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Abstract: Increasingly, malicious Android apps use various methods to steal private user data without
their knowledge. Detecting the leakage of private data is the focus of mobile information security.
An initial investigation found that none of the existing security analysis systems can track the flow
of information through Unix domain sockets to detect the leakage of private data through such
sockets, which can result in zero-day exploits in the information security field. In this paper, we
conduct the first systematic study on Unix domain sockets as applied in Android apps. Then, we
identify scenarios in which such apps can leak private data through Unix domain sockets, which
the existing dynamic taint analysis systems do not catch. Based on these insights, we propose and
implement JDroid, a taint analysis system that can track information flows through Unix domain
sockets effectively to detect such privacy leaks.
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1. Introduction

In the second quarter of 2017, Android dominated the smartphone market, garnering an 86.1%
share, according to a report by the International Data Corporation. Meanwhile, there are significant
numbers of Android apps that enrich Android features. As mobile devices have become integrated
into daily life, mobile devices collect increasing amounts of private data. Unfortunately, the Android
operating system has been the target of increasing attacks by third-party apps [1–3], forming a
widespread, serious challenge because apps also increasingly attempt to steal private data (e.g., IMEI,
and location) and send them to remote servers. This has become especially true in the era of big
data [4,5]. Hackers use several different methods to steal private data while remaining undetected by
existing analysis systems, including inter-process communication (IPC) [6–10].

Since Android is based on a tailored Linux environment, it inherits a subset of the traditional Linux
IPCs that differ from Android IPCs [11–14]. Among Linux IPCs implemented within Android, Unix
domain sockets are the only one apps can easily make use of. Although Google encourages Android
developers to use Android IPCs, some still use Unix domain sockets, known as local sockets [15].
This practice occurs not only because using UNIX domain sockets for IPC is more efficient but also
because Android IPCs are unsuitable for communication between the Java language in which most
apps are written and native processes/threads [16]. Both the Android software development kit (SDK)
and the Android native development kit (NDK) [17] provide APIs for Unix domain sockets. To the best
of our knowledge, how malicious apps exploit Unix domain sockets has not yet been systematically
studied. After analyzed 2600 apps including 1500 normal apps and 1100 malicious apps, 315 (21%)
normal apps and 209 (19%) malicious apps have Unix domain socket related APIs or system calls in
code. In addition, APIs for Unix domain sockets can be used in different versions of Android operating
systems including the latest version (i.e., Android 8.0) according to the documentation on the official
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developer website, which is verified through the implement of malware stealing private data based on
Unix domain sockets [18]. What is more important, the existing taint analysis systems are unable to
detect such leaks.

Motivated by these insights, in this study, we conduct a systematic study on information flows
through Unix domain sockets and propose and implement JDroid, an efficient dynamic taint analysis
system that tracks information flows through Unix domain sockets. Because the tracking process
involves taint propagation at the Java level, the native level and between both through JNI, JDroid
reuses some existing modules from TaintDroid [19] and NDroid [20].

To make JDroid effective and efficient, we handle several challenging issues, such as the various
approaches to the different types of Unix domain sockets, the differences between Android and
Linux, etc. An evaluation using sample apps employs Unix domain sockets to transmit private data
and circumvent detection by existing analysis systems and demonstrates the effectiveness of JDroid
in detecting private data leakage through Unix domain sockets. We further evaluate and report
JDroid’s performance.

The rest of this paper is organized as follows. Section 2 introduces the background, related work
and describes undetected information leakage scenarios through Unix domain sockets. We detail the
design, implementation, and evaluation of JDroid in Sections 3–5. Finally, we report the limitations of
JDroid and we conclude the paper in Section 6.

2. Background

2.1. Android App Overview

In an Android system, apps are commonly written in the Java language and compiled into Java
bytecode, which is then translated to Dalvik bytecode and stored in .dex and .odex files that execute
on the proprietary register-based Dalvik virtual machine (DVM) [21]. Apps may contain both Java
and native components; these native components are simply shared libraries loaded dynamically
at runtime [22]. The interaction between Java components and native components is well-defined
by the Java Native Interface (JNI) specification and supported by the NDK [23]. The lowest level of
Android architecture is the customized Linux kernel, which provides the basic architectural model for
process scheduling, resource handling, memory management, networking, etc. Consequently, Linux
mechanism applied in Android system is worth researching seriously [24].

2.2. Unix Domain Sockets

A Unix domain socket is a data communications endpoint for exchanging data between processes
executing on the same host operating system, and such sockets are a standard component of POSIX
operating systems [25,26]. The APIs for Unix domain sockets are similar to those of Internet sockets;
however, rather than using an underlying network protocol, all communication occurs entirely within
the operating system kernel. Traditionally, there are three types of Unix domain socket address
namespaces: FILESYSTEM, RESERVED, and ABSTRACT. An address in the FILESYSTEM namespace
is associated with a file on the filesystem. RESERVED is in essence a sub-namespace of FILESYSTEM,
while ABSTRACT is completely independent of the FILESYSTEM. The protocol family in the Unix
domain is AF_UNIX/LOCAL [27].

The socket type specifies the communication semantics. SOCK_STREAM type sockets are
full-duplex byte streams that must be in a connected state before any data may be sent or received
through it [28]. The diagram in Figure 1 shows the complete client/server interaction [29].

In addition, Unix domain sockets support both unordered and unreliable datagram transmissions
(i.e., SOCK_DGRAM) and ordered and reliable datagram transmission (i.e., SOCK_SEQPACKET,
which is similar to SOCK_STREAM). As the diagram in Figure 2 shows, there is no flow control
between the server and the client [30]. Each datagram message carries its destination address, its
return address and a certain amount of data. Compared with SOCK_STREAM type sockets, the server
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need not create a socket for listening via the “listen” method and then call the “accept” method to wait
for a connection.Information 2018, 9, x FOR PEER REVIEW  3 of 15 
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2.3. Related Work

Currently, the state-of-the-art method for detecting the leakage of private data is called “dynamic
taint analysis” and is typically used in information security to enforce information flow policies to
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preserve data confidentiality and integrity. Tracking information flows allows users to know how a
program processes private data [31,32]. TaintDroid is a prominent representative of applications that
track information flows in Android dynamic taint analysis systems, with some 2312 citations at the
time of this writing. Many existing analysis systems such as Droidbox [33] and AppFence [34] have
developed new functionality based on TaintDroid.

By modifying the Android application framework and the DVM, TaintDroid stores a 32-bit
bitvector with each variable to encode a taint tag, supporting 32 different taint markers. As with
local method variables and arguments, TaintDroid allocates taint tag storage by doubling the size
of the stack frame allocation, and taint tags are stored adjacent to class fields and arrays inside the
VM interpreter’s data structures. TaintDroid propagates the taint tags when the app is running, and
monitors whether outgoing data has a taint tag in the Java layer. However, TaintDroid only loads
native libraries from the firmware: it does not apply to those included in third-party apps.

Currently, hackers increasingly use native code in their malicious apps to hide the program
logic [35–37]. Thus, researchers have begun to pay more attention to the security of such third-party
native libraries. Some systems use tools such as ptrace [38], strace [39], and ltrace [40] to collect the
system-call sequences made by these libraries and use that information to analyse malicious app
behavior. CopperDroid [41] collects and analyses system calls acquired by instrumenting QEMU and
app behaviors related to Binder. DroidScope [42] tracks information flows by reconstructing both the
OS-level and Java-level semantics simultaneously and seamlessly, although it is less efficient.

NDroid tracks information flows across the boundary between the Java and native layers
by instrumenting important JNI-related methods, and it monitors native code by processing each
ARM/Thumb instruction. To work seamlessly with TaintDroid, NDroid reuses the modules modified
by TaintDroid, and taints added by NDroid follow TaintDroid’s format in the DVM. NDroid leverages
shadow registers and memory to save the taints during native-layer execution and sets the taints in
the DVM stack so it can refer to them when the taints are propagated to the Java layer.

Unfortunately, to the best of our knowledge, none of the existing dynamic taint-tracking
approaches consider information leaks through Unix domain sockets.

2.4. Threat Model and Assumptions

Android apps using APIs for Unix domain sockets need only request Internet permission [43],
which is so commonly used that users are not wary about granting it. However, once the app has
been granted Internet permission, the APIs for Unix domain sockets can be executed in either Java or
native code.

In this section, we analyze the scenarios in which private data can be transmitted through Unix
domain sockets and then leaked and explain why such leakage cannot be detected by existing systems.
We use TaintDroid and NDroid as references, because they are both advanced dynamic taint analysis
systems and open source.

An information flow from a source to a sink is the main requirement for leaking private data. We
consider the source to be the APIs that can acquire private data and the sink to be any APIs that can
send private data out of the Android system (usually the network interface). Dynamic taint analysis
systems track how labeled data impact other data in ways that might leak private data [44]. Private
data is first identified at the source, where a taint tag indicates the data type assigned. Later, the data
will be checked when it gets sent to the sink. Thus, eliminating the taint tags attached by existing
systems has raised concerns within the hacker community. To better understand the threat model, we
define the client and the server as the sending and receiving ends, respectively, and group the apps
that employ Unix domain sockets to transmit private data into three cases, depending on the client
and server locations in the Android architecture, as shown in Table 1.
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Table 1. The client/server combinations in information flows through Unix domain sockets.

Client

Java Native

Server
Java Case 1 Case 3

Native Case 3 Case 2

Case 1. As shown in Figure 3a, in this case, the client and the server are both located in the Java
layer. First, private data is transmitted from the client to the server, which is acquired by invoking the
source. Next, the server processes it and then leaks it through the sink. It is noteworthy that, in this
case, the server and the client are created solely by Android APIs using specified names confined to
the Linux abstract namespace. TaintDroid and NDroid cannot detect such leakage, because they do
not consider taint propagation through Unix domain sockets in the Java layer.

Case 2. As shown in Figure 3b, in this case, the client and the server are both located in the native
layer. The app invokes the source to fetch private data, which is then transmitted to the client in the
native layer through JNI. The client processes the data and transmits it to the server through Unix
domain sockets. Finally, native code can leak the data directly by calling the POSIX socket API.

TaintDroid cannot detect such leaks because it loads only the app, not the third-party native
library. Moreover, it does not consider local sockets. NDroid misses such leaks because it cannot track
information flow through Unix domain sockets; consequently it receives the information from memory
without corresponding taint tags. Most existing analysis systems have the common vulnerability that
they ignore POSIX socket APIs as the sink.

Case 3. As shown in Figure 3c, in this case, the client and the server are located in different layers:
the direction of information flow could be from the Java layer to the native layer, or vice versa. In the
Java layer, the client sends private data to the server in the native layer through Unix domain sockets.
Then, Java code fetches private data from the native layer through JNI and leaks it through a Java sink
or native code processes, which then leak the data directly through POSIX socket APIs. TaintDroid
and NDroid cannot detect such leakage for the same reasons as in Case 2.
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3. Design and Implement

Since JDroid must handle the taint propagation in the DVM and across the Java and native layers
through JNI, we re-use some modules from TaintDroid and NDroid. Figure 4 illustrates the JDroid
architecture. The general goal of JDroid is to track information flows through Unix domain sockets
and detect private data leakage.Information 2018, 9, x FOR PEER REVIEW  6 of 15 
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3.1. Taint Propagation

Developers can use both Java code and native code to implement communications through Unix
domain sockets. For JDroid, a challenging issue is how to correctly ensure taint propagation during
the process of private data transmission.

To tackle this issue, JDroid creates a structure called Nodethat records the pathnames of sockets
and the corresponding taint tags, and uses a list to store the Node structure. As shown in Figure 5, the
Node structure includes taint, the taint tag for sending data; a srcname, which is the pathname of the
sending end; and a dstname, the pathname of the receiving end.
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3.2. The Handle inthe Sending End

Prior to sending, each API related to sending data in both the Java and native libraries is tasked
with creating a Node.
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Connection-based sockets. In the first case, the client is located in the Java layer. Since TaintDroid
uses message-level taint tracking that represents the upper bound of the taint tag assigned to variables
contained in the message, JDroid also adopts message-level taint tracking and creates a Node to record
the relevant information.

Using the Java API “write” as an example, Figure 6 shows how the functions are called and how to
model its taint propagation operation. First, the instrumented code in “libcore.io.Posix.write” obtains
taint and invokes the native method “addTaintFile” to create the Node and insert the entry in the
Node list. Note that the ARM/Thumb procedure call standard defines that the first four parameters
are passed in R0 to R3, while the remaining parameters are pushed onto stack, and the return value is
placed in R0.
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native public static void addTaintFile(int fd, int taint);}

Static void Dalvik_dalvik_system_Taint_addTaintFile(const u4* args, JValue* pResult)

{

int fd=(int)args[0];//args[0]= file descriptor

u4 taint = args[1]; // args[1] = the taint tag

struct sockaddr_un src_addr;

socklen_t src_addr_len;

getsockname(sockfd,(struct sockaddr*)&src_addr, &sock_src_len);

struct sockaddr_un dst_addr;

socklen_t dst_addr_len;

getpeername(sockfd,(struct sockaddr*)&dst_addr, &dst_src_len);

insertData(pathTaintlist, int taint, src_addr.sun_path, dst_addr.sun_path);}
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In the second case, the client is located in native layer. JDroid adopts NDroid’s method to track
the propagation of private data through JNI and monitor native code using shadow memory and
registers so that the corresponding taint tag always follows the private data. Consequently, JDroid can
retrieve a taint tag from memory in the native layer, check whether the data being sent includes a taint
tag and create an appropriate entry in the Node list. The rest of the process is identical to that for the
Java layer.

Datagram-oriented sockets. Datagram-oriented sockets use datagram communications between
one server and several clients. A datagram-oriented socket provides a symmetric data exchange
interface without requiring a connection to be established. The sending behavior is implemented by
the “sendto” and “sendmsg” methods, as shown in Figure 7.
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int write(FileDescriptor fd, ByteBuffer buffer}{

int taint = buffer.getDirectByteBufferTaint();

if (taint != Taint.taint_clear){

native public static void addTaintFile(int fd, int taint);}

Static void Dalvik_dalvik_system_Taint_addTaintFile(const u4* args, JValue* pResult)

{

int fd=(int)args[0];//args[0]= file descriptor

u4 taint = args[1]; // args[1] = the taint tag

struct sockaddr_un src_addr;

socklen_t src_addr_len;

getsockname(sockfd,(struct sockaddr*)&src_addr, &sock_src_len);

struct sockaddr_un dst_addr;

socklen_t dst_addr_len;

getpeername(sockfd,(struct sockaddr*)&dst_addr, &dst_src_len);

insertData(pathTaintlist, int taint, src_addr.sun_path, dst_addr.sun_path);}

Figure 7. The “sendto” and “sendmsg” methods.
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Although Google provides Android APIs (e.g., LocalServerSocket, LocalSocket) for developers to
use with Unix domain sockets, they are not available for datagram-oriented sockets except when the
client invokes the method “connect” to establish the connection relation. If using “connect” to connect
the server, the client can use the method “send” to send the data. Following that path, the handle is
the same as in connection-based sockets.

Briefly, the SOCK_DGRAM type of Unix domain socket that does not invoke “connect” must
be implemented in native code. Therefore, JDroid hooked the “sendto” and “sendmsg” methods.
For “sendto”, JDroid parses the second parameter (i.e., buf) to check whether the data being sent has a
taint tag and the fifth parameter (i.e., dest_addr) to obtain the dstname. For “sendmsg”, it uses the
msghdr structure to minimize the number of directly supplied arguments, as shown in Figure 8.
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The data being sent is pointed to by the elements of themsg.msg_iov array, and dstname is pointed
to by msg.msg_name. Further, the Srcname can also be obtained by invoking “getsockname”. Based
on these data items, JDroid creates a new Node.

3.3. The Handle in the Receiving End

JDroid initializes the taint tag for tracking an information flow entering the server using two
steps. The first step determines which Node should get the taint tag based on the peer’s pathname
(i.e., srcname) and its own pathname (i.e., dstname). The second step attaches the taint to the received
data, which can used to continue tracking taint propagation until it reaches a sink.

Two approaches are required to obtain the peer’s pathname because of the differences between
connection-based sockets and datagram-oriented sockets.

Connection-based sockets. For communications between connection-based sockets (whether
in the Java or native layer), the server looks for the taint tag (i.e., taint) of the corresponding Node
based on the methods that JDroid invokes: “getpeername” to obtain the client’s pathname and
“getsockname” to get itself pathname. If the client does not bind the specified pathname, the return
value of “getpeername” may be NULL, differing from Linux, which returns the pathname allocated by
kernel. Therefore, JDroid confirms that the corresponding Node is based not only on the pathnames of
the client and the server, but also the sequence of a Node in the list based on its creation time. Then,
JDroid associates the taint with the received data.

Taking the Java API “read” as an example, JDroid first obtains the taint tag based on the Node,
which goes back to the Java layer and was attached to the received data. Figure 9 shows how to model
the taint propagation operation.
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Datagram-oriented sockets. If the client used “connect”, the server can employ “recv” to receive
the data, which is the same as when using connection-based sockets. In addition, for datagram-oriented
sockets, the server calls “recvfrom” or “recvmsg” to initialize the receive behavior on a socket, as
shown in Figure 10.
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ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags, struct sockaddr *src_addr, socklen_t *addrlen);

ssize_t recvmsg(int sockfd, struct msghdr *msg, int flags);

ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags, struct sockaddr *src_addr, socklen_t *addrlen);

{ 

    int taint=Node *findtag（src_addr.sun_path);

    taint_pair newTaint (buf, taint);

    taintMap.insert(newTaint);

 }

Figure 10. The “recvfrom” and “recvmsg” methods.

Since the server cannot exploit “getpeername” to get the client’s pathname, JDroid parses the
function arguments to obtain the srcname and uses that to look for the Node. Then, JDroid associates
the taint with the received buffer using shadow memory and registers. Only in this way can JDroid
continue to track the data.

For “recvfrom”, src_addr represents the srcname, while for “recvmsg”, msg.msg_name specifies
the srcname. If the src_addrormsg.msg_name are NULL, the sockets are identical to connected sockets
and taint propagation procedure is the same as with a connected socket. Taking the “recvfrom”
(without a NULL src_addr argument) for example, the handler is shown in Figure 11.
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ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags, struct sockaddr *src_addr, socklen_t *addrlen);

ssize_t recvmsg(int sockfd, struct msghdr *msg, int flags);

ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags, struct sockaddr *src_addr, socklen_t *addrlen);

{ 

    int taint=Node *findtag（src_addr.sun_path);

    taint_pair newTaint (buf, taint);

    taintMap.insert(newTaint);

 }

Figure 11. Taint operation for the “recvfrom” method.
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4. Experiments

In our experiments, we first used a simple tool, Monkeyrunner, to generate random input to
test 2300 apps. However, because Monkeyrunner might not trigger an app’s malicious behavior,
we found that the Echo.apk leaks private data by following Case 3. From a positive aspect, our
results demonstrate that malware developers do not pay much attention to exploiting Unix domain
socket. Moreover, we used two proof-of-concept (PoC) apps (one each for Cases 1 and 2) to further
evaluate JDroid’s ability to track information flows through Unix domain sockets. Finally, we used
CaffeineMark to evaluate JDroid’s overhead.

The experiments were performed in a virtual machine with 4 GB memory running Ubuntu.
The host was an Intel(R) Core(TM) i7 running @ 2.6 GHZ with 16 GB of RAM.

4.1. PoC of Case 1 in Information Leakage

In this PoC, the app uses Java code to accomplish the entire transmission process based on the
SOCK_STREAM socket type. The Java code first obtains the device’s IMEI with the taint tag (i.e., 0x400)
and transmits it to the server from the client. When the client begins to implement the sending behavior,
JDroid creates an entry in the Node list that records the taint tag and the client and server pathnames.
Before receiving the data, the server invokes “getpeername” and “getsockname” through JNI which
then looks for the corresponding Nodeas discussed earlier. When the Node is found, JDroid invokes
“Taint.addTaintByteArray” to add the taint to the received data. The main functions in the information
flow identified by JDroid are shown in Figure 12. Finally, the received data is sent to the specified
server. JDroid not only adds a taint tag to the received data but also tracks the information flow until it
reaches the sink.Information 2018, 9, x FOR PEER REVIEW  10 of 15 
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Figure 12. PoC for Case 1.

4.2. PoC of Case 2 in Information Leakage

In this PoC, the client and the server are both located in the native layer and based on the
SOCK_DGRAM socket type. Similar to the PoC for Case 1, this PoC first fetches private data related to
the ICCID with the taint tag 0x1000, which is then transmitted to the native layer through JNI. JDroid
traces the information flow through JNI and locates the memory at 0x4a98c9d4 associated with the
taint tag 0x1000. Then, the client transmits the data based on the memory at 0x4a98c9d4 to the server
using the native library call “sendto”. By hooking “sendto”, JDroid constructs a Node by parsing
the “sendto” parameters (i.e., buf and dest_addr) to populate the taint and dstname and invokes
“getsockname” to obtain the srcname. After the server calls “recvfrom” to receive the data, JDroid
retrieves the srcname by parsing the fifth parameter of “recvfrom” (i.e., src_addr), and looks for the
Node corresponding to srcname and its own pathname (i.e., dstname) and associates thetaint“0x1000”
with the received buffer memory at 0x4a98c93c. Finally, that data reaches “sendto”. Since “sendto” is a
sink, JDroid notices that the ICCID-related data has leaked after checking the parameters, as shown in
Figure 13.
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4.3. Echo

JDroid discovered that Echo may send private data related to IMEI to the specified server.
The client and the server both use the SOCK_STREAM socket type and the FILESYSTEM namespace.
Figure 14, which is an example of Case 3, shows the major functions in the information flow identified
by JDroid. First, Java code invokes an Android API (i.e., getDeviceId) to obtain the IMEI that will be
sent by the client in the Java layer. This type of parameter is a byte array and its taint tag is “0x400”.
Before sending, the instrumented code invokes “getsockname” and “getpeername” to obtain the
srcname and dstname respectively. Based on this information, JDroid creates a new Node for the
server inquiry.
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Figure 14. Echo.apk.

Before to the server in the native layer begins receiving the data, JDroid looks up the corresponding
Node (by searching for srcname and its own pathname (i.e.,dstname). Next, JDroid initializes the taint
tag in the native layer based on the found Node. More precisely, it associates the taint tag “0x400”
with the memory location at “0x4a98cb3c” and a shadow register. When the data reaches the sink
(i.e., “sendto”), JDroid warns that data concerning the IMEI has leaked.

4.4. Compare with Other Analysis Systems

When tested with the two PoC apps and Echo, TaintDroid and NDroid, which are advanced
dynamic taint analysis systems currently in use, were unable to detect information leaks through Unix
domain sockets.
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VirusTotal is a free service that includes 55 of the latest popular analysis systems for analyzing
suspicious files and URLs and facilitates quick detection of viruses, worms, trojans, and all types
of malware. We employed VirusTotal to analyze our sample apps. None of the included analysis
systems detects the malicious behavior, including Qihoo-360, McAfee, and so on. Although the analysis
methods of the 55 systems are varied and some include dynamic taint analysis, at a minimum, this
result illustrates that we should emphasize this issue—and indicates that hackers may not yet have
realized this vulnerability in the existing analysis systems.

Aijiami is another popular service that provides risk assessment for Android apps. We used
Aijiami to evaluate the risk of the three sample apps. The results shows that an uncertain
risk may exist based on the requested permissions, which are sufficient for leaking private data
(i.e., android.permission.INTERNET and android.permission.READ_PHONE_STATE). However, the
score of the three sample apps were all above 60, which means that they are considered normal apps.

5. Performance

CaffeineMark is dedicated to measuring the speed of running Java programs and computing
the instructions executed per second and uses an internal scoring system for relative comparisons.
We used CaffeineMark to evaluate the performance of applications on unmodified Android, and when
using TaintDroid and JDroid. Figure 15 shows the execution time results of a Java microbenchmark.

For the sieve microbenchmark, which is how the classic sieve of Eratosthenes finds prime numbers,
there is no obvious differences among unmodified Android, TaintDroid, and JDroid. The loop scores
achieved by TaintDroid and JDroid are significantly less than that of unmodified Android, which
indicates the testing score uses sorting and sequence generation to measure compiler optimization
of loops. This result most likely occurs because TaintDroid and JDroid hook the JNI-related
methods, which are invoked frequently; thus, they increase the overhead considerably. For the
logic microbenchmark, testing the speed with which the virtual machine executes decision-making
instructions, JDroid’s score was markedly below those of unmodified Android and TaintDroid, because
JDroid must perform considerable work when data is transmitted across the different layers. Although
JDroid’s other indicators are also somewhat lower than the other two systems because of its monitoring
of the native layer, this level of overhead is acceptable considering JDroid’s improved tracking of the
information flow according to the overall microbenchmark that indicates a cumulative score across
individual benchmarks.
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6. Discussion and Conclusions

SinceTaintDroid works only on three Android versions, JDroid based on TaintDroid is also
restricted to those same three versions. Thus, future work involves improving JDroid’s compatibility,
making it applicable to a larger variety of Android versions. In addition, most virtualization-based
systems have a common feature: it is difficult to completely emulate the real hardware. For example,
JDroid cannot monitor some important data sources (e.g., GPS). Hence, JDroid can generate fake
information related to these important sources. Nevertheless, advanced malicious apps can exploit
the differences between emulators and real machines to hide by avoiding the triggering of the
malicious behavior.

Similar to TaintDroid and NDroid, JDroid does not track control flows. Therefore, there are some
anti-taint methods in mobile device environments that can circumvent taint tracking [45]. However,
if JDroid were to fully support control-flow tracking, it would suffer from even higher overhead.
To ensure information flow control capability, JDroid’s trusted computing base (TCB) is comprised
of both the kernel and the managed runtime. Additionally, we realized the app with root privilege
can modify trusted functions. Therefore, JDroid also incorporates the functions in RootGuard [46],
which monitors system calls to detect the malicious behaviors. Furthermore, we will investigate some
existing evadable methods to improve JDroid in future work.

In this work, we conducted a systematic study to track information flows through Unix domain
sockets in Android apps. We identified a set of scenarios in which private data can be leaked that
are not caught by existing dynamic taint analysis systems. Based on these insights, we proposed
and implemented JDroid, an efficient dynamic taint analysis system for tracking information flows
through Unix domain sockets by solving several challenging issues. The evaluation using sample apps
demonstrates that JDroid can effectively track information flows through Unix domain sockets and
detect private data leakage associated with the use of such sockets.
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