidate allocation sets, in Lines 13–17, we choose
an optimal one as a final allocation. According to the maximal valuation between V1 and V2, we select
either the user in S1 or all users in S2. In Line 19, according to the Myerson payment rule, we calculate
the payment pi for each winner i:

pi = vixi −
∫ vi

0
xi((ni, ai, u), b−i)du,

where, xi((ni, ai, u), b−i) presents the allocation of user i in Algorithm 1 when the bid of user i is
(ni, ai, u), and the bid of others is b−i.

To prove the truthfulness of our mechanism in Algorithm 1, firstly we introduce a truthfulness
Theorem [24].

Theorem 1. A mechanism for single-minded bidders in which losers pay 0 is truthfulness if and only if it
satisfies the following two conditions:

(i) Monotonicity: A bidder who wins with bid (o∗i , v∗i) keeps winning for any v′i > v∗i and for any o′ � o∗

(for any fixed settings of the other bids).
(ii) Critical Payment: A bidder who wins pays the minimum value needed for winning: the minimum of all

values v′i such that (o∗i , v∗i) still wins.

Theorem 2. The auction mechanism in Algorithm 1 is truthful.

Proof of Theorem 2. First, we use wi instead of ni(1 + ϕ(ai)) in Algorithm 1, and the bid changes to
(wi, vi). According to the results in [25], the changed algorithm is loser-independent and monotonic
with respect to the bid (wi, vi) of every user. Since wi is monotonic in ni, ai, and ai is public information,
Algorithm 1 is also monotonic in ni, vi.

The payment pi = vixi −
∫ vi

0 xi((ni, ai, u), b−i)du is the minimum value, which can make user i
obtain allocation.

According to the Theorem 1, Algorithm 1 is truthful.

Theorem 3. The auction mechanism in Algorithm 1 is 2-approximation.

Proof of Theorem 3. Assume that Vopt is the optimal valuation, and S∗ is the set of allocated users.
Recall that V1 is the highest bid valuation among all users and V2 the maximum sum of valuation
allocated in half of capacity.

Case 1: If S∗ includes a user i∗ whose required total capacity ni∗(1 + ϕ(ai∗)) is more than C
2 ,

since V1 ≥ vi∗ and V2 ≥ ∑i∈S∗\{i∗} vi, it follows that

max{V1, V2} ≥
1
2
(V1 + V2) ≥

1
2
(vi∗ + ∑

i∈S∗\{i∗}
vi) =

1
2

Vopt.

Case 2: If all the users in S∗ require the resource capacity less than half of whole capacity,
it follows that

max{V1, V2} ≥ V2 ≥
1
2

Vopt.

In Algorithm 1, we obtain a truthful 2-approximation mechanism if each desired availability
ai is a public information. However, in many scenarios, cloud providers cannot obtain the desired

Information 2018, 9, 87 7 of 15

availability of users. It needs the users to tell their availabilities to the mechanism. In that case, a user
might make some other strategies to improve her utility.

Studies [26–28] have shown, and one of the root causes of failure is software in computer
systems. Such possible software failures can affect the availability of the VM, and it is difficult
to distinguish software-induced failures from failures caused by hardware [14]. Therefore, if the user
is unhealthy, to obtain service credit, she can adopt some strategy to reduce the availability of herself.
Shahrad et al. [14] consider that a user can either run defective software that reduces the availability
from âi to desired availability ai, resulting in some service credit return, or instead run healthy, reliable
software and originally request the true desired availability ai. The former users we name unhealthy
users, and the latter are healthy users.

In Algorithm 1, when the users are unhealthy, for any nonzero service credit approach, it cannot
make each user truthfully report the desired availability ai in any case if ai is private information.
For example, in Algorithm 1, if V1 > V2 and i∗ ∈ S1, we can obtain a critical payment of i∗ denoted
by pc

i∗ . Obviously, if i∗ reports its availability âi∗ > ai∗ , she still can obtain allocation. Therefore,
when there is a service credit, i∗ will request higher availability and then reduce it to the desired
availability by running defective software to get both the service credit and valuation of the service.

To address the above problem, in the next subsection, we will design another pricing and penalty
mechanism that can avoid unhealthy users to misreport their desired availability.

3.2. Private Availability

In this section, we deal with the setting that users’ availabilities are private information.
Firstly, the penalty in practice is no more than the payment, which will be followed in our work.
In terms of that, we can deduce that each user hopes to obtain the service with the availability not
lower than her desired availability. This is because the user obtains the zero valuation if the delivered
availability is lower than the desired availability according to the definition of desired availability,
and the penalty cannot be larger than the payment. Therefore, if the delivered availability is lower
than the desired availability, the user cannot obtain positive utility.

However, since there is a service credit if the availability cannot be satisfied, an unhealthy
user might adopt some strategies to improve her utility. As described in [14], an unhealthy user
can reduce the availability from requested availability âi (âi > ai) to desired availability ai to get
service credit SCâi (ai). Although a cloud provider can use measures to investigate the cause of a
downtime incident, it might not be accurate and can increase the work of the cloud. Price and penalty
mechanisms can be effective tools to solve the above problem, which make all users truthfully report
their true type including resource demand ni, desired availability ai and valuations vi, and run healthy,
reliable software.

Let pi(·) be the payment function of user i, and the bid of user i bi = (ni, ai, vi). First, we can
obtain the following theorem.

Theorem 4. When a mechanism M is truthful without service credit, it is still truthful with service credit if
it satisfies the service credit SCâi (ai) of each winner being less than pi((n̂i, âi, v̂i), b̂−i)− pi((n̂i, ai, v̂i), b̂−i)

for any n̂i, v̂i, b̂−i and âi > ai.

Proof of Theorem 4. Since a mechanism M is truthful without service credit, we can have that:

u(bi, b̂−i) ≥ u(b̂i, b̂−i), ∀b̂i, b̂−i,

where the utility ui(·) is the difference of the valuation Vi(·) and the payment pi(·). Next, we discuss
two cases: the user is healthy, and the user is unhealthy. Recall that all users hope to obtain efficient
service and cloud providers do their best to meet the availability demand for required service.
Therefore, in this paper, we do not consider the cases that the cloud provider cannot meet the requested
availability because of her own reasons.

Information 2018, 9, 87 8 of 15

First, if the user is healthy who runs healthy, reliable, software, and the cloud provider provisions
the service with requested availability; in this case, there is no violation. Since u(bi, b̂−i) ≥ u(b̂i, b̂−i),
the mechanism is truthful.

Second, if the user is unhealthy who runs defective software, the requested availability âi will
be reduced to desired availability ai even if the cloud provider provisions the service with requested
availability âi > ai. Then, the unhealthy user will obtain a service credit SCâi (ai). The utility of the
user is:

ui(b̂i, b̂−i) = Vi(n̂i, ai)− p(b̂i, b̂−i) + SCâi (ai).

For any n̂i, v̂i and the bid of others b̂−i, if the service credit SCâi (ai) is less than pi((n̂i, âi, v̂i), b̂−i)−
pi((n̂i, ai, v̂i), b̂−i), for any âi > ai, we have that:

ui((âi, v̂i), b̂−i) = Vi(n̂i, ai)− p((n̂i, âi, v̂i), b̂−i) + SCâi (ai)

≤ Vi(n̂i, ai)− pi((n̂i, âi, v̂i), b̂−i) + pi((n̂i, âi, v̂i), b̂−i)− pi((n̂i, ai, v̂i), b̂−i)

= Vi(n̂i, ai)− pi((n̂i, ai, v̂i), b̂−i)

= ui((n̂i, ai, v̂i), b̂−i).

ui((n̂i, ai, v̂i), b̂−i) is the utility of user i if she asks for truthful availability and runs healthy,
reliable software. It means that the unhealthy users cannot improve the utility by adopting improper
strategy for any resource demand n̂i, valuation v̂i and the bid of the others b−i.

The theorem is proved.

Our auction is presented in Algorithm 2. Basically, it is a combination of the following two
basic auctions:

• With the probability µ, we run Auction A: Agent i1 with highest value of vi
1+ϕ(ai)

gets the

allocation and needs to pay pi1 = vi2
1+ϕ(ai1

)

1+ϕ(ai2)
, where i2 is the user with second highest value

of vi/(1 + ϕ(ai)). Obviously, pi is not higher than the valuation vi1 . The service credit for i1 is
SCi1

ai1
(Aj) = β

vi2
1+ϕ(ai2)

(ϕ(ai1)− ϕ(Aj)), β ≤ 1 if the delivered availability Aj is lower than the

desired availability ai1 .
• With the probability 1− µ, we run Auction B: according to the value density vi

ni(1+ϕ(ai))
, we allocate

the VMs to the users based on a greedy approach with respect to the value density of users
until there is no sufficient capacity, and the payment of each i is pi = xi · ni(1 + ϕ(ai))ρ,
where ρ = vk

nk(1+ϕ(ak))
is the highest value density with which the user loses the allocation in

Auction B. The service credit for user i is SCi
ai
(Aj) = βρni(ϕ(ai)− ϕ(Aj)), β ≤ 1 if the delivered

availability Aj is lower than the desired availability ai.

In this mechanism, β is a penalty coefficient selected by cloud provider. Generally, increasing β

can attract more users, but it will raise the penalty cost. How to choose β is another important problem,
but it is not involved in our work. To prove the truthfulness of the auction mechanism in Algorithm 2,
we first obtain the following two lemmas.

Lemma 1. Auction A is truthful.

Proof of Lemma 1. First, we consider the case without service credit. According to the allocation
algorithm of Auction A, given bids of the other users, the user with type (n′i, a′i, v′i) can win allocation
for any n′i ≤ ni, a′i ≤ ai and v′i > vi, if she wins allocation with type (ni, ai, vi). Let oi = (ni, ai). Define a
partial-order � on oi:

o′i � oi ≡ (n′i ≤ ni) ∧ (a′i ≤ ai).

It satisfies the monotonicity shown in Theorem 1.

Information 2018, 9, 87 9 of 15

Let i1 be the bidder with the highest value of vi
1+ϕ(ai)

, and i2 the second highest one. The critical

value for winner i1 is
vi2

1+ϕ(ai2)
(1 + ϕ(ai1)). According to Theorem 1, it is truthful without service credit.

Next, we prove that Auction A satisfies the service credit SCâi (ai) being less than
pi((n̂i, âi, v̂i), b̂−i)− pi((n̂i, ai, v̂i), b̂−i), for any n̂i, v̂i, b̂−i and âi > ai.

Assume that the winner i, whose requested availability âi is larger than ai has run defective
software that reduced the delivered availability to her desired availability ai. In Line 7 of Algorithm 2,
the service credit SCâi (ai) = β

vi2
1+ϕ(ai2)

(ϕ(âi)− ϕ(ai)), âi > ai, β ≤ 1. We have that

SCâi (ai) = β
vi2

1 + ϕ(ai2)
((1 + ϕ(âi))− (1 + ϕ(ai)))

= β(pi((n̂i, âi, v̂i), b̂−i)− pi((n̂i, ai, v̂i), b̂−i)) (2)

≤ pi((n̂i, âi, v̂i), b̂−i)− pi((n̂i, ai, v̂i), b̂−i).

According to Theorem 4, Auction A is truthful.

Algorithm 2: Auction for private availability: RandomGreedy.
input :User bids: b
output :Allocation:X; Payment:P

1 With probability of µ begin (Auction A)
2 { i1 = arg maxi{ vi

1+ϕ(ai)
};

3 i2 = arg maxi 6=i1{
vi

1+ϕ(ai)
};

4 xi1 = 1;

5 pi1 =
vi2

1+ϕ(ai2)
(1 + ϕ(ai1));

6 for each Aj ∈ A do
7 ∀Aj < ai1 , SCi1

ai1
(Aj) = β

vi2
1+ϕ(ai2)

(ϕ(ai1)− ϕ(Aj));

8 end
9 }

10 With probability of 1− µ begin (Auction B)
11 { sort vi

ni(1+ϕ(ai))
s.t. v1

n1(1+ϕ(a1))
≥ v2

n2(1+ϕ(a2))
≥ ...;

12 i← 1;
13 for ∑i∈N xini(1 + ϕ(ai)) ≤ C do
14 xi ← 1;i← i + 1;
15 end
16 k← i;
17 ρ = vk

nk(1+ϕ(ak))
;

18 for each i ∈ N do
19 pi ← xini(1 + ϕ(ai))ρ;
20 end
21 for each i s.t. xi = 1 do
22 ∀Aj < ai, Aj ∈ A, SCi

ai
(Aj) = βρni(ϕ(ai)− ϕ(Aj));

23 end
24 }

Information 2018, 9, 87 10 of 15

Lemma 2. Auction B is truthful.

Proof of Lemma 2. First, we still consider the case without service credit. The analysis of monotonicity
is similar to that of Auction A. According to the allocation algorithm of Auction B, given bids of the
other users, the user with type (n′i, a′i, v′i) can win allocation for any n′i ≤ ni, a′i ≤ ai and v′i > vi, if she
wins allocation with type (ni, ai, vi). Thus, it satisfies monotonicity.

The payment pi = ρni(1 + ϕ(ai)) is the critical value which makes i win allocation, where
ρ = vk

nk(1+ϕ(ak))
is the highest value density among losers. Thus, Auction B is a truthful mechanism if

all users are healthy.
Next, we discuss the possible utility of an unhealthy winner. As discussed above, assume that a

winner i has reduced the availability from requested availability âi to her desired availability ai(âi > ai).
In Line 22 of Algorithm 2, the service credit in such case is SCâi (ai) = βρ((n̂i, âi, v̂i), b̂−i)n̂i(ϕ(âi)−
ϕ(ai)), âi > ai.

Give any n̂i, v̂i, b̂−i, obviously, we have ρ((n̂i, âi, v̂i), b̂−i) ≥ ρ((n̂i, ai, v̂i), b̂−i), which implies that
the price of unit resource when the user requests higher availability âi is not less than that of when she
requests her desired availability ai. Then, we have that

SCâi (ai) = βρ((n̂i, âi, v̂i), b−i)n̂i(ϕ(âi)− ϕ(ai))

≤ ρ((n̂i, âi, v̂i), b̂−i)n̂i(1 + ϕ(âi))− ρ((n̂i, âi, v̂i), b−i)n̂i(1 + ϕ(ai))

≤ ρ((n̂i, âi, v̂i), b̂−i)n̂i(1 + ϕ(âi))− ρ((n̂i, ai, v̂i), b−i)n̂i(1 + ϕ(ai))

= pi((n̂i, âi, v̂i), b̂−i)− pi((n̂i, ai, v̂i), b̂−i).

According to Theorem 4, Auction B is truthful.

Theorem 5. The mechanism in Algorithm 2 is universally truthful.

Proof of Theorem 5. The auction is a probabilistic combination of two auctions. According to
Lemmas 1 and 2, since both the auctions are truthful, we can draw the conclusion.

Theorem 6. Let 1+ϕ(AL)
1+ϕ(A1)

= γ, γ > 1. Choosing µ = γ
1+γ , the approximation ratio of Algorithm 2 is at

most 1
1+γ .

Proof of Theorem 6. In Algorithm 2, i1 is the user with highest value of vi
1+ϕ(ai)

. Thus, for any i′ 6= i1,

it satisfies
vi1

1+ϕ(ai1
)
≥ vi′

1+ϕ(ai′)
≥ vi′

1+ϕ(AL)
. So, vi1 ≥

vi′ (1+ϕ(ai1
))

1+ϕ(AL)
≥ vi′ (1+ϕ(A1))

1+ϕ(AL)
.

Let Vopt be the optimal valuation. If maxi vi = α · Vopt, the valuation obtained by Auction A is

larger than α ·Vopt · 1+ϕ(A1)
1+ϕ(AL)

=
αVopt

γ .
In addition, the valuation obtained by Auction B in Algorithm 2 is more than (1 − α) · Vopt.

The total expected social welfare is at least

µ
αVopt

γ
+ (1− µ)(1− α)Vopt.

Substituting µ with γ
1+γ and simplifying, the above expression is Vopt

1+γ . We can have that the

approximation ratio is at most 1
1+γ .

4. Experiment Results

In this section, we evaluate the performance including social welfare and service credits of
our proposed mechanisms for availability on demand. We compare four mechanisms: (1) Half
Greedy Auction with availability on demand; (2) Random Greedy auction with availability on

Information 2018, 9, 87 11 of 15

demand; (3) Half Greedy Auction with highest availability; and (4) Optimal allocation with availability
on demand.

• Half Greedy Auction with availability on demand (HalfGreedy AoD) is our proposed
deterministic mechanism, which is a truthful mechanism if the availability is public information
or all users are healthy.

• Random Greedy Auction with availability on demand (RandomGreedy AoD) is our proposed
nondeterministic mechanism, which is truthful mechanism even if users might be unhealthy.

• Similar to the mechanism proposed by [16], Half Greedy Auction with highest availability
(HalfGreedy HA) is the benchmark allocation without considering user-selection availability.
Different from HalfGreedy AoD, this allocation provisions the highest availability for all users.

• Optimal allocation with availability on demand (OptimalAllocation AoD) is the benchmark
allocation mechanism without considering the strategies of users. Since the optimization problem
is a well-known NP-hard problem in this scenario, we obtain a relaxed optimal solution by
allowing fraction allocation and using a greedy algorithm.

To evaluate the performance in various scenarios, we generate test data with different distributions
as shown in Table 1. In Data settings DS1 and DS2, the resource demand ni follows uniform distribution
in [1, C/k], and the valuation for unit resource follows uniform distribution in [0,1] in DS1 and Gaussian
distribution with expectation µ = 0.5, standard deviation σ = 0.5 in DS2. In Data settings DS3 and
DS4, the resource demand ni follows exponential distribution with parameter λ = k · 100/C, and the
valuation for unit resource follows uniform distribution in [0,1] in DS3 and Gaussian distribution
with expectation µ = 0.5, standard deviation σ = 0.5 in DS4. In the experiments, we select C = 1000,
and change the parameter k from 1 to 20.

Table 1. Parameter distribution in data settings.

Data Setting Resource Demand ni Availability on Demand ai Unit Resource Valuation vi

DS1 uniform distribution uniform distribution uniform distribution
in [1,C/k] in [A1, A2, ..., AL] in [0,1]

DS2 uniform distribution uniform distribution Gaussian Distribution
in [1,C/k] in [A1, A2, ..., AL] with µ = 0.5, σ = 0.5

DS3 Exponential Distribution uniform distribution uniform distribution
λ = k · 100/C in [A1, A2, ..., AL] in [0,1]

DS4 Exponential Distribution uniform distribution Gaussian Distribution
λ = k · 100/C in [A1, A2, ..., AL] with µ = 0.5, σ = 0.5

Assume that each user has a job to be processed in the cloud, and each job consists of multiple
tasks. Similar to the description in [13], in our experiments, the users’ options of availability can be
as follows:

• No Backup: This option does not use any high availability techniques.
• Random-k Backup: Under this option, the cloud provider will use the Active/Active (AA)

technique to improve the availability of the jobs: for each task, it will have a k% (i.e., 30) probability
to add an AA backup task that runs for the entire duration of the job (each task corresponds to a
virtual machine).

• Active/Active Backup : Under this option, the cloud provider will use the Active/Active (AA)
backup for the tasks.

Since the objective of our work is to maximize the social welfare (the sum of users’ valuation),
firstly we compare the social welfare obtained by four approaches under different data settings.
The experiment results are shown in Figure 3. The value of the y-axis is the sum of the users’ valuation,

Information 2018, 9, 87 12 of 15

and the value of the x-axis is the parameter k that changes the distribution of requested number
ni shown in Table 1. Each point in the Figure 3 is the average social welfare obtained by 10,000
random experiments.

(a) (b)

(c) (d)

Figure 3. Social welfare comparison for four mechanisms in four data settings. The proposed
mechanisms with availability on demand (HalfGreedy AoD and RandomGreedy AoD) always
obtain higher social welfare than the mechanism with highest availability (HalfGreedy HA).
The RandomGreedy AoD has higher social welfare when parameter k rises. (a) comparison in DS1;
(b) comparison in DS2; (c) comparison in DS3; (d) comparison in DS4.

This shows that our proposed mechanisms with availability on demand always obtain higher
total valuation than the mechanism with highest availability. Comparing HalfGreedy AoD to
RandomGreedy AoD, we can see that the social welfare of the former is better than that of the
latter when the k is small. It is worth noting that the maximal resource demand of a single user
rises if k rises. With the rising of k, the difference of performances between HalfGreedy AoD and
RandomGreedy AoD mechanisms decreases. It implies that RandomGreedy AoD also has a higher
social welfare and even exceeds HalfGreedy AoD when there is some user with a larger number of
requested resources.

Next, we will compare the possible service credits and increased payment brought by an unhealthy
strategy in RandomGreedy AoD. The unhealthy strategy is that user i requests the availability âi and
runs defective software to reduce the availability from requested availability âi to desired availability
ai(âi > ai), resulting in service credit. Firstly, we randomly choose one user who can be served
when she truthfully reports the desired availability and valuation. Then, keeping the bids of others
unchanged, we raise the requested availability of the user, and calculate the new payment and service
credit if she adopts an unhealthy strategy, until she cannot be served. The experiment is respectively

Information 2018, 9, 87 13 of 15

repeated 20 times in four data settings. All of the experiment results show that each user cannot
improve utility by adopting an unhealthy strategy.

Table 2 shows one of the experiment results. The backup ratio corresponding to the true
availability in the experiment is 0.1. Then, the user raises her requested availability to obtain both the
valuation and service credit by adopting an unhealthy strategy. We choose penalty coefficient β = 1,
which is the maximal service credit in our mechanism. However, on the other hand, requesting higher
availability also results in higher payment in our mechanism. Table 2 compares the increased payment
and service credit when the user adopts that strategy. In the table, “Backup ratio” corresponds
to requested availability, and the higher the requested availability is, the higher the backup ratio
is; “Served or not” presents whether the user can be served if the requested availability increases;
“Increased payment” presents the difference of payment with requested availability and desired
availability; “Service credit” is the penalty brought by the unhealthy strategy.

Table 2. The comparison of increased payment and service credit caused by misreporting availability.

Backup Ratio Served or Not Payment Increased Payment Service Credit

0.1 Yes 82.6717 0 0
0.2 Yes 89.7892 7.1175 7.1175
0.3 Yes 99.3982 16.7265 14.6010
0.4 Yes 106.6987 24.0270 21.9014
0.5 Yes 117.2437 34.5720 30.0330
0.6 No 0 0 0

In Table 2, we can see that the user will lose the allocation if she increases her requested availability
and makes the backup ratio be larger than 0.6. It is because the value density of the user decreases
when she raises the requested availability. Furthermore, for each backup ratio in which the user can
be served, the service credit is always no more than the increased payment, which implies that the
user cannot improve utility by adopting unhealthy strategies. Thus, in our mechanism, each user will
truthfully request the desired availability even if the availability is private information for users.

5. Conclusions

To reduce providers’ costs and improve the sum of users’ valuation (social welfare), we proposed
resource pricing and penalty mechanisms based on auctions. In our mechanisms, we allow users to
request their desired availability, and allocate resources with availability on demand. Considering
intelligent and rational users, we designed two mechanisms: a deterministic HalfGreedy AoD
mechanism for a public availability scenario and a nondeterministic RandomGreedy AoD mechanism
for a private availability scenario. The experiment results showed that our mechanisms have higher
social welfare than the HalfGreedy with highest availability.

However, this is only an initial work in exploring resource allocation, pricing and penalty
mechanism design in the user-selected availability scenario, and there are also some problems that
need to be solved. Since, in our work, the desired availability of each user is fixed and it only deals
with single time resource allocation. In the future work, we will focus on resource pricing and penalty
in the online and dynamic user-selected availability environment.

Acknowledgments: This work has been supported by National Natural Science Foundation of China
(Nos. 61170029 and 71271126), Doctoral Fund of Ministry of Education of China (No. 20120078110002), Zhejiang
Provincial Natural Science Foundation of China (No. LY16F020015), Zhejiang Provincial Science and Technology
Key Plan of China (No. 2017C02036), and Huzhou Science and Technology Key Plan of China (No. 2016ZD2011).

Author Contributions: Jingti Han designed the pricing and penalty framework; Xiaohong Wu performed the
experiments and wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Information 2018, 9, 87 14 of 15

References

1. Shojafar, M.; Canali, C.; Lancellotti, R.; Abawajy, J. Adaptive Computing-plus-Communication
Optimization Framework for Multimedia Processing in Cloud Systems. IEEE Trans. Cloud Comput. 2016,
doi:10.1109/TCC.2016.2617367.

2. D’Andreagiovanni, F.; Caire, G. An unconventional clustering problem: User Service Profile
Optimization. In Proceedings of the IEEE International Symposium on Information Theory, Barcelona, Spain,
10–15 July 2016; pp. 855–859.

3. Canali, C.; Chiaraviglio, L.; Lancellotti, R.; Shojafar, M. Joint Minimization of the Energy Costs from
Computing, Data Transmission, and Migrations in Cloud Data Centers. IEEE Trans. Green Commun. Netw.
2018, doi:10.1109/TGCN.2018.2796613.

4. Pan, W.; Rowe, J.; Barlaoura, G. Records in the Cloud (RiC) User Survey Report; Rhode Island College:
Providence, RI, USA, 2013.

5. Chan, H.; Chieu, T. An approach to high availability for cloud servers with snapshot mechanism.
In Proceedings of the Industrial Track of the Acm/Ifip/Usenix International Middleware Conference,
Montreal, QC, Canada, 6–7 December 2012; pp. 1–6.

6. Cully, B.; Lefebvre, G.; Meyer, D.; Feeley, M.; Hutchinson, N.; Warfield, A. Remus: High Availability via
Asynchronous Virtual Machine Replication. In Proceedings of the 5th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), San Francisco, CA, USA, 16–18 April 2008; pp. 161–174.

7. Singh, D.; Singh, J.; Chhabra, A. High Availability of Clouds: Failover Strategies for Cloud Computing Using
Integrated Checkpointing Algorithms. In Proceedings of the International Conference on Communication
Systems and Network Technologies, Rajkot, India, 11–13 May 2012; pp. 698–703.

8. Yang, C.T.; Chou, W.L.; Hsu, C.H.; Cuzzocrea, A. On Improvement of Cloud Virtual Machine Availability
with Virtualization Fault Tolerance Mechanism. In Proceedings of the IEEE Third International Conference
on Cloud Computing Technology and Science, Athens, Greece, 29 November–1 December 2013; pp. 122–129.

9. Amazon EC2 Service Level Agreement. Available online: https://aws.amazon.com/ec2/sla (accessed on
4 March 2018).

10. Google Compute Engine Service Level Agreement. Available online: https://cloud.google.com/compute/
sla (accessed on 4 March 2018).

11. SLA for Cloud Services. Available online: https://azure.microsoft.com/en-us/support/legal/sla/virtual-
machines/v1_6 (accessed on 4 March 2018).

12. The UC Berkeley/Stanford Recovery-Oriented Computing (Roc) Project. Available online: http://roc.cs.
berkeley.edu/ (accessed on 4 March 2018).

13. Shen, S.; Iosup, A.; Israel, A.; Cirne, W.; Raz, D.; Epema, D. An Availability-on-Demand Mechanism for
Datacenters. In Proceedings of the IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, Shenzhen, China, 4–7 May 2015; pp. 495–504.

14. Shahrad, M.; Wentzlaff, D. Availability Knob: Flexible User-Defined Availability in the Cloud. In Proceedings
of the ACM Symposium on Cloud Computing, Shenzhen, China, 4–7 May 2016; pp. 42–56.

15. Xiaoyong, Y.; Hongyan, T.; Ying, L.; Tong, J.; Tiancheng, L.; Zhonghai, W. A Competitive Penalty Model for
Availability Based Cloud SLA. In Proceedings of the IEEE International Conference on Cloud Computing,
New York, NY, USA, 27 June–2 July 2015; pp. 964–970.

16. Mashayekhy, L.; Nejad, M.M.; Grosu, D. Physical Machine Resource Management in Clouds: A Mechanism
Design Approach. IEEE Trans. Cloud Comput. 2015, 3, 247–260.

17. Wang, C.; Ma, W.; Qin, T.; Chen, X.; Hu, X.; Liu, T. Selling reserved instances in cloud computing.
In Proceedings of the International Joint Conference on Artificial Intelligence, Buenos Aires, Argentina,
25–31 July 2015; pp. 224–230.

18. Bonacquisto, P.; Modica, G.D.; Petralia, G.; Tomarchio, O. A Procurement Auction Market to Trade Residual
Cloud Computing Capacity. IEEE Trans. Cloud Comput. 2015, 3, 345–357.

19. Toosi, A.N.; Vanmechelen, K.; Khodadadi, F.; Buyya, R. An Auction Mechanism for Cloud Spot Markets.
ACM Trans. Auton. Adapt. Syst. 2016, 11, 1–33.

20. Zhang, H.; Li, B.; Jiang, H.; Liu, F. A framework for truthful online auctions in cloud computing with
heterogeneous user demands. In Proceedings of the 2013 Proceedings IEEE INFOCOM, Turin, Italy,
14–19 April 2013; pp. 1510–1518.

https://aws.amazon.com/ec2/sla
https://cloud.google.com/compute/sla
https://cloud.google.com/compute/sla
https://azure.microsoft.com/en-us/support/legal/sla/virtual-machines/v1_6
https://azure.microsoft.com/en-us/support/legal/sla/virtual-machines/v1_6
http://roc.cs.berkeley.edu/
http://roc.cs.berkeley.edu/

Information 2018, 9, 87 15 of 15

21. Zhang, X.; Huang, Z.; Wu, C.; Li, Z.; Lau, F.C.M. Online Auctions in IaaS Clouds: Welfare and Profit
Maximization with Server Costs. In Proceedings of the ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, Portland, OR, USA, 15–19 June 2015; pp. 3–15.

22. Toeroe, M.; Tam, F. Service Availability: Principles and Practice; John Wiley and Sons Ltd. Publication:
New York, NY, USA, 2012; p. 59.

23. Nabi, M.; Toeroe, M.; Khendek, F. Availability in the cloud: State of the art. J. Netw. Comput. Appl. 2016,
60, 54–67.

24. Nisan, N.; Roughgarden, T.; Tardos, E.; Vazirani, V.V. Algorithmic Game Theory; Cambridge University Press:
Cambridge, UK, 2007.

25. Chekuri, C.; Gamzu, I. Truthful Mechanisms via Greedy Iterative Packing; Springer: Berlin/Heidelberg, Germany,
2009; p. 56.

26. Fu, S.; Xu, C.Z. Quantifying Temporal and Spatial Correlation of Failure Events for Proactive Management.
In Proceedings of the IEEE International Symposium on Reliable Distributed Systems, Beijing, China,
10–12 October 2007; pp. 175–184.

27. Oppenheimer, D.; Ganapathi, A.; Patterson, D.A. Why Do Internet Services Fail, and What Can Be Done
About It? In Proceedings of the Usenix Symposium on Internet Technologies and Systems, Seattle, WA, USA,
26–28 March 2003; pp. 165–171.

28. Schroeder, B.; Gibson, G.A. A large-scale study of failures in high-performance computing systems.
In Proceedings of the International Conference on Dependable Systems and Networks, Philadelphia, PA, USA,
25–28 June 2006; pp. 249–258.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	System Model
	Availability on Demand and Service Credit
	Description of the Problem

	Truthful Auction Mechanism with Availability on Demand
	Public Availability
	Private Availability

	Experiment Results
	Conclusions
	References

