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Abstract: In this paper, we investigate distributed state estimation for multi-agent networks with
random communication, where the state is constrained by an inequality. In order to deal with
the problem of environmental/communication uncertainties and to save energy, we introduce two
random schemes, including a random sleep scheme and an event-triggered scheme. With the help of
Kalman-consensus filter and projection on the constrained set, we propose two random distributed
estimation algorithm. The estimation of each agent is achieved by projecting the consensus estimate,
which is obtained by virtue of random exchange information with its neighbors. The estimation error
is shown to be bounded with probability one when the agents randomly take the measurement or
communicate with their neighbors. We show the stability of proposed algorithm based on Lyapunov
method and projection and demonstrate their effectiveness via numerical simulations.

Keywords: distributed Kalman filter; multi-agent networks; random sleep; event-triggered estimator;
multi-agent systems

1. Introduction

Recently, state estimation using a multi-agent network have been a hot topic due to its broad range
of applications in engineering systems such as robotic networks, area surveillance and smart grids.
Distributed method has benefits of robustness and scalability. As one of the popular estimation method,
distributed Kalman filter has ability of real-time estimation and non-stationary process tracking.

Distributed Kalman-filter-based (DKF) estimations have been wildly studied in the
literatures [1–11]. The idea of references [1,2,5,6,9] is adding consensus term into a traditional
Kalman filter structure. For example, in [1], the authors proposed a distributed Kalman filter, where
the consensus information state and associated information matrix were used to approximate the
global solution. An optimal consensus-based Kalman filter was reported in [2], where all-to-all
communication is needed. In order to obtain a practical algorithm, in [2], the authors also reported
a scalable distributed Kalman filter, where only the state estimation need to be transmitted between
neighbors. Moreover, the switching communication topology for distributed estimation problem was
studied in [7,8]. Another kind of distributed Kalman filter design is use the idea of fusing the local
estimate of each agent [3,4,10,11]. In [3], the authors investigated distributed Kalman filter by fusing
information state of neighbors, and a covariance intersection based distributed Kalman filter was
proposed in [4] proposed a diffusion Kalman filter based on covariance intersection method. The last
kind of DKF is Consensus+Innovations approach [12,13], which allows each agent tracking the global
measurement. It should be notice that the approaches in [12,13] can approximate global optimal
solution, which achieved by knowing global pseudo-observations matrix in advance.
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New estimation problems emerge resulting from unreliable communication channel and random
data packet dropout. In a multi-agent network, KCF was characterized under the effect of lossy sensor
networks in [5] by incorporating a Bernoulli random variable in the consensus term. Independent
Bernoulli distribution was also used to model the random presence of nonlinear dynamics as well
as the quantization effect in the sensor communications in [14]. From an energy saving viewpoint,
the agent can be enabled to reduce communication rate. The random sleep scheme (RS) was introduced
into the projecting consensus algorithm in [15,16], which allows each agent to choose whether to fall
asleep or take action. Different from the RS scheme, there is another well-known scheme, called
event-triggered scheme, under which information is transmitted only when the predefined event
conditions are satisfied. Assuming the Gaussian properties of the priori conditioned distribution,
a deterministic event-triggered schedule was proposed in [17], and, to overcome the limitation of the
Gaussian assumption, a stochastic event-triggered scheme was developed and the corresponding exact
MMSE estimator was obtained in [18].

On the other hand, in practice, we may obtain some information or knowledge about the state
variables, which could be used to improve the performance (such as accuracy or convergence rate)
in the design of distributed estimators. In some cases, such knowledge can be described as given
constraints of the state variables, which may be obtained from physical laws, geometric relationship,
environment constraints, etc. There have been many method to solve the problem of constrained state
in Kalman filter, such as pseudo-observations [19], projection [20,21], and moving horizon method [22].
In fact, a survey about the conventional design of Kalman filter with state constraints was reported
in [23], and moreover, it showed that the constraints as additional information are useful to improve
the estimation performance. In [11], the authors studied distributed estimation with constraints
information, where both the state estimation and covariance information are transmitted. In this
paper, we concentrate on the problem of distributed estimation under state constraints with random
communication, and we use projection method to deal with the constrained state.

In this paper, we focus on distributed estimation under state inequality constraints with random
communication, which is an important problem. We design a distributed Kalman filter incorporating
consensus term and projection method. Specifically, the constrained estimate obtained in each agent
by projecting the consensus estimation onto the constrained surface. Moreover, in order to reduce
the communication efficiently, we introduce a stochastic event triggered scheme to realize a tradeoff
between communication rate and performance. We summarize the contribution of the paper as
follows: (i) We proposed a distributed Kalman filer with state inequity constraints and stochastic
communication. (ii) We introduce random sleep scheme and stochastic event-triggered scheme to
reduce the communication rate. (iii) We analyze the stability properties of proposed algorithm by
Lyapunov method.

The remainder of the paper is organized as follows. Section 2 provide some necessary
preliminaries and formulate the distributed estimation problem with state constriants and random
communication. Section 3 give algorithms based on random sleep scheme and stochastic
event-triggered scheme. The performance analysis are provided in Section 4, and then a numerical
simulation is shown in Section 5, which shows the benefit of state constraints. Section 6 give the
discussions of the paper. Finally, some concluding remarks are provided in Section 7.

Notations: The set of real number is denoted by R. A symmetric matrix is denoted by M,
and a positive definite matrix is M ≥ 0 (M > 0) means that the matrix is positive semi-definite
(definite). The maximum and minimum eigenvalue are denoted by λmax(·) and λmin(·), respectively.
E{·} represents mathematical expectation. P(x) denotes the probability of random variable (x).

2. Problem Formulation

In this section, we first provide some preliminaries about convex analysis [24]. Then the problem
of distributed estimation with state constraints and random communication is formulated.
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2.1. Preliminaries

Consider a function f (·) : Rm → Rn, if for any x, y ∈ Rm and 0 < a < 1, f (ax+(1− a)y)≤a f (x)+
(1− a) f (y) holds, then f (·) is a convex function. Similarly, if for any x, y ∈ X and 0≤a≤1, ax + (1−
a)y ∈ X holds, then X ∈ Rn is a convex set. Denote PX : Rn → X is the projection onto a closed and
convex subset X, which has following definition:

PX(z) = arg min
x∈X
‖ x− z ‖ .

In order to analyze the properties of proposed algorithm, we provide a lemma about projection
(see [25]).

Lemma 1. Let X be a closed convex set in Rm. Then
(i) (PX(x)− x)>(z− PX(x)) ≥ 0, for all z ∈ X;
(ii) ‖ PX(x)− PX(z) ‖≤‖ x− z ‖, for all x and z;
(iii) ‖ PX(x)− z ‖2≤‖ x− z ‖2 − ‖ PX(x)− x ‖2, for any z ∈ X.

2.2. Problem Formulation

Consider the following linear dynamics

xk+1 = Axk + wk, (1)

where xk ∈ Rm is the states, wk is zero-mean and covariance Q > 0 Gaussian white noises.
In practice, according to the physical laws or design specification, some additional information is

known as prior knowledge, which can be formulated as inequality constriants about state variables
(some engineering applications can be found in [23]). In this paper, we consider the state inequality
constraints [26–28]. Specifically, for the dynamics (1), the inequality constraints about the state can be
given as follows,

qt(x) ≤ 0, t = 1, . . . , s, (2)

where qt(x) : Rm → R is a convex function, s is the number of the constraints.
State xk is estimated by a network consisting of N agents. The measurement equation of the ith

agent is given by:
yi,k = Cixk + vi,k, (3)

where Ci ∈ Rqi×m, vi,k is the measurement noises by agent i which is assumed to be zero-mean white
Gaussian with covariance Ri > 0. vi,k is independent of wk ∀k, i and is independent of vj,s when i 6= j
or k 6= s.

Graph theory [29] can be used to describe the communication topology of the network, where the
agent i can be treated as node i, and the edge can be regarded as communication link. An undirected
graph is denoted as G = (V , E), where V = {1, 2, . . . , N} is the node set, and E = {(i, j) : i, j ∈ V} is
the edge set. If node i and node j are connected by an edge, then these two vertices are called adjacent.
The neighbor set of node i is defined by Ni(k) = {j : (i, j) ∈ E}. Denote W = (ωij)nn ∈ Rn×n as the
weighted adjacency matrix of G, where the element ωii = 0 and ωij = ωji > 0, and the corresponding
Laplacian is L. The weighted adjacency matrix of graph G is defined as W = (ωij)nn ∈ Rn×n, where
ωii = 0 and ωij = ωji > 0. Denote the Laplacian of the weighted graph is L. It is well known that,
for Laplacian L associated with graph G, if G is connected, then λ1(L) = 0 and λ2(L) > 0.

In this paper, we adopt the following two standard assumptions, which have been widely used.

Assumption 1. (A, Ci) is detectable and (A,
√

Q) is controllable.

Assumption 2. The undirected graph G is connected.
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The Kalman-consensus filter is designed by using local measurement and information from
neighbors, which was given in [2],

x̃i,k+1 = Ax∗i,k + Ki,k(yi,k − Cix∗i,k) + AGi,k ∑
j∈Ni

(x∗j,k − x∗i,k), (4)

where x∗i,k is the estimate by each agent. Gi,k is the consensus gain, Ki,k and Gi,k are the estimator gain
and consensus gain need to be designed, respectively.

In order to satisfy the state constraints (2), the estimate obtained by each agent should solve the
following optimization problem:

min
x∗i,k

(x∗i,k − x̃i,k)
>(x∗i,k − x̃i,k),

s.t. qt(x∗i,k) ≤ 0, t = 1, . . . , s,
(5)

where x̃i,k+1 = Ax∗i,k + Ki,k(yi,k − Cix∗i,k) + AGi,k ∑j∈Ni
(x∗j,k − x∗i,k). In this paper, we assume that each

agent knows the constraints (2), and therefore, the constrained estimation can be obtained by projection
at each agent. Namely,

x∗i,k = PX(x̃i,k), (6)

with X = {x | qt(x) ≤ 0, t = 1, . . . , s}. The aim of distributed estimator (4) is to find the optimal gain
Ki,k and Gi,k to minimize the mean-squared estimation error ∑N

i=1 ‖ x∗i,k − xk ‖2.
Different with existing works in [2,7,8], which did not consider any state constraints and random

communication. Here, we consider the problem of constrained KCF with random communication.
Moreover, due to the uncertainty environment and saving energy, agents may loss measurement or
random communication with neighbors. Hence, to solve our problem, we need to show how to design
the Kalman filter gain Ki,k and the consensus gain Gi,k under random communication such that the
estimation error of (6) is bounded.

In the following section, we introduce random sleep and event-triggered scheme to design
distributed estimation algorithm, and then analyze the stability conditions of the proposed algorithms.

3. Distributed Algorithms

We present two algorithms in the following subsections, respectively.

3.1. Random Sleep Algorithm

In practice, the communication cost may be much larger than the computational cost. Hence
it is reasonable to reduce the communication rate and to save energy. Here we introduce a random
sleep (RS) scheme, which allows the agents to have their own policies to collect measurement or
send message to its neighbors. To be specific, in our RS scheme, the agents may fall in sleep during
the measurement collection and consensus stage with independent Bernoulli decision, respectively.
When a agent sleeps during the measurement collection, it cannot use measurement to update the local
estimate. When it sleeps during the consensus stage, it cannot send any information to its neighbors.

Let 0<ρm
i <1 and 0<ρc

i<1 be given constants. Denote σm
i,k and σc

i,k as independent Bernoulli
random variables with P(σm

i,k = 1) = ρm
i , P(σm

i,k = 0) = 1− ρm
i , and P(σc

i,k = 1) = ρc
i , P(σc

i,k = 0) =
1− ρc

i . We make the following assumptions,

E(σm
i,kσm

j,k) = 0, ∀i 6=j,

E(σc
i,kσc

j,k) = 0, ∀i 6=j,

E(σm
i,kσc

j,k) = 0, ∀i, j.

(7)
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Furthermore, notice that E(σm
i,k) = ρm

i , E(σm
i,k)

2 = ρm
i , and E(σc

i,k) = ρc
i , E(σc

i,k)
2 = ρc

i .
Then we propose a distributed random sleep algorithm for the Kalman-filter-based estimation

as follows:

Step 1.(random sleep on measurement collection)

x̄i,k+1 = Ax∗i,k + σm
i,kKi,k(yi,k − Cix∗i,k)

Step 2.(random sleep on consensus)

x̃i,k+1 = x̄i,k+1 + AGi,k ∑
j∈Ni

σc
j,k(x∗j,k − x∗i,k).

(8)

If we ignore consensus step, the covariance iteration and the gain can be obtained by the minimum
mean squared error (MMSE) estimation as follows (see [30]):

Pi,k+1 = APi,k A> + Q− σm
i,kKi,kCiPi,k A> (9)

Ki,k = APi,kC>i (CiPi,kC>i + Ri)
−1 (10)

To ensure that the estimate by each agent always satisfies the constraints, we present the following
algorithm by projecting the unconstrained estimation onto the constrained surfaces:

x∗i,k+1 = PX{x̃i,k+1}. (11)

The proposed Kalman-consensus filter with constraints via RS scheme (RSKCF) is summarized in
Algorithm 2.

Define P∗i,k = E{(xk − x∗i,k)(xk − x∗i,k)
>} and P̃i,k = E{(xk − x̃i,k)(xk − x̃i,k)

>}. According to
Lemma 1, Tr(P∗i,k) ≤ Tr(P̃i,k), which hints that the estimator can achieve better performance using the
constraint information in the design. In [20], the author proved that the projection-based Kalman filter
with linear equality constraints performs better than unconstrained estimation.

Notice that Pi,k in the algorithm does not represent the estimation error covariance with respect
to x∗i,k any longer. A poor choice of consensus gain Gi,k may spoil the stability of the error dynamics.
In section IV, we will present the stability analysis of the algorithm with an appropriate choice of the
consensus gain.

Algorithm 1 KCF with constraints via RS (RSKCF)

At time k, a prior information
Initialization x∗i,0, Pi,0;
Random Sleep on Measurement Collection

Ki,k =APi,kC>i (CiPi,kC>i + Ri)
−1,

x̄i,k+1 =Ax∗i,k + σm
i,kKi,k(yi,k − Cix∗i,k),

Pi,k+1 =APi,k A> + Q− σm
i,kKi,kCiPi,k A>;

Random Sleep on Consensus

x̃i,k+1 = x̄i,k+1 + AGi,k ∑
j∈Ni

σc
j,k(x∗j,k − x∗i,k);

Projection

x∗i,k+1 = PX(x̃i,k+1)
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Define e∗i,k+1 = xk+1 − x∗i,k+1, then the error dynamics of Algorithm 1 can be written as

e∗i,k+1 = (A− σm
i,kKi,kCi)e∗i,k + AGi,k ∑

j∈Ni

σc
j,k(e

∗
j,k − e∗i,k)− σm

i,kKi,kvi,k + wk + αi,k+1. (12)

Remark 1. The different choices of ρm
i and ρc

i correspond to different network conditions. If ρc
i = 0 and

0 < ρm
i < 1, ∀i ∈ V , the network is not connected, and each agent only computes the estimate by its local

Kalman filter with constraints. If ρc = 1 and 0 < ρm
i < 1, ∀i ∈ V , the multi-agent system has a perfect

communication channel but each agent may fall in sleep during the measurement collection. When 0 < ρc
i < 1

and ρm
i = 1, ∀i ∈ V , each agent produces measurement at each time but maybe fall in sleep during the consensus

stage. Since the RS probability ρc
i and ρm

i can be determined independently, we can take the advantage of the
formulation to simplify the design in practice.

Remark 2. It should be notice that the inequality constraints qt(x) ≤ 0, t = 1, . . . , s in this paper including
the linear equality constraints. In section IV, the problem (4) will be solved in closed-form under linear equality
constraints Dxk = d as a special case, which consistent with the case in [20]. It also should be notice that,
the nonlinear equality constraints cannot be solve by projection method, because {x|qt(x) = 0, t = 1, . . . , s}
may not be a convex set.

3.2. Stochastic Event-Triggered Scheme

An event-triggered scheme, based on an event monitor, can also be considered to reduce the
communication rate and to save energy. The event-triggered idea is carried out as follows: when
the associated monitor exceeds a predefined threshold, the agent transmits local information with its
neighbors, which provides a tradeoff between the communication rate and the performance. Since the
agents only transmit valuable information, the event-triggered scheme may achieve better performance
compared with the proposed RS scheme. In [17,18], the authors dealt with a centralized stochastic
event-triggered estimation problem. Here we introduce a distributed stochastic event-triggered scheme
by extending the algorithms described in [18].

Denote a binary decision variable γi,k ∈ {0, 1} for agent i at time k. We use the following strategy:
agent i measures the target state and sends information to its neighbors if γi,k = 1; agent i only receives
information from its neighbors if γi,k = 0. As stated in [18], at each time instant, agent i generates an
i.i.d random variable ϕi,k and computes γi,k as follows:

γi,k =

{
0 ϕi,k ≤ ψ(ỹi,k)

1 ϕi,k > ψ(ỹi,k)
, (13)

where ψ(ỹi,k) , exp(− 1
2 ỹ>i,kYi ỹi,k), and ỹi,k = yi,k − Cix∗i,k. Clearly, in (13), the parameter Yi introduces

one degree of freedom to balance the tradeoff between the communication rate and the estimation
performance. From an engineering viewpoint, a larger Yi means more information to be transmitted.

The local MMSE estimator (without consensus and projection) for agent i with incorporating the
stochastic event-triggering (13) is given as follows (see Theorem 2 in [18]):

Ki,k = APi,kC>i (CiPi,kC>i + Ri + (1− γi,k)Y−1
i,k )−1,

Pi,k+1 = APi,k A> + Q− Ki,kCiPi,k A>, (14)

x̄i,k+1 = Ax∗i,k + Ki,k(yi,k − Cix∗i,k).

As stated before, by the consensus idea and projection technique, the constrained estimation
can be obtained by x∗i,k = PX(x̃i,k). The stochastic event-triggered KCF with constraints (ETKCF) is
described in Algorithm 2.
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Algorithm 2 KCF with constraints via stochastic event-triggered scheme

Initialization x∗i,0, Pi,0;
Local Estimation

Ki,k = APi,kC>i (CiPi,kC>i + Ri + (1− γi,k)Y−1
i,k )−1,

Pi,k+1 = APi,k A> + Q− Ki,kCiPi,k A>,
x̄i,k+1 = Ax∗i,k + Ki,k(yi,k − Cix∗i,k).

Consensus

x̃i,k+1 = x̄i,k+1 + AGi,k ∑
j∈Ni

γj,k(x∗j,k − x∗i,k);

Projection

x∗i,k+1 = PX(x̃i,k+1).

Remark 3. Since only the important information is broadcasted, the stochastic event-triggered scheme may
achieve better performance compared with the RS scheme. The RS scheme, however, has a simpler form and is
easier to implement.

Remark 4. Here, we provide some notations, which will help to analysis the proposed algorithms. For given A,
Ci, Q, Ri and Pi,k, without loss of generality, there are positive scalars b̄, c̄, q, ri, p

i
, and p̄i such that

‖A‖ ≤ ā, ‖Ci‖ ≤ c̄i, Q ≥ qI, Ri ≥ ri I, p
i
I ≤ Pi,k ≤ p̄i I. (15)

The last inequality holds because the solution of (9) is bounded by Assumption 1 and Theorem 1 in [30].

4. Performance Analysis

In this section, we analyze the convergence of the proposed algorithms in the following three
subsections. We introduce some concepts related to stochastic processes, which are useful in the
following convergence analysis ([31,32]).

Definition 1. The stochastic process ζk is said to be exponential bounded in mean square, if there are real
numbers, η > 0, ϑ > 0 and 0 < ν < 1 such that

E{‖ζk‖2} ≤ η‖ζ0‖2ϑk + ν (16)

holds for every k ≥ 0.

Definition 2. The stochastic process ζk is said to be bounded with probability one, if

sup
k≥0
‖ζk‖ < ∞ (17)

holds with probability one.

We first give three lemmas, which can be found in [33].

Lemma 2 (Lemma 2.1, [33]). Suppose that there is a stochastic process Vk(ξk) as well as positive numbers θ̄,
θ, µ, and 0 < α ≤ 1 such that

θ ‖ ξk ‖2 ≤Vk(ξk)≤θ̄ ‖ ξk ‖2 (18)
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and
E{Vk+1(ξk+1)|ξk} −Vk(ξk)≤µ− αVk(ξk) (19)

are fulfilled. Then the stochastic process is exponentially bounded in mean square, i.e.,

E{‖ ξk ‖2}≤ θ̄

θ
E{‖ ξ0 ‖2}(1− α)n +

µ

u

n−1

∑
i=1

(1− α)i (20)

for every n ≥ 0. Moreover, the stochastic process is bounded with probability one.

Lemma 3 (Lemma 3.1, [33]). Under Assumption 1, there is a real number 0 < τi < 1, i = 1, . . . , N such that

(A− Ki,kCi)
>P−1

i,k+1(A− Ki,kCi) ≤ (1− τi)P−1
i,k (21)

Lemma 4 (Lemma 3.3, [33]). Under Assumption 1, there is a positive constant ε > 0, such that

E{w>k P−1
i,k+1wk + v>i,kK>i,kP−1

i,k+1vi,kKi,k} ≤ εi (22)

holds.

4.1. Random Sleep Scheme

The following theorem shows the stochastic stability of (12).

Theorem 1. Under Assumptions 1 and 2, the error dynamics (12) for Algorithm 1 is exponentially bounded in
mean square and bounded with probability one.

To prove the Theorem 1, we give a lemma first. Its proof can be found in Appendix A.

Lemma 5. Under Assumptions 1, there exists a constant 0 < τ̄i < 1 such that

E{(A− σm
i,kKi,kCi)

>P−1
i,k+1(A− σm

i,kKi,kCi)} ≤ (1− τ̄i)P−1
i,k . (23)

holds.

Proof of Theorem 1. By Lemma 4, there exists a constant ε̄i such that

E{w>k P−1
i,k+1wk + (σm

i,k)
2v>i,kK>i,kP−1

i,k+1vi,kKi,k} ≤ ε̄i. (24)

The error dynamics of Algorithm 1 is

‖e∗i,k+1‖ ≤ ‖(A− σm
i,kKi,kCi)e∗i,k − σm

i,kKi,kvi,k + wk + AGi,k ∑
j∈Ni

σc
j,k(e

∗
j,k − e∗i,k)‖ (25)

With Vk(e∗k ) = e∗>k P−1
k e∗k , we have

Vk+1(e∗k+1)

≤
N

∑
i=1

e∗>i,k (A− σm
i,kKi,kCi)

>P−1
i,k+1(A− σm

i,kKi,kCi)e∗i,k + 2
N

∑
i=1

e∗>i,k (A− σm
i,kKi,kCi)

>P−1
i,k+1 AGi,kzji,k

+ 2
N

∑
i=1

e∗>i,k (A− σm
i,kKi,kCi)

>P−1
i,k+1(wk − σm

i,kKi,kvi,k) +
N

∑
i=1

z>ji,kG>i,k A>P−1
i,k+1 AGi,kzji,k (26)

+ 2
N

∑
i=1

z>ji,k A>P−1
i,k+1(wk − σm

i,kKi,kvi,k) +
N

∑
i=1

w>k P−1
i,k+1wk +

N

∑
i=1

σm2
i,k v>i,kK>i,kP−1

i,k+1Ki,kvi,k



Information 2018, 9, 64 9 of 21

− 2
N

∑
i=1

w>k P−1
i,k+1Ki,kvi,k.

where zji,k = ∑j∈Ni
σc

j,k(e
∗
j,k − e∗i,k). By (24) and Lemma 5, and taking expectation on both side of above

equation, we have

E{Vk+1(ek+1)} ≤
N

∑
i=1

(1− τ̄i)e∗>i,k P−1
i,k e∗i,k +

N

∑
i=1

ε̄i + 2
N

∑
i=1

e∗>i,k (A− ρm
i Ki,kCi)

>P−1
i,k+1 AGi,k ẑji,k

(27)

+
N

∑
i=1

ẑji,kG>i,k A>P−1
i,k+1 AGi,k ẑji,k,

where ẑji,k = E{zji,k} = ∑j∈Ni
ρc

j (e
∗
j,k − e∗i,k).

Similarly, the consensus gain can be choosen as Gi,k = g((A− σm
i,kKi,kCi)

>P−1
i,k+1 A)−1Γ̃i, k, where

Γ̃i,k = (A− σm
i,kKi,kCi)

>P−1
i,k+1(A− σm

i,kKi,kCi). Denoting Γ̄i,k = E{Γ̃i,k} = (A− ρm
i Ki,kCi)

>P−1
i,k+1(A−

ρm
i Ki,kCi), we have

E{Vk+1(e∗k+1)} ≤
N

∑
i=1

(1− τ̄i)e∗>i,k P−1
i,k e∗i,k +

N

∑
i=1

ε̄i +
N

∑
i=1

ge∗>i,k Γ̄i,k ẑji,k +
N

∑
i=1

g2ẑ>ji,kΓ̄i,k ẑji,k

≤
N

∑
i=1

(1− τ̄i)e∗>i,k e∗i,k +
N

∑
i=1

ε̄i − gλmin(Γ̄k)e∗>k Le∗k + g2λmax(Γ̄k)λmax(L>L)e∗>k e∗k (28)

≤
N

∑
i=1

(1− τ̄i)e∗>i,k e∗i,k +
N

∑
i=1

ε̄i + g2λmax(Γ̄k)λmax(L>L)e∗>k e∗k ,

where Γ̄k = diag[Γ̄i,k, . . . , Γ̄i,k] and L = [lij] defined as

lij =


−ρc

j , i f (i, j) ∈ E,

− ∑
j∈Ni

lij, i f i = j,

0, otherwise.

According to Lemma 5, λmax(Γ̄k) ≤ 1−τ̄
p , where τ̄ = min{τ̄1, . . . , τ̄N}. Substituting it into (29)

yields

E{Vk+1(e∗k+1)} ≤((1− τ̄) +
1− τ̄

p
p̄g2λmax(L>L))e∗>k P−1

k e∗k +
N

∑
i=1

ε̄i

(29)

=((1− τ̄) +
1− τ̄

p
p̄g2λmax(L>L))Vk(e∗k ) +

N

∑
i=1

ε̄i.

Take 0 < g≤g∗ with

g∗ =

√
τ̄p

(1− τ̄) p̄λmax(L>L)
. (30)

Obviously, Lemma 2 can be satisfied with

α = τ̄ +
1

p(τ̄ − 1) p̄g2λmax(L>L)

(31)
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µ =
N

∑
i=1

ε̄i.

Thus, the conclusion follows.

Remark 5. From the proofs of Theorems 1, the constrained estimation x∗i,k is the same as unconstrained
estimation x̃i,k once x̃i,k ∈ X for agent i. Otherwise, ‖ x∗ − xk ‖<‖ x̃i,k − xk ‖. In other words, the constrained
estimation x∗i,k is closer to the true state xk than the unconstrained estimation x̃i,k. In fact, our schemes first
make all agents’ estimation error bounded, and then project each estimation onto the surface of constraints.

Remark 6. It should be notice that, if the system is asymptotically stable, i.e., the spectral radius of A is
less than 1, there alway exists the gains to guarantee the convergence of MSE. When the system is unstable,
i.e., the spectral radius of A greater than 1, we need to design estimation gain Ki,k and Gi,k to guarantee the
convergence of MSE. In [13], the authors discussed the maximum degree of instability of A, that guarantees
the convergence of distributed estimation algorithm. The maximum degree of instability of A relates with
connectivity and global measurement matrix, which reflects the tracking ability of the networks. Given the
maximum degree of A, the problem remains how to design the gain matrices Ki,k and Gi,k.

In what follows, we give the closed-form solution under linear equality constraints, which can be
written as follows:

Dxk = d, (32)

where D ∈ Rs×m is constraint matrix, d ∈ Rs, and s is the number of constraints. Generally, D should
be of full rank, otherwise, we have redundant constraints. In such case, we can remove linearly
dependent rows from D until D is of full rank.

In order to use projection method, the constraints (32) can be written as X = {x|Dx = d}. For each
individual agent, we can obtain the constrained estimate by projection as follows:

x∗i,k+1 = x̃i,k+1 − D>(DD>)−1(Dx̃i,k+1 − d), (33)

where x̃i,k+1 is the estimate obtained by the consensus step. Therefore, we have the following result.

Corollary 1. Under Assumptions 1 and 2, the error dynamics of the Algorithm 1 with constraints (32) is
exponentially bounded in mean square and bounded with probability one. Moreover, the constrained estimation
is x∗i,k+1 = x̃i,k+1 − D>(DD>)−1(Dx̃i,k+1 − d).

Clearly, linear equality constraints can be extended to the linear state inequality constraints
Dxk ≤ d. Specifically, if the consensus estimate step satisfies Dx̃i,k ≤ d, then constrained estimation
x∗i,k and x̃i,k will be the same. Otherwise, the constrained estimate can be obtained by projecting x̃i,k
onto Dxk = d. Therefore, the Corollary 1 still holds for the linear inequality constraints case.

4.2. Event-Triggered Scheme

The communication rate γ∗i for agent i can be achieved by

Pr(γi,k = 0) = Pr(ϕi,k ≤ ψ(ỹi,k)) = E{exp(−1
2

ỹ>i,kYi ỹi,k)}. (34)

Notice that ψ(ỹi,k) is proportional to the probability density of Gaussian variable. If we can obtain
the covariance of ỹi,k in the steady state, we can obtain the communication rate [18]. However, it is
difficult to analyze the communication rate since ỹi,k depends on the consensus and projection stage in
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the distributed case, though a communication rate is determined using the stochastic event-triggered
scheme (13).

Although we cannot explicitly obtain the stochastic event-triggered communication rate, we can
still easily find that the event-triggered scheme performs better than the random sleep scheme having
the same communication cost (referring to the the performance comparison between random sleep
scheme and stochastic event-triggered scheme by simulations as shown in Section 5).

Actually, for agent i, there exists a stochastic event-triggered communication rate 0 < γ∗i,k < 1.
The probability of collection measurements and sending information can be taken as 1 and γ∗i,k,
respectively. Following Theorem 1, there exists a sufficient small consensus gain to guarantee that the
error dynamics is exponentially bounded in mean square and bounded with probability one.

5. Simulations

In this section, we give some simulations to illustrate the effectiveness of proposed algorithms.
We compare the estimation performances of the proposed estimator with the suboptimal
consensus-based Kalman filter (SKCF) in [2]. Moreover, we compare the performance between
proposed two algorithms.

A target moves along a line with constant velocity, which is tracked by a network with N = 6
agents. The topology of the network is shown in Figure 1. The dynamics of target is given as follows

xk+1 =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 xk + wk, (35)

where T is the sampling period, xk = [xk(1), xk(2), xk(3), xk(4)]>. xk(1) and xk(2) are the target
position, and xk(3) and xk(4) are the velocity along different directions. In this example, we take
T = 1s and Q = diag(0.1, 0.1, 0.1, 0.1).

The measurement by agent i is expressed as follows,

yi,k =

[
1 0 0 0
0 1 0 0

]
xk + vi,k (36)

In [20], the author stated that the target is constrained if it is traveling along the road, otherwise,
it is unconstrained. In this example, we assume the target is along a given road, and therefore,
the problem is constrained. Here we consider that the target is travelling on a road with a heading of η,
which means tan η = xk(2)

xk(1)
= xk(4)

xk(3)
. Then the constrained information can be written as:

D =

[
1 − tan η 0 0
0 0 1 − tan η

]

d =
[
0 0

]> (37)

In this example, we take η = 60 deg.
Simulation Case 1: In this case, we test the performance of proposed two algorithms. Denote

e0 = [5, 5, 0.3, 0.3]>, x0 = [0, 0, tan η, 1]>, and initial conditions by agent i is set to xi,0 = x0 + (−1)iie0,
R1 = diag(90, 90),R2 = diag(80, 80), R3 = diag(70, 70), R4 = diag(75, 75), R5 = diag(85, 85),
R6 = diag(95, 95).
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A1 A2 A3

A4A5A6

Figure 1. Topology of the multi-agent network in case 1.

We consider the total mean square estimation errors (TMSEE) of Algorithm 1, and compare its
performance with the existing consensus-based Kalman filter algorithms in [9]. Here, we name the
algorithm in [9] as SKCF. TMSEE is widely used to indicate the performance of the estimator, which is
defined as

TMSEEk =
1
N

N

∑
i=1

E(x∗i,k − xk)
>(x∗i,k − xk).

The parameters of the multi-agent system are chosen that the upper bound on g is determined
by Theorem 1. In both cases, 1000 times independent Monte Carlo simulations are carried out to
show the estimation performance. Figure 2 shows the TMSEE of Algorithm 1 and SKCF in [9] with
the same communication rate. It can be seen that the constrained estimation by Algorithm 1 is more
accurate than the unconstrained KCF. Moreover, according to Figure 2, it is clear that the RSKCF
with the constraints converges to a precision of 60 in less than 15 instances while SKCF without any
constraints needs almost 20 instances. Therefore, for this example based on the constraint information,
the proposed RSKCF with the constraints outperforms SKCF in both convergence rate and accuracy.
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Figure 2. Comparison between RSKCF and SKCF.

Next, we give the simulation results of Algorithm 1. The parameters setting is the same as above.
Take ρm

1 = ρm
3 = ρm

5 = 0.5, ρm
2 = ρm

2 = ρm
2 = 1 and ρc

1 = · · · = ρc
6 = 1. Figure 3 shows that the

estimation error of the agents can reach consensus and bounded, which is consistent with the results
of Theorem 1.
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Figure 3. Performance of agents with random sleep scheme. (a–d) represent the estimation error of
xk(1), xk(2), xk(3) and xk(4), respectively.

The curve of g∗ with fixed ρm
i = 0.7, ∀i ∈ V is shown in Figure 4, while the curve with fixed

ρc
i = 0.7, ∀i ∈ V is shown in Figure 5. From the proof of Theorem 1 it can be observed that the upper

bound for g increases along with the probability of collection measurements. Moreover, the upper
bound for g decreases along with the probability of broadcast accordingly.
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Figure 4. Upper bound of g for a fixed ρm = 0.7.
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Figure 5. Upper bound of g for a fixed ρc = 0.7.

In order to compare the performance between stochastic event-triggered scheme and random
sleep scheme, we choose parameters to ensure that γ∗i = ρc

i and ρm
i = 1. Specifically, we can

obtain that γ∗1 = 0.6027, γ∗2 = 0.5940, γ∗3 = 0.5823, γ∗4 = 0.5928, γ∗5 = 0.6194 and γ∗6 = 0.6248 by
simulations. The triggering sequence are shown in Figure 6. The stochastic event-triggered scheme
performs better than the random sleep scheme as shown in Figure 7. An intuitive explanation is that,
only important information is transmitted by stochastic event-triggered scheme. The communication
rate of Algorithm 2 with Yi = 0.1× I2, 0.3× I2, 0.5× I2, 0.7× I2, ∀i are shown in Figure 8, where
I2 = diag{1, 1}. The simulation results show that the communication rate increases along with the
increasing of Yi, since the agent will be more likely to share the information with its neighbors along
with the increasing of Yi based on the event-triggered scheme (13).
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Figure 6. The triggering sequence.
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Figure 7. Comparison between RSKCF and ETKCF with constraints.
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Figure 8. Communication rate for different Yi.

Simulation Case 2: In this case, we give an example in a complex network, i.e., the network
consists of 30 agents. The communication topology of the network shown in Figure 9. The parameters
setting is the same as case 1. The initial conditions by agent i is set to xi,0 = x0 + (−1)iie0, i = 1, . . . , 30,
Ri = diag(r1,i, r2,i), where r1,i and r2,i are taking from (50, 80) randomly. Figure 10 shows the
comparison between Algorithms 1 and 2. From Figure 10, we can see that the stochastic event-triggered
scheme still performs better than random sleep scheme Figures 11 and 12 give the TMSEE of
Algorithms 1 and 2, respectively.
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Figure 10. Comparison between algorithms 1 and 2 for case 2.
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Figure 11. TMSEE of position and velocity of algorithm 1. (a) TMSEE of position; (b) TMSEE of velocity.
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Figure 12. TMSEE of position and velocity of algorithm 2. (a) TMSEE of position; (b) TMSEE of velocity.

6. Discussion

As shown in Figure 2, the proposed algorithm can achieve better performance comparing with the
one in [9]. It is due to that the constraints information can be treated as additional information, and such
additional information beyond those explicitly given in system model. Therefore, the description of
modified model is different with the standard Kalman filter equations, and the modified one can help
to improve the estimation performance. In [34], the authors studied estimation with nonlinear equality
constraints, where the nonlinear state constraints are linearization locally and the estimation was
obtained by projection to local linear surface. When it comes to distributed setting, such linearization
will produce approximation error and may suffer from a lack of convergence. Our future study may
include designing distributed filtering with nonlinear state equality constraints.

A consensus-based Kalman filter with stochastic sensor activation was proposed in [5], where all
sensors share the same activation probability, and the stability of the algorithm was proved. In [9],
the authors extended the results to different activation probability of each sensor, and the convergence
property was shown under mild condition. Both [5] and [9] studied mean-square stability of the
algorithm. Differently, we study the stochastic stability of the proposed algorithm, and show that the
constraints information will help to improve the estimation performance.

In this paper, we investigate the random communication problem for distributed estimation with
state constraints. It should be notice that local observability condition was needed. In [11], the authors
also studied distributed estimation problem with state inequality constraints for deterministic case,
where the global observability condition was needed, i.e., each agent need not to be observable.
The results in [11] relies on the sufficient communication between agents so that the information
will spread to whole network. However, when agent communicates with neighbors randomly,
the information will not spread enough to whole network. Therefore, the global observability hard to
guarantee the stability of estimation. Under global observability, it can be easy to see that if agents are
not communicating with each other, the estimation will diverge. It is worth studying how to design
the communication rate such that the estimation error is stable under global observability condition.

In [35,36], the distributed event-triggered estimation was also studied. In [35], a time-varying gain
was designed by Riccati-like difference equations in order to adjust the innovative and state-consensus
information, while, in [36], an event-triggered scheme was provided by analyzing the stability
conditions of the error dynamics (without noise terms). Motivated by [18], we introduce the stochastic
event-triggered scheme [18], which shown how to design a parameter in the event mechanism
satisfying a desired trade-off between the communication rate and the estimation quality. However,
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in distributed setting, it is hard to obtain the communication rate due to the correlation between agents.
In future we may study the communication rate for distributed stochastic event-triggered estimation.

There exist a lot of works to investigate network structures [37–40]. In [37], the authors presented
a metrics suite for evaluating the communication of the multi-agent systems, where one agent can
choose any agent to communicate. The paper [38] considered the problem of network-based practical
set consensus over multi-agent systems subject to input saturation constraints with quantization and
network-induced delays. We considered distributed estimation problem over multi-agent systems
without input, quantization and delays, which can be our future works. In [39], the authors considered
the problem of permutation routing over wireless networks. The main idea in [39] is to partition the
network into several groups. Then, broadcasting is performed locally in each group and getaways are
used for communication between groups to send the items to their final destinations.

7. Conclusions

Distributed estimation based on the Kalman filter under state constraints with random
communication was proposed in this paper. Two stochastic schemes, that is, the random sleep
and event-triggered schemes, were introduced to deal with the environment or communication
uncertainties and for energy saving. The convergence of the proposed algorithms was verified, and the
conditions for the corresponding stability were given by choosing a suitable consensus gain. Moreover,
it was shown that the information of additional state constraints is useful to improve the performance
of distributed estimators.
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Appendix A. Proof of Lemma 5

Proof of Lemma 5. Equation (9) can be written as

Pi,k+1 = APi,k A + Q− σm
i,kKi,k(CiPi,kC>i + Ri)K>k . (A1)

Substituting (10) into (A1) and rearranging the terms yield

Pi,k+1 =(A− σm
i,kKi,kCi)Pi,k(A− σm

i,kKi,kCi)
> + Q + σm

i,kKi,kCiPi,k(A− σm
i,kKi,kCi)

>. (A2)

It can be verified that

A−1(A− σm
i,kKi,kCi)Pi,k = Pi,k − σm

i,kPi,kC>i (CiPi,kC>i + Ri)
−1CiPi,k. (A3)

By applying the matrix inverse lemma (see [41], Appendix A.22, p. 487), we have

A−1(A− Ki,kCi)Pi,k =Pi,k − Pi,kC>i (CiPi,kC>i + Ri)
−1CiPi,k

=(P−1 + C>i R−1
i Ci)

−1 (A4)

>0.

Similarly, we obtain

A−1(A− σm
i,kKi,kCi)Pi,k = Pi,k − σm

i,kPi,kC>i (CiPi,kC>i + Ri)
−1CiPi,k > 0. (A5)
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Moreover, it follows from Pi,k > 0 and Ri > 0 that

A−1Ki,kCi = Pi,kC>i (CiPi,kC>i + R)−1Ci ≥ 0. (A6)

Combining (A5) and (A6) gives

Ki,kCiPi,k(A− σm
i,kKi,kCi)

> = A(A−1Ki,kCi)(A−1(A− Ki,kCi)Pi,k)
>A> ≥ 0. (A7)

As a result,
Pi,k+1 ≥ (A− σm

i,kKi,kCi)Pi,k(A− σm
i,kKi,kCi)

> + Q. (A8)

Notice that CiPi,kC>i ≥ 0,

‖Ki,k‖ ≤ ā p̄i c̄i
1
ri

. (A9)

Substituting (A9) into (A8) yields

Pi,k+1 ≥(A− σm
i Ki,kCi)[Pi,k + (A− σm

i Ki,kCi)
−1Q(A− σm

i Ki,kCi)
>−1](A− σm

i Ki,kCi)
>

≥(A− σm
i Ki,kCi)(Pi,k +

q

(ā + σm
i ā p̄i c̄2

i /r)2
I)(A− σm

i Ki,kCi)
>.

(A10)

Taking the inverse of both sides of (A10), multiplying from left and right with (A− σm
i Ki,kCi)

>

and (A− σm
i Ki,kCi), respectively, and then taking expectation operator on the both sides, we obtain

E{(A− σm
i,kKi,kCi)P−1

i,k+1(A− σm
i,kKi,kCi)

>} ≤ (1 +
q

p̄i(ā + ρm
i ā p̄i c̄2

i /r)2
)−1P−1

i,k , (A11)

with
1− τ̄i =

1

1 +
q

p̄i(ā+ρm
i ā p̄i c̄2

i /r)2

. (A12)
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