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Abstract: A business process or workflow is an assembly of tasks that accomplishes a business goal.
Business process management is the study of the design, configuration/implementation, enactment
and monitoring, analysis, and re-design of workflows. The traditional methodology for the re-design
and improvement of workflows relies on the well-known sequence of extract, transform, and load
(ETL), data/process warehousing, and online analytical processing (OLAP) tools. In this paper, we
study the ad hoc queryiny of process enactments for (data-centric) business processes, bypassing the
traditional methodology for more flexibility in querying. We develop an algebraic query language
based on “incident patterns” with four operators inspired from Business Process Model and Notation
(BPMN) representation, allowing the user to formulate ad hoc queries directly over workflow logs.
A formal semantics of this query language, a preliminary query evaluation algorithm, and a group of
elementary properties of the operators are provided.
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1. Introduction

According to Gartner, business process (BP) improvement is the top business strategy in enterprise
systems [1]. The design and adjustment of workflows relies on the analysis of past workflow executions,
and thus the ability to query characteristics of past executions is key for BP improvement. This paper
initiates the development of a query language for ad hoc exploration of BP execution logs.

Although analyzing workflow execution has been studied variously and used in practice, directly
querying workflow logs is a new approach. The state-of-the-art design/development methodology for
BP/workflow management systems places the data needed for analysis in process logs, activity logs,
data stores, process models, and even execution engines [2,3]. In the past two decades, the database
community invested significant effort into data warehousing and business intelligence (BI) to help
enterprises with their analysis of workflow executions. A centerpiece of data/process warehouse/BI
techniques is extract, transform, load (ETL): extract data from various databases storing workflow
execution data, transform them into suitable forms (e.g., relations), and load the data into a data
warehouse. Online analytic processing (OLAP) tools are then used for process analysis [4,5].

Figure 1 illustrates the traditional framework as described in [6]. The workflow engine schedules
and manages executions of workflow instances (enactments). The effects of these executions are stored
in multiple databases. ETL tools extract data of interest, then transform and store them in a data
warehouse. Online analytics processing (OLAP) is then applied to the data in the data warehouse.

ETL/OLAP is seriously challenged as enterprises demand more flexible process analytics. ETL
aims at specific types of analysis, often with queries centered around summaries over data cubes [6].
This is effective only when relevant data are extracted. For example, if timestamps are not extracted,
analysis of activity duration is not possible, or if drug prescriptions are not available in the data
warehouse, it is impossible to detect healthcare fraud (e.g., patients being over-prescribed drugs and
selling them in the underground market) through these ETL analytics.
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Figure 1. Traditional framework using extract, transform, load (ETL)/online analytic
processing (OLAP).

Figure 2 illustrates the approach for the flexible process analysis we develop in this paper. While
the workflow engine advances workflow instances, it also records the key actions in a workflow
(execution) log in addition to the relevant databases. The log faithfully records the execution traces
for all active instances in their execution order. Queries can then be formulated against the log, and
the user is empowered to pose ad hoc queries over the log to learn about and explore past workflow
executions. Since there is no prior data selection nor filtering, log queries allow the user to formulate a
much richer class of queries.
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lsn wid is-lsn t ↵in ↵out
1 1 1 START - -
2 2 1 START - -
3 1 2 GetRefer - hospital=“Public Hospital”, referId=034d1,

referState=start, balance=1000
4 1 3 CheckIn referId=034d1, referState=start, balance=1000 referState=active
5 2 2 GetRefer - hospital=“People Hospital”, referId=022f3,

referState=start, balance=2000
6 3 1 start - -
7 3 2 GetRefer - hospital=“Public Hospital”, referId=048s1,

referState=start, balance=500
8 2 3 CheckIn referId=022f3, referState=start, balance=2000 referState=active
9 1 4 SeeDoctor referId=034d1, referState=active -

10 1 5 PayTreatment referId=034d1, referState=active receipt1=560, receipt1State=active
11 1 6 SeeDoctor referId=034d1, referState=active -
12 1 7 PayTreatment referId=034d1, referState=active receipt2=460, receipt2State=active
13 2 4 SeeDoctor referId=022f3, referState=active -
14 2 5 UpdateRefer referId=022f3, referState=active, balance=2000 balance=5000
15 1 8 GetReimberse referState=active, balance=1000, receipt1=560,

receipt1State=active, receipt2=460, receipt2State=active
amount=1020, balance=0, reimburse=1000,
receipt1State=complete, receipt2State=complete

16 1 9 CompleteRefer referState=active, balance=0 referState=complete
17 2 6 SeeDoctor referId=022f3, referState=active -
18 2 7 PayTreatment referId=022f3, referState=active receipt1=4560, receipt1State=active
19 2 8 TakeTreatment referId=022f3, receipt1=4560 -
20 2 9 GetReimberse referState=active, balance=5000, receipt1=6560,

receipt1State=active
amount=6560, balance=0, reimburse=5000,
receipt1State=complete...

Figure 1: An Initial Segment of a Hospital Referring Log

Interesting query may be formulated on the log in Fig. 1: How many students every year get referrals with balance
>$5,000? Are there any students updating referral after they already get reimbursement? These queries all involve
temporal relationships between activities recorded in the log. To express these queries, we need a log query language
that can extract temporal information.

Clearly, a language for querying a log must be able to examine activities and formulate temporal constraints
among activities. In the following, we introduce the key notion of an “incident” to capture activities and their temporal
relationships. This notion is then used to develop a query language in the next section.

Consider the log discussed in Example 3.4, and the query “How many students every year get referrals with balance
>$5,000?”. The query concerns the activity getRefer in some log record and then ??? where do we check balance?
begin..didn’t modify the following text Also, for the question “are there any student who update referral after they
already get reimbursement?”, an incident “getReimburse� updateRefer” gives the answer by getting all the sequences
with the two activities satisfing the incident definition. Here, “a� b” means b happens some time after a happens. The
formal definition of incident is as follows. ..end

Definition 3.5 An incident is an expression in one of the following form (assuming e1 and e2 are incidents such that
no variables occur in both e1 and e2):

• x : t where x2V is a variable and t2 T an activity,

• e1 e2 (e1 and e2 are consecutively executed),

• e1� e2 (e1 is executed before e2),

• e1⌦ e2 (one of e1 and e2 is executed), and

• e1� e2 (e1 and e2 are concurrently executed and don’t share any log records).

Intuitively, variables are assigned log sequence numbers (mapped to log records). An incident “x : t” checks if
the log record assigned to x has activity name t. Note that each variable occurs in an incident at most once. Thus in
informal discussions and example, we often omit variables in incidents.

Given an incident and a log, in the following we formulate the notion of the log “satisfying” the incident.
An assignment is a 1-1 mapping from V to N+. Given a log L = l1l2 ··· ln and an incident e, an assignment � is

(L, e)-qualified if (1) for each variable x occurring in e, �(x)6n, and (2) for each pair of variables x, y occurring in
e, �(x) =wid �(y). Intuitively, an (L, e)-qualified assignment maps all variables in e to actual log records in L from a
single workflow instance.

Definition 3.6 Let L = l1l2 ··· ln be a log, e an incident, � an (L, e)-qualified assignment. The notion of L satisfying
e under �, denoted L |=� e, is recursively defined as follows:

4
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Figure 2. Our framework for flexible process analysis.

This paper develops an algebraic query language based on “incident patterns” for process
analytics. Intuitively, an incident pattern describes a temporally related set of activity executions
within a single workflow instance, allowing the user to reason about temporal relationships between
the activity executions. Inspired by Business Process Model and Notation (BPMN) gateways,
four operators are used to formulate temporal relationships: consecutive, sequential, choice,
and parallel operators, whose formal semantics are defined in this paper. A query evaluation algorithm
and algebraic properties of the operators are also presented.

This paper is organized as follows. Section 2 gives the formal definitions of workflow log, incident
patterns, and incident instances. Section 3 presents a query evaluation algorithm. Section 4 provides
properties concerning incident patterns. Section 5 discusses related work. Finally, Section 6 concludes
the paper.

2. Logs and Incidents

In this section, we introduce key concepts needed for the log query language and the technical
discussions, including a “log record”, “log”, “incident pattern”, “incident instance”, and “incident set”.
Log records are fundamental units of logs, with each log record corresponding to data generated by
the execution of one activity in a workflow instance. Incident patterns serve as query expressions in
the log query language presented in this paper.

We start with a formal exposition that will serve as the basis for both the syntax of the
query language and its semantics. We assume the existence of the following pairwise disjoint,
countably infinite sets:
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• A of attribute names,
• T of activity names,
• D of values, and
• N (N+) of (positive) natural numbers.

We assume that logs are generated by workflows that include data attributes or variables.
Such workflows include data-centric workflow systems (such as Barcelona/GSM [7]) or activity-centric
workflows that have data variables (such as YAWL [8], jBPM [9], etc.). Specifically, every workflow
has a set of attributes and a set of activities. An attribute is either undefined, denoted as ⊥, or has a
value in D. A map is a mapping A→D whose domain is finite (i.e., a mapping defines values only for
a finite set of attributes).

At runtime, a workflow model can have multiple workflow instances (or enactments);
each instance has a distinct identifier called a (workflow) instance id.

A workflow “log” faithfully records the effects of workflow executions at runtime, logging
data about workflow instances, decisions made, external systems interactions, etc. In particular,
a workflow log keeps the information about changes to data values. There is no standard structure
for workflow logs for collecting and maintaining results from workflow execution. For example,
in the health management application system we examined with the team at Shan Dong University in
China, workflow logging is accomplished through three separate logs for activities, workflow instance
launches and completions, and business operations. Workflow management systems such as jBPM
often provide mechanisms for workflow instance logging, but the primary goal of these systems is
to support reasoning about business operations rather than to support querying data concerning
workflow instances and executions.

To formulate the notion of a log for our study, we first define a “log record” (i.e., an entry in a log),
using a relation signature over the domain.

Definition 1. A log record is a tuple (lsn, wid, is-lsn, t, αin, αout) where

• lsn∈N+ is a log sequence number,
• wid∈N+ is a workflow instance id identifying the workflow instance to which this log record belongs,
• is-lsn∈N+ is an instance-specific log sequence number (unique within each instance),
• t∈ T is an activity name,
• αin is an input map over the attributes read by activity t, and
• αout is an output map over the attributes written by activity t.

To simplify technical discussions, we use the following functions to extract components of a
log record: for each log record l, lsn(l) is its log sequence number, wid(l) the workflow instance id,
is-lsn(l) the instance-specific log sequence number, act(l) the activity name, αin(l) the input map,
and αout(l) the output map.

Example 1. Consider a system that manages referrals made at a medical clinic. Workflow activity instances in
this system can be captured by log records, creating a collection of log records as shown in Figure 3. The log
record with “lsn= 4” in the figure is the following log record from this system:

l = (4, 1, 3, CheckIn, {(referId, 034d1), (referState, start), (balance, 1000)}, {(referState, active)}).
This log record l is the fourth log record in the log (lsn(l)= 4). It belongs to the workflow instance with id 1

(wid(l)= 1). It was produced by the third activity executed in the workflow instance (is-lsn(l)= 3), where this activity
is named CheckIn (act(l) =CheckIn). Finally, αin(l) = {(referId, 034d1), (referState, start), (balance, 1000)},
which means that the activity CheckIn reads attribute referId having value 034d1, attribute referState having
value start, and attribute balance having value 1000, and αout(l) = {(referState, active)} indicates that CheckIn
activity updates the value of referState to active.
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lsn wid is-lsn t αin αout
1 1 1 START - -
2 2 1 START - -
3 1 2 GetRefer - hospital=”Public Hospital”,

referId=034d1, referState=start,
balance=1000

4 1 3 CheckIn referId=034d1, referState=start,
balance=1000

referState=active

5 2 2 GetRefer - hospital=”People Hospital”,
referId=022f3, referState=start,
balance=2000

6 3 1 START - -
7 3 2 GetRefer - hospital=”Public Hospital”,

referId=048s1, referState=start,
balance=500

8 2 3 CheckIn referId=022f3, referState=start,
balance=2000

referState=active

9 1 4 SeeDoctor referId=034d1, referState=active -
10 1 5 PayTreatment referId=034d1, referState=active receipt1=560, receipt1State=active
11 1 6 SeeDoctor referId=034d1, referState=active -
12 1 7 PayTreatment referId=034d1, referState=active receipt2=460, receipt2State=active
13 2 4 SeeDoctor referId=022f3, referState=active -
14 2 5 UpdateRefer referId=022f3, referState=active,

balance=2000
balance=5000

15 1 8 GetReimberse referState=active, balance=1000,
receipt1=560, receipt1State=active,
receipt2=460, receipt2State=active

amount=1020, balance=0,
reimburse=1000,
receipt1State=complete,
receipt2State=complete

16 1 9 CompleteRefer referState=active, balance=0 referState=complete
17 2 6 SeeDoctor referId=022f3, referState=active -
18 2 7 PayTreatment referId=022f3, referState=active receipt1=4560, receipt1State=active
19 2 8 TakeTreatment referId=022f3, receipt1=4560 -
20 2 9 GetReimberse referState=active, balance=5000,

receipt1=6560, receipt1State=active
amount=6560, balance=0,
reimburse=5000,
receipt1State=complete

... ... ... ... ... ...

Figure 3. An initial segment of a medical clinic referral log.

In addition, we introduce two special log records START and END. A START log record is the first
log record for a workflow instance. For all START log records l, is-lsn(l) = 1 and the activity name
t(l) = “START”. Similarly, an END log record is the last log record for a workflow instance with activity
name “END”. In all START and END log records, the input and output maps are empty.

Definition 2. A log L is a nonempty finite set of log records that satisfies all of the following conditions:

1. There is a bijection between the first |L| natural numbers and the set of all log sequences numbers present
in the log records in L, and

For each log record l ∈ L,

2. is-lsn(l) = 1 iff act(l) = START (each workflow instance begins with a START record),
3. If is-lsn(l)> 1, then there is a log record l′ ∈ L such that wid(l′) =wid(l), lsn(l′)< lsn(l),

and is-lsn(l′) = is-lsn(l)− 1 (for each workflow instance, is-lsn is consecutive), and
4. If act(l) = END, for all log records l′ ∈ L, lsn(l′)> lsn(l) implies wid(l′) 6=wid(l) (END is the last record

for each workflow instance).

In the above definition, Condition (1) ensures a total ordering on the log records in the log
through their log sequence numbers. Conditions (2) and (3) together guarantee that the first and
only the first log record of every workflow is a START record. Condition (3) further insists that the
instance-specific log sequence numbers of each workflow instance is also an initial segment of the
natural numbers starting from 1. Condition (4) states that an END log record denotes the largest log
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sequence number and the largest instance-specific log sequence number among all log records of the
same workflow instance.

Note that each workflow instance must have a START record in the log, but may not have an
END record (the instance is not yet completed). Although a log is a set of log records by definition,
when the context is clear, we view a log as a sequence of log records in the ascending order of their log
sequence numbers.

Example 2. College clinics in China usually lack the necessary staff and equipment to treat certain medical
conditions and to perform intensive medical procedures such as cancer treatment, dental care, etc. For such
cases, medical staff refer students to local hospitals for proper care. Each referral has a fixed budget that is the
maximum reimbursable amount of the medical cost, where the maximum allowed reimbursement may be different
for different medical conditions. The referral process always starts when a student gets a referral from a doctor in
a college clinic. Then, the student checks in at the referred hospital, where doctors provide further diagnoses and
treatment. The student pays fees and get receipts for treatment. After receiving the receipts, the student may
go to the refund center in her college clinic for reimbursement if the referral status remain active. Additionally,
the referral—including the balance—can be updated if a diagnosis made at the referred hospital differs from the
original diagnoses made in the college clinic. When this happens, the new balance may be used for all receipts
after such an update. The student can request to terminate the active referral at any time.

Figure 3 shows an initial portion of a log of a clinic referral system. We can identify three workflow instances
running, as the column wid—which stores ids of workflow instances—has three distinct values. Every workflow
instance always starts with a START log record. Each subsequent log record of that instance contains the name of
a workflow activity in the column t, and input, output maps for attributes being read and written as shown in
the column αin, αout, respectively.

Querying the log shown in Figure 3 would allow doctors and administrators in the college clinic
to make improvements to the current referral process. A doctor might wonder if there are any students
who update their referrals before they receive a reimbursement. Specifically, consider the question
“Are there any students who update their referral before they receive a reimbursement for associated
medical care?”. This can be reformulated as a question about the log, “Is there a workflow instance
in which a log record of the UpdateRefer activity has a lower instance-specific log sequence number
than a log record of the GetReimburse activity?” In the example log in Figure 3, the answer is “yes”:
for workflow instance with wid 2, there is a log record for an UpdateRefer activity with is-lsn= 14 and
another log record for a GetReimburse activity with is-lsn= 20.

Note that the above query examines only temporal relationships of records in the log rather than
values of attributes (e.g., balance, hospital). In order to identify anomalous temporal relationships, the
user can formulate potential patterns of activity ordering in a workflow instance as they occur in
workflow log. This ad hoc nature of querying the log empowers the user to perform flexible analysis
of the past and current workflow executions. We aim at developing a query language capable of
examining activities and formulating temporal constraints among activities.

Consider again the query “Are there any students who update their referral before they receive a
reimbursement for associated medical care?” discussed in the above. The query concerns two activities
GetReimburse and UpdateRefer, as well as the temporal relationship that UpdateRefer occurs before
GetReimburse. To capture this relationship, we introduce the key notion of an “incident pattern”.

Definition 3. An (incident) pattern is an expression in one of the following forms (assuming p1 and p2 are
incident patterns)

• activity patterns (atomic): t, ¬t, where t∈ T is an activity name,
• consecutive pattern: p1	 p2 (p1 and p2 are consecutively executed),
• sequential pattern: p1� p2 (p1 is executed before p2),
• choice pattern: p1⊗ p2 (one of p1 and p2 is executed), and
• parallel pattern: p1⊕ p2 (p1 and p2 are executed in parallel and share no log records).
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For the remainder of this paper, we refer to an incident pattern simply as a pattern. Intuitively, each
atomic pattern “matches” an activity that has been executed. If the pattern is positive (t), the matching
activity has the activity name t; if the pattern is negative (¬t), the matching activity has an activity
name other than t. A pattern composed using at least one of the four operators is called a composite
pattern. Matching a composite pattern requires a workflow instance matching each pattern used in the
composition, and these matches satisfy an additional constraint. For a consecutive operator, one match
must follow the other immediately in the workflow instance. A sequential operator is similar, but with
a relaxed condition there could be a gap between the two matches. A choice pattern simply matches
one of the matches. And finally, For a parallel pattern, a match is a “shuffle” of the two matches (i.e.,
keeping their original order).

Using patterns, we can now express the above query, “Are there any students who update their
referral before they are reimbursed for associated medical care?”. The pattern for this query is simply
a sequential composition:

UpdateRefer � GetReimburse where UpdateRefer and GetReimburse are the activity names
corresponding to the actions specified in the above query.

Clearly, the notion of a “match” in the above discussion is intuitive and rather informal. In the
following we define the notion of an “incident instance” that precisely captures the informal concept of
a match. In general, an “incident instance” is a set of log records that satisfies all conditions in a pattern.

Definition 4. Given a log L and a pattern p, an incident (instance) o of p in L is a set of log records in L
with three functions first(o), last(o), and wid(o), recursively defined as follows.

• Atomic: if p= t where t∈ T is an activity name, then o is an incident of p whenever o = {`} is a singleton
set of a log record `∈ L such that act(`) = t;
if p=¬t where t∈ T is an activity name, then o is an incident of p whenever o = {`} is a singleton set of
a log record `∈ L such that act(l) 6= t.
In both cases, we define first(o) = is-lsn(l), last(o) = is-lsn(l), and finally wid(o) =wid(l),

• Consecutive: if p= p1	p2, then o is an incident of p whenever oi is an incident of pi (i = 1, 2),
wid(o1) =wid(o2), last(o1)+1= first(o2), and o = o1∪ o2.
Also, we define first(o) = first(o1), last(o) = last(o2), and wid(o) =wid(o1).

• Sequential: if p= p1�p2, o is an incident of p whenever oi is an incident of pi (i = 1, 2),
wid(o1) =wid(o2), last(o1)< first(o2), and o = o1∪ o2.
We define first(o) = first(o1), last(o) = last(o2), and wid(o) =wid(o1).

• Choice: if p= p1⊗p2, o is an incident of p whenever o is an incident of p1 or p2.
• Parallel: if p= p1⊕p2, o is an incident of p whenever oi is an incident of pi (i = 1, 2), wid(o1) =wid(o2),

o1 ∩ o2 =∅, and o = o1∪ o2.
We define first(o) = min{first(oi) | i=1, 2}, last(o) = max{last(oi) | i=1, 2}, and wid(o) =wid(o1).

Let incL(p) denote the set of all incidents of p in L.

Definition 4 provides a semantics for patterns. Specifically, each incident of a pattern in a log L
is a subset of L. Incidents of atomic patterns are singleton sets with the record satisfying the activity
condition. Incidents of a consecutive, sequential, and parallel pattern are simply a union of incidents
of the sub-patterns used in the operators with additional constraints the instance-specific log sequence
numbers must be consecutive (consecutive) or preceding (sequential), or the incidents must be disjoint
(parallel). For a choice pattern, incidents are simply the incidents of a sub-pattern.

Example 3. Consider again the query, “Are there any students who update their referral before they receive
their reimbursement?”. The query is expressed as the pattern

UpdateRefer�GetReimburse.
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Since the pattern contains two activity names, each incident of this pattern must contain two log records
with activities UpdateRefer and GetReimburse, respectively. In addition, by the definition of incidents for
sequential operator �, the workflow ids of these two log records must the same (the referral and reimbursement
to correspond to the same workflow instance). Furthermore (and more importantly), the instance-specific log
sequence number of the UpdateRefer log record must be less than that of the GetReimburse log record.
Combining the above conditions, the partial log example in Figure 3 only contains one incident of this pattern:
{l14, l20}.

Consider another incident pattern “SeeDoctor � (UpdateRefer � GetReimburse)”. This pattern
captures situations where a student sees a doctor, updates their referral, then gets reimbursed. There is one
incident of this pattern: {l13, l14, l19} shown in Figure 3.

We provide the following definition of equivalence that is used in the discussions on properties of
patterns in Section 4.

Definition 5. Two patterns p1 and p2 are equivalent, denoted as p1≡ p2, if incL(p1) = incL(p2), for all
logs L.

3. Query Evaluation

To use incident patterns as log queries in the exploration of logged workflow executions, patterns
must be evaluated. In this section, we focus on the evaluation of a specific query on a given log. This is
formulated in the following way: given a pattern p and a log L, find incident set incL(p).

By Definition 5, all equivalent patterns will produce the same incident set on the same log. One
strategy for evaluating a query p would transform p into an equivalent query p′ and evaluate p′.
Theorems in Section 4 present statements of equivalence in the form of algebraic laws. Along with
the observations later in this section, these could be used to transform queries as a first step
in query optimization. This section presents an algorithm for the evaluation of a given query
without optimizations.

3.1. Evaluation of Pattern Composition Operators

In this section, we discuss the evaluation of individual pattern composition operators. According
to Definition 4, composing incidents for the operators is rather straightforward. Algorithm 1 shows
detailed steps of composition for the four operators.

For evaluating pattern p1 θ p2 for some operator θ ∈ {	,�,⊗,⊕}, incidents sets incL(p1) and
incL(p2) are used. These sets are further assumed to be sorted by the value of the first function (as
defined in Definition 4), which corresponds to the earliest instance-specific log sequence number of
the log record for each incident. This ordering is readily available in atomic incidents and is easily
preserved in the evaluation process for composite patterns. For simplicity, we assume the log contains
just one workflow id, as incidents never contain log records corresponding to multiple workflow
instances. Relaxing this assumption can be done easily.
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Algorithm 1 Composite pattern operator evaluation algorithms
Input: Incident sets inc1, inc2
Output: Incident set incL

1: function CONSECUTIVE-EVAL(inc1, inc2)
2: incL ← ∅
3: for o1 ∈ inc1, o2 ∈ inc2 do
4: if last(o1) + 1 = first(o2) then
5: incL.append(o1 ∪ o2);
6: return incL
7: function SEQUENTIAL-EVAL(inc1, inc2)
8: incL ← ∅
9: for o1 ∈ inc1, o2 ∈ inc2 do

10: if last(o1) < first(o2) then
11: incL.append(o1 ∪ o2);
12: return incL
13: function CHOICE-EVAL(inc1, inc2)
14: incL ← ∅
15: for oi ∈ inc1, oj ∈ inc2 do
16: if len(o1) = len(o2) then
17: for i = 0; i++; i ≤ len(o1) do
18: if o1[i] 6= o2[i] then
19: break;
20: if i = len(o1) then
21: incL.append(o1);
22: incL.append(o2);
23: return incL
24: function PARALLEL-EVAL(inc1, inc2)
25: incL ← ∅
26: for oi ∈ inc1, oj ∈ inc2 do
27: overlap← False
28: for lri ∈ oi, lrj ∈ oj do
29: if lri = lrj then
30: overlap = True
31: break;
32: if overlap = False then
33: incL.append(o1 ∪ o2);
34: return incL

The evaulation algorithms for four composition operators are shown as four functions in
Algorithm 1.

• In the evaluation of a consecutive pattern p1	p2, two pointers iterate over incL(p1) and incL(p2),
respectively. For each pair o1 ∈ incL(p1) and o2 ∈ incL(p2), if last(o1)+1= first(o2), add o1∪ o2 to
incL(p1 	 p2). If ni = |incL(pi)|, the evaluation has time complexity O(n1n2) and produces at
most n1n2 results.

• In the evaluation of a sequential pattern p1�p2, two pointers iterate over incL(p1) and incL(p2),
respectively. For each pair o1 ∈ incL(p1) and o2 ∈ incL(p2), if last(o1)< first(o2), add o1∪ o2 to
incL(p1 � p2). If ni = |incL(pi)|, the evaluation has time complexity O(n1n2), and produces at
most n1n2 results.

• The evaluation of a choice pattern p1⊗p2 produces the set union of the input sets incL(p1) and
incL(p2). This requires the identification of duplicated incidents (i.e., sets of log records that
are incidents of both p1 and p2, and exclude the duplicates in the output set). If k1 and k2 are
the number of activity names in p1 and p2, respectively, checking that an incident of p1 and an
incident of p2 are not identical is linear in min(k1, k2). The time complexity of evaluating choice
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pattern p is thus O(n1n2 min(k1, k2)). There are O(n1n2) incidents in incL(p1 ⊗ p2), with the
maximum size occurring when the log contains one workflow instance and incL(p1) and incL(p2)

share no incidents.
• The incident set of a parallel pattern p1⊕p2 contains the union of all pairs of incidents o1 ∈ incL(p1)

and o2 ∈ incL(p2) such that o1 and o2 share no log records. Each incident is a sequence of log
records ordered by their log sequence numbers. Assuming incidents are sorted, checking that
two incidents are disjoint is linear in the number of activity names of the two incident. Letting
k1, k2 be the number of activity names in pattern p1, p2 resp., the time complexity of evaluating a
parallel pattern p1⊕p2 is O(n1n2(k1 + k2)). There are O(n1n2) incidents in incL(p1⊕p2), with the
maximal case occurring when the log contains one workflow instance and all pairs of incidents
o1 ∈ incL(p1), o2 ∈ incL(p2) are disjoint.

We summarize the above analysis in the following lemma.

Lemma 1. Let L be a log, p1, p2 two incident patterns, and incL(p1), incL(p2) incident sets of p1 and p2 on
L, respectively. Let n1 = |incL(p1)| and n2 = |incL(p2)|. The following hold:

• incL(p1	 p2) can be computed in time O(n1n2) and has size at most n1n2.
• incL(p1� p2) can be computed in time O(n1n2) and has size at most n1n2.
• incL(p1⊗ p2) can be computed in time O(n1n2 min(k1, k2)), where ki is the number of activity names in

pi, and has size at most n1n2.
• incL(p1⊕ p2) can be computed in time O(n1n2(k1 + k2)), and has size at most n1n2.

In the evaluation of a choice pattern p1⊗p2, checking for duplication in the output set is only
necessary when p1 and p2 contain the same multiset of activity names. Letting S1, S2 be the multiset
of activity names in pattern p1, p2, resp., determining the equality of two incidents of p1 and p2 is
linear in |S1| if S1 = S2. This equality can be determined in |S1| before the inspection of any incidents
of the input sets. Otherwise, if the patterns do not contain the same multiset of activity names, the
incident set of a choice pattern p1⊗p2 is the union of the disjoint sets incL(p1) and incL(p2), and can
be calculated in O(n1n2).

3.2. Evaluation of Incident Pattern Queries

Based on the algorithms for the evaluation of the operators, we present an algorithm for the
evaluation of composite patterns. Our pattern evaluation strategy constructs an “incident tree”, and
performs a post-order evaluation of the tree.

Definition 6. An incident tree is a binary tree with two types of nodes—namely operator and activity
nodes—such that:

• An operator node has both left and right child nodes, and is labeled with a pattern operator, and
• An activity node is a leaf node, labeled with an activity name for positive atomic patterns, adding “¬”

before the activity name in the case of negative activity patterns.

Example 4. To illustrate incident trees, we use rectangles to represent activity nodes and circles for operator
nodes. Figure 4 shows an incident tree for the pattern SeeDoctor � (UpdateRefer � GetRimburse).

We perform a single pass scan over a pattern to build the corresponding incident tree, using the
stack-based shunting-yard algorithm [10] (introduced by Edsger Dijkstra in 1961), which converts an
expression in infix notation to postfix notation. Similar procedures are used to convert infix expressions
to Reverse Polish notation [11].

The incident tree evaluation is performed starting with the leaf nodes and passing the incident
sets for each subtree to its parent. More specifically, we process nodes according to post-order traversal
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of the incident tree, yielding an incident set for the given incident pattern at the root of the incident
tree. An implementation is given in Algorithm 2.

  

GetReimburseUpdateRefer

SeeDoctor

  

Figure 4. An incident tree for SeeDoctor � (UpdateRefer � GetRimburse).

In Algorithm 2, if the root node is a leaf, all log records with a matching (or un-matching)
activity name are added to the output set incL. An index structure for each workflow id and
activity is used to generate log records for an activity node in constant time. Otherwise, the root
corresponds to a composite pattern, so a post-order evaluation is performed in lines 7 and 8. After
the evaluation of incidents sets of the left and right subtrees, line 9 combines the results with the
operator-specific function depending on the type of the root node. The function OPERATOR-EVAL

invokes operator-specific algorithms discussed earlier in this section and formalized in Algorithm 1 to
generate incident sets.

Algorithm 2 Incident tree evaluation algorithm
Input: Incident TreeNode root, dictionary LogRecordsDict
Output: Incident Set incL

1: function EVAL–INCIDENT–TREE
2: incL ← ∅;
3: if root.type == ATOMIC then
4: for i ∈widSet do
5: if root.negated = False then
6: incL.append(LogRecordsDict[i](lr.activity_name = root.activity_name));
7: else
8: incL.append(LogRecordsDict[i](lr.activity_name != root.activity_name));
9: else

10: incle f t ← EVALINCIDENTTREE(root.left, LogRecordsDict);
11: incright ← EVALINCIDENTTREE(root.right, LogRecordsDict);
12: incL ← {}
13: for i ∈widSet do
14: incL[i] = OPERATOREVAL(root.type, incle f t[i], incright[i]);
15: return incL

Example 5. For the incident tree in Figure 4, the evaluation Algorithm 3 starts at the leaf nodes SeeDoctor,
UpdateRefer, and GetReimburse. A set of log records for each activity node is generated from the workflow
log. In each set, the activity names in the log records are identical to the label of the corresponding activity node.
For instance, the incidents of activity node SeeDoctor are incL(SeeDoctor) = {l9, l11, l13, l17}.

The incident set for each leaf node is passed to its parent, the operator node at depth 2 in Figure 4.
The evaluation proceeds by invoking the algorithm for the sequential operator, constructing the incident set;
here, it is {l14, l20}. Similarly, the result is passed to the root, which is also labelled with the sequential operator.
The root performs the same operation and generates the final output {l13, l14, l20}.
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Algorithm 3 Incident tree generation algorithm
Input: Incident pattern p (in postfix notation)
Output: Incident Tree T, dictionary LogRecordsDict

1: function BUILDINCIDENTTREE
2: TreeNode root← new TreeNode();
3: root.type← p.type; . operator_type ∈ {ATOMIC, CONS, SEQU, CHOICE, PARA}
4: if root.type==ATOMIC then
5: root.activity_name← p
6: root.negative = p.negative ; . p.negative is true iff p is a negative activity pattern
7: else
8: root.left← EvalPattern(p.left_pattern);
9: root.right← EvalPattern(p.right_pattern);

10: dictionary LogRecordsDict← {}; . a dictionary mapping wid to log records of that wid
11: widSet← {}
12: for lr ∈ L do
13: LogRecordsDict[lr.wid].append(lr);
14: widSet + = lr.wid
15: return root, LogRecordsDict;

Theorem 1. Let L be a log with m log records and k the number of operators in a pattern p. The time complexity
of evaluating p is O(mk).

Proof. Let t be an activity name. The worst case time complexity for evaluation arises with pattern
p= ((· · · (((t⊕t)⊕t)⊕t) · · · )⊕t), which forms a left-deep incident tree with each leaf producing
an incident set incL(t) of size O(m). An incident set produced by a node at depth d will have
k+1−d log records, indicating that the k ⊕ operators with time complexity O(n1n2k) will have times

O(m2)), O(2m3), ..., O((k − 1)mk), where Σk
i=1mk = m(mk−1)

m−1 . Thus, the overall time complexity is at
most O(mk).

4. Properties of Incident Operators

Incident patterns are algebraic expressions with four binary operators. In this section, we examine
algebraic properties of the four pattern operators. The main results in the section establish commutative,
associative, and distributive properties, which could serve as a basis for query optimization.
For example, an associative law concerning an operator would allow the optimizer to choose between
left-to-right and right-to-left evaluation paths. Although the study of query optimization techniques
is beyond the scope of this paper, we believe that the log query evaluation algorithm presented in
Section 3 can be significantly optimized.

Theorem 2 in the following states that all operators are associative.

Theorem 2. (p1 θ p2) θ p3 ≡ p1 θ (p2 θ p3) for all patterns p1, p2, p3 and all operators θ ∈ {	, �, ⊗, ⊕}.

Proof. Let L be an arbitrary log. It must be shown that for patterns p1, p2, p3, θ ∈ {	,�, ⊗, ⊕},
incL((p1 θ p2) θ p3) = incL(p1 θ (p2 θ p3)). We prove the associativity of each operator individually.

• (Consecutive operator.) Suppose o ∈ incL((p1 	 p2)	 p3). According to Definition 4, o = o′ ∪ o3,
where o′, o3 are incidents of p1 	 p2, p3, resp., wid(o′) = wid(o3), and last(o′) + 1 = first(o3).
The same definition further implies that there are two incidents o1, o2 such that o′ = o1 ∪ o2 is an
incident of p1	 p2. Thus, the three incidents o1, o2, o3 have the following properties: last(o1) + 1 =

first(o2), last(o2) + 1 = first(o3), wid(o1) = wid(o2) = wid(o3), and oi is an incident of pi for
i ∈ {1, 2, 3}.
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From these incidents, we construct an incident of (p1 	 (p2 	 p3)) as follows.
Let o′′ = o2 ∪ o3. From the properties listed above, o′′ is an incident of p2 	 p3.
This, together with last(o1) + 1 = first(o′′) and wid(o′′) = wid(o1), establishes that
õ = (o1 ∪ o′′) ∈ incL(p1 	 (p2 	 p3)). Observing that o = o′ ∪ o3 = o1 ∪ o2 ∪ o3 = o1 ∪ o′′ = õ,
it follows o ∈ incL(p1 	 (p2 	 p3)).

It must also hold that incidents of the right hand side, elements of incL(p1 	 (p2 	 p3)),
are incidents of the left hand side, elements of incL((p1 	 p2)	 p3). This case is symmetric.

• (Sequential operator.) The proof is nearly identical to the proof for the consecutive operator,
and can be formed by making the following replacements:

last(o′) + 1 = first(o3) becomes last(o′) < first(o3),
last(o1) + 1 = first(o2) becomes last(o1) < first(o2),
last(o2) + 1 = first(o3) become last(o2) < first(o3), and
last(o1) + 1 = first(o′′) becomes last(o1) < first(o′′).

• (Choice operator.) Let o be an incident of (p1⊗ p2)⊗ p3. Using the definition of the choice operator,
this occurs if and only if o is an incident of (p1 ⊗ p2) or o is an incident of p3. Applying the same
deconstruction to (p1 ⊗ p2), o is an incident of (p1 ⊗ p2) if o is an incident p1 or an incident
of p2. This results in three cases for o: (1) o ∈ incL(p1), (2) o ∈ incL(p2), or (3) o ∈ incL(p3).
The statement o ∈ incL(p1 ⊗ (p2 ⊗ p3)) can be deconstructed into the same three cases using
nearly identical reasoning. Therefore, (p1 ⊗ p2)⊗ p3 ≡ (p1 ⊗ (p2 ⊗ p3).

• (Parallel operator.) If o is an incident of (p1 ⊕ p2)⊕ p3, there exists incidents o′ ∈ incL(p1 ⊕ p2)

and o3 ∈ incL(p3), such that o′ ∪ o3 = o and o′ ∩ o3 = ∅. The incident o′ is an instance of
pattern (p1 ⊕ p2), which indicates there exists o1 ∈ incL(p1), o2 ∈ incL(p2) such that o1 ∪ o2 = o′

and o1 ∩ o2 = ∅. Since o2 ⊆ o′ and o′ ∩ o3 = ∅, o2 ∩ o3 = ∅. By the disjointedness of o2

and o3, we have o2 ∪ o3 ∈ incL(p2 ⊕ p3). Because o1 ∩ o2 = ∅ and o1 ∩ o3 = ∅, it follows
that o1 ∪ o2 ∪ o3 ∈ incL(p1 ⊕ (p2 ⊕ p3)) . Thus, membership in incL((p1 ⊕ p2) ⊕ p3) implies
membership in incL(p1 ⊕ (p2 ⊕ p3)). The proof for incL(p1 ⊕ (p2 ⊕ p3)) ⊆ incL((p1 ⊕ p2)⊕ p3)

is symmetric.

An operator is commutative if the ordering of its arguments is independent of the results of its
evaluation. Theorem 3 below states that the choice operator⊗ and parallel operator⊕ are commutative.

Theorem 3. For all patterns p1, p2, p1 ⊗ p2 ≡ p2 ⊗ p1 and p1 ⊕ p2 ≡ p2 ⊕ p1.

Proof. Let L be an arbitrary log. We prove that for two patterns p1, p2, the following holds:
incL(p1 ⊗ p2) = incL(p2 ⊗ p1). Assuming that incident o ∈ incL(p1 ⊗ p2), o is an incident of p1 or an
incident of p2. If o is an incident of p1, o is an incident of p2 ⊗ p1. Similarly, if o is an incident of p2,
o ∈ incL(p2 ⊗ p1). By assumption, o is an incident of p1 or an incident of p2, so o ∈ incL(p2 ⊗ p1).
It follows that o ∈ incL(p1 ⊗ p2) ⇒ o ∈ incL(p2 ⊗ p1). The other direction follows from a nearly
identical proof. Thus, the choice operator is commutative.

For the parallel operator, consider incident o such that ∃ o1 ∈ incL(p1) and ∃ o2 ∈ incL(p2) such
that o1 ∪ o2 = o and o1 ∩ o2 = ∅. By Definition 4, o is an incident of p1 ⊕ p2 and also of p2 ⊕ p1. If no
such incidents o1, o2 exist, then o is not an incident of p1 ⊕ p2 nor p2 ⊕ p1. Thus, o ∈ incL(p1 ⊗ p2) iff
o ∈ incL(p2 ⊗ p1). It follows that the parallel operator is commutative.

The consecutive and sequential operators are not commutative for a trivial reason. Indeed,
sets of log records whose instance-specific log sequence numbers satisfy the ordering provided by the
consecutive or sequential operators will surely fail the inverted ordering.

Theorem 4 in the following states that in queries containing only the consecutive	 and sequential
� operators, these operators have equal precedence, extending the associativity proven in Theorem 2.



Information 2018, 9, 25 13 of 17

Theorem 4. For all patterns p1, p2, p3, the following all hold.

1. p1 	 (p2 � p3) ≡ (p1 	 p2)� p3, and
2. p1 � (p2 	 p3) ≡ (p1 � p2)	 p3.

Proof. For Part 1, let L be an arbitrary log and o1, o2, o3 incidents from sets incL(p1), incL(p2),
and incL(p3), respectively. Then, o1 ∪ o2 ∪ o3 is an incident of p1 	 (p2 � p3) if and only if
wid(o1) = wid(o2) = wid(o3), last(o1) < first(o2), and last(o2) + 1 = first(o3). These conditions are
necessary and sufficient for o1 ∪ o2 ∪ o3 to be an incident of p1 � (p2 	 p3).

A proof for Part 2 can be obtained from the proof of Part 1 by replacing the statements
last(o1) < first(o2) and last(o2) + 1 = first(o3) with last(o1) + 1 = first(o2) and last(o2) < first(o3).

Finally, Theorem 5 provides left- and right-distributive properties of all operators over the choice
operator ⊗.

Theorem 5. For θ ∈ {	,�,⊗,⊕}, the following all hold.

1. p1 θ (p2 ⊗ p3) ≡ ((p1 θ p2)⊗ (p1 θ p3)) (left-distributive), and
2. (p1 ⊗ p2) θ p3 ≡ ((p1 θ p3)⊗ (p2 θ p3)) (right-distributive).

Proof. We prove Part 1 for three operators, as the proof for the choice operator is trivial. Let L be an
arbitrary log.

• (Consecutive operator.) Let o ∈ incL(p1 	 (p2 ⊗ p3)). This is equivalent to ∃ o1, o′ such
that last(o1) + 1 = first(o′), o1 ∈ incL(p1), o′ ∈ incL(p2 ⊗ p3), and o = o1 ∪ o′. The choice
operator yields two possible cases: (1) o′ ∈ incL(p2), or (2) o′ ∈ incL(p3). Because o ∈ incL(p1),
in Case (1), o has necessary and sufficient properties such that o ∈ incL(p1 	 p2). Similarly in
Case (2), o ∈ incL(p2 	 p3). Combining both cases of membership with the choice operator yields
o ∈ ((p1 	 p2)⊗ (p1 	 p3)), because o ∈ incL(p1 	 p2) or o ∈ incL(p2 	 p3).

• (Sequential operator.) A proof for the sequential operator is obtained by replacing the statement
“last(o1) + 1 = first(o′)” in the proof for the consecutive operator with “last(o1) < first(o′)”.

• (Parallel operator.) Let o ∈ incL(p1 ⊕ (p2 ⊗ p3)). This is equivalent to ∃ o1, o′ such that
o1 ∈ incL(p1), o′ ∈ incL(p2 ⊗ p3), o = o1 ∪ o′, and o1 ∩ o′ = ∅. Rewriting o′ ∈ incL(p2 ⊗ p3)

by deconstructing the choice operator ⊗ yields o′ ∈ incL(p2) or o′ ∈ incL(p3). Now observe
that o has necessary and sufficient properties such that o ∈ incL(p1 ⊕ p2) or o ∈ incL(p2 ⊕ p3),
thus o ∈ ((p1 ⊕ p2)⊗ (p1 ⊕ p3)).

The proof of the right-distributive property in Part 2 is very similar to that of Part 1, and is thus
omitted here.

5. Related Work

In the field of business intelligence (BI), there is a growing collection of technologies for gathering,
storing, accessing, and analyzing data, tools that help users make better decisions. Traditionally, the aim
of research in BI has been to improve techniques in data management based on data warehousing
and online analytic processing (OLAP) [6,12,13]. Since the early 1990s, focus has been on studying the
integration of data from multiple sources using extract–transform–load (ETL) tools, effective/efficient
data store, and support of multidimensional data analysis using OLAP. Due to recently increasing
demands for faster decision making and the advent of the era of Big Data, an increased focus on
real-time BI and business performance management, and pervasive BI has emerged in the research
community [14]. Traditionally, ETL processes have been executed in an offline mode. Recently,
the demand for real-time business needs has driven the optimization on ETL tools and near-real-time
ETL design [15–17]. To provide front-end applications, OLAP [18] has been studied to support
operations such as filtering, aggregation, pivoting, rollup, and drill-down on the multidimensional
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view of relational data. Traditional data warehousing has mainly been focused on structured data
management and analysis. However, it barely considers business process during the analytic process.

The concepts of process-centric BI [19] and business process intelligence [20,21] were introduced
to analyze data with business process information. In their work, after collecting data from business
process instances, the traditional data analytic tools (e.g., OLAP and data mining techniques) are used
to do further analysis. These developments have helped enterprises tremendously in process analytics.
However, since data is tightly coupled with the process model and its execution engine, it is difficult to
provide generic solutions for warehousing process data for different business processes. Additionally,
it is not efficient to do runtime execution monitoring and analysis over a data warehousing approach.

Querying helps business process designers to understand, communicate upon, and enhance a
business process. BPMN-Q (Business Process Model and Notation Querying) [22–25], BQL (Behavior
Query Language) [26], and APQL (A Process-Model Query Language) [27] are query languages on
business process models expressed in different modeling languages like BPMN, Business Process
Execution Language (BPEL) [28] and Petri Net. These query languages focus on the static analysis
of business process models which are mainly used at the process design stage other than execution
history analysis.

Querying process models/traces has also been studied by Beeri, Milo, et al. [29,30]. In particular,
three query languages were developed: BP-QL that focuses on finding process models using
patterns [29–32], BP-EL and BP-Mon that allow querying over traces and/or process models.
Key distinctions between their work and our approach are that (1) their traces are acyclic graphs
reflecting the control flow structures, while ours is based on logs; and (2) their queries are graph
patterns, while ours is based on four algebraic operations. We believe that querying logs directly is
more natural in practice.

BP-SPARQL [33,34], which also focuses on trace analysis, is a declarative query language
extended from SPARQL [35], a query language for Resource Description Framework (RDF) graphs.
BP-SPARQL takes the process execution log of a system (with multiple process instances) and uses a
data model—a graph with typed nodes representing entities, data objects with attributes and edges
representing transitive relationship between two entities. While BP-SPARQL relies on an intermediate
graph, our work analyzes the log directly.

There is also research focusing on event pattern analysis in field CEP (Complex Event Processing)
and data streaming. ZStream [36] is a cost-based query processor for matching sequential patterns
enriched with the operators sequence, conjunction, disjunction, negation, and Kleene closure.
It uses tree-based query plans and a cost model to find the most efficient query evaluation plan.
Similar systems include Aurora [37,38], Borealis [39], and TelegraphCQ [40]. Different from our work,
these systems focus on streaming data and time window. There are also works extending SQL to
process complex patterns in database systems, like DejaVu system [41], using finite state automata
to extend SQL, and SQL_TS [42], using the Knuth–Morris–Pratt string matching algorithm for query
optimization in database.

6. Conclusions

This paper presents a new query language that uses incident patterns to query enactments
of business process stored as workflow logs. Four operators are used to formulate a temporal
relationship between activities. Queries using incident patterns are not only more flexible than
ETL/data warehousing, but also better support business experts to formulate their demands from
different perspectives. The paper also provides a query evaluation algorithm, and explores the
algebraic properties between these operators useful for developing further optimization techniques.
There are many interesting questions that arise from this initial study. An immediate task is to develop
query optimization techniques. Theorems 2–5 provide a first step in this study. Looking ahead, one may
wonder how incident pattern query evaluation could compare to data warehousing queries. Clearly the
naive approach sketched in this paper can be augmented with more advanced optimization techniques.
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We also speculate that query languages for workflow log, such as those which make use of
incident patterns, should be helpful in application problems such as detecting anomalous or malicious
behavior, with applications in fraud detection, either through ad hoc queries or by constructing queries
from business principles.
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