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Abstract: Artificial intelligence (AI) and machine learning promise to make major changes to the 

relationship of people and organizations with technology and information. However, as with any 

form of information processing, they are subject to the limitations of information linked to the way 

in which information evolves in information ecosystems. These limitations are caused by the 

combinatorial challenges associated with information processing, and by the tradeoffs driven by 

selection pressures. Analysis of the limitations explains some current difficulties with AI and 

machine learning and identifies the principles required to resolve the limitations when 

implementing AI and machine learning in organizations. Applying the same type of analysis to 

artificial general intelligence (AGI) highlights some key theoretical difficulties and gives some 

indications about the challenges of resolving them. 
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1. Introduction 

The role of artificial intelligence (AI) and machine learning in organizations and society is of 

critical importance. From their role in the potential singularity (for example, see [1,2]) through their 

more pragmatic role in day-to-day life and businesses and on to deeper philosophical questions [3] 

they promise to make a widespread impact on our lives. Yet, on the other hand, they are just 

different forms of processing information. 

However, information and information processing is beset with limitations that humans do not 

easily notice. As Kahneman [4] says with respect to our automatic responses (what he calls System 

1): “System 1 is radically insensitive to both the quality and quantity of information that gives rise to 

impressions and intuitions.” Yet information quality, what Kahneman says we are prone to ignore, 

is at the heart of many fundamental questions about information. Truth, meaning, and inference are 

expressed using information, so it is important to understand how the limitations apply. These 

topics are discussed in general in [5] and in [6–8] in respect of truth, meaning and inference more 

particularly. 

In this paper, we take the same approach to AI and machine learning and consider the 

questions: how do the limitations and problems associated with information relate to AI and 

machine learning and how can an information-centric view help us to overcome the limitations? 

This analysis explains some current issues and indicates implementation principles required to 

resolve both pragmatic and deeper issues (A note on terminology: since machine learning is a subset 

of AI, where the context is broad, we will refer to AI and where the context is specifically about 

machine learning we will refer to machine learning). 

The limitations of information arise from its evolution in information ecosystems in response to 

selection pressures [5] and the need to make tradeoffs to tackle the underlying combinatorial and 
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pragmatic difficulties. Information ecosystems have different conventions for managing and 

processing information. Think of the differences between mathematicians, banking systems and 

finance specialists, for example; each has their own ways of sharing information, often inaccessible 

to those outside the ecosystem. This approach to information is described in Section 2 that also 

describes the relationship of information with the interactions of Interacting Entities (IEs)—the 

entities, such as people, computer systems, organizations and animals that interact using 

information. 

Following current ideas in technology architecture [9] and in usage traceable back to Darwin 

[10] we use the term fitness as a measure of how effectively an IE can achieve favorable outcomes in 

its environment. This interaction-led view leads to the following three levels of fitness that IEs may 

develop: 

 Narrow fitness: that associated with a single interaction (and this is the type of fitness analyzed 

in [5–8]); 

 Broad fitness: that associated with multiple interactions (of the same or different types) and the 

consequent need to manage and prioritize resources between the different types—this is the 

type of fitness linked to specialization, for example; 

 Adaptiveness: that associated with environment change and the consequent need to 

adapt—this is the type of fitness that has led organizations to undertake digital transformation 

activities [11]. 

It is helpful to discuss fitness using some ideas developed for technology architecture [12]. 

Fitness needs a set of capabilities (where a capability is the ability to do something) that are provided 

by a set of physical components. Different components (e.g., web sites, enterprise applications, 

virtual assistants) are integrated together in component patterns (where the word ”pattern” is used 

in the sense of the technology community [13]). Just as in technology architecture, these component 

patterns enable or constrain the different levels of fitness. 

Using this approach, Section 3 builds on the analysis in [5–8] to highlight the limitations of 

information, how they apply to fitness in general, how they apply to AI and how AI can help to 

improve fitness. This section deals with current issues with machine learning and demonstrates a 

theoretical basis for implementation principles to: 

 Understand the levels of fitness required and their relationship with information measures (like 

quality, friction, and pace [5,6]); 

 Analyze the integration challenges of different AI approaches—the requirements for delivering 

reliable outcomes from a range of disparate components reflecting the conventions of different 

information ecosystems; 

 Understand the best way to manage ecosystems boundaries—initially, how AI and people can 

work together but increasingly how AI can support effective interaction across other ecosystem 

boundaries; 

 Provide assurance about the impact and risks as AI becomes more prevalent and the issues 

discussed above become more important to organizational success. 

The theoretical difficulties become more profound when we consider artificial general 

intelligence (AGI) in Section 4. The following questions highlight important theoretical difficulties 

for which AGI research will require good answers: 

 How is fitness for AGI determined? 

 How will AGI handle the integration of components, the need to accommodate different 

ecosystem conventions and be sufficiently adaptive? 

 How will AGI process and relate abstractions and will it be able to avoid the difficulties that 

humans have with the relationship between abstractions and information quality? 

When we analyze these questions, it is clear that there are difficult information theoretic 

problems to be overcome on the route to the successful implementation of AGI. 
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2. Selection and Fitness 

The relationship between information and ideas about evolution and ecology has been studied 

by several authors (see for example [14,15]). This section sets out the approach to information and 

evolution contained in [5–8]. In this approach, information corresponds to relationships between 

sets of physical properties encoded using conventions that evolve in information ecosystems. 

Consider the elements of this statement in turn. 

Information processing entities interact with their environment, so we call them Interacting 

Entities (IEs—people, animals, organizations, parts of organizations, political parties, and computer 

systems are all IEs, for example). Through interaction, IEs gain access to resources such as money, 

food, drink, or votes for themselves or related IEs. Through a range of processes and feedback 

mechanisms, derived IEs (e.g., children, new product versions, changed organizations) are created 

from IEs. The health of an IE—its ability to continue to interact and achieve favorable 

outcomes—and the nature of any derived IE depend on the resources the IE has access to (either 

directly or through related IEs) and the outcomes it achieves. The interactions and outcomes 

available, together with the competition to achieve the outcomes, define the selection pressures for 

any IE. The selection pressures affect the characteristics of derived IEs. Selection, in this sense, is just 

the result of interactions. Examples of selection pressures include the market, natural selection, 

elections, personal choice, cultural norms in societies and sexual selection and for any IE different 

combinations of selection pressures may apply. 

The ability of an IE to achieve a favorable outcome from an environment state requires 

information processing. For any environment state an IE needs to know how to respond, so it needs 

to connect environment states with potential outcomes and the actions required to help create the 

outcomes. Thus, IEs sense the values of properties in the environment, interpret them, make 

inferences, and create instructions to act. This information processing results in what is sometimes 

called descriptive, predictive and prescriptive information [7,8], corresponding to the categorization 

in Floridi [16] (Please note that these terms encompass other terms for types of information, such as 

“knowledge” and “intelligence”). 

The degree to which an IE can achieve favorable outcomes we call fitness, based on the 

extension of the Darwin’s idea [10] in modern technology development [9]. There are three levels of 

fitness: 

 narrow fitness: the ability to achieve favorable outcomes in a single interaction (this is discussed 

in detail in [5–8] including a discussion of the corresponding information measures: pace, 

friction, and quality); 

 broad fitness: the ability to achieve favorable outcomes over multiple interactions, potentially of 

different types; 

 adaptiveness: the ability to achieve favorable outcomes when the nature of interactions 

available in the environment changes. 

Broad fitness takes into account factors that depend on multiple interactions. For example, there 

are many examples of machine learning in which human biases become evident over time [17,18]. 

These provide examples in which broad fitness can include ethical or social factors not always taken 

into account in narrow fitness or not evident in small numbers of interactions. 

The degree of fitness depends on the component pattern of an IE. Here we are drawing on 

terminology used in IT architecture [12]. A component is a separable element of the IE—something 

that processes information in a particular way. In this sense, different applications and IT 

infrastructure are components for an organization; components for people are described in [19] (the 

authors say “inference, and cognition more generally, are achieved by a coalition of relatively 

autonomous modules that have evolved […] to solve problems and exploit opportunities” and a 

“relatively autonomous module” corresponds to a component). 

Figure 1 shows how these elements relate. In the figure, the superscripts 1, 2 and 3 refer to 

narrow fitness, broad fitness, and adaptiveness, respectively. 
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Figure 1. Levels of interaction and fitness. 

Selection pressures lead to the formation of information ecosystems [5]. Examples include 

English speakers, computer systems that exchange specific types of banking information, 

mathematicians, finance specialists and many others. Each ecosystem has its own conventions for 

exchanging and processing information. Within different ecosystems, modelling tools (using the 

term from [5–8]) such as languages, mathematics and computer protocols have evolved to structure 

and manipulate information within the ecosystem. An IE outside the ecosystem may not be able to 

interpret the information—think of a classical languages scholar trying to understand quantum 

mechanics. 

Information relates to the physical world. Call a slice a contiguous subset of space-time. A slice 

can correspond to an entity at a point in time (or more properly within a very short interval of time), 

a fixed piece of space over a fixed period of time or, much more generally, an event that moves 

through space and time. This definition allows great flexibility in discussing information. For 

example, slices are sufficiently general to support a common discussion of nouns, adjectives, and 

verbs, the past and the future. 

Slices corresponding to ecosystem conventions for representing information we call content 

with respect to the ecosystem. Content is structured in terms of chunks and assertions. A chunk 

specifies a constraint on sets of slices (e.g., “John”, “lives in Rome”, “four-coloring”). An assertion 

hypothesizes a relationship between constraints (e.g., “John lives in Rome”). Within ecosystems and 

IEs, pieces of information are connected in an associative model (for example, Quine’s “field of force 

whose boundary conditions are experience” [20], the World Wide Web, or Kahneman’s “associative 

memory” [4]) with the nature of the connections determined by ecosystem conventions. 

The effect of competition and selection pressures over time is to improve the ability of IEs and 

ecosystems to process information corresponding to different measures of information [5]. The 

quality of information may improve, in the sense that it is better able to support the achievement of 

favorable outcomes; it may be produced with lower friction [21] or it may be produced faster. Or 

there may be more general tradeoffs in which the balance between quality, friction and pace varies. 

Selection pressures ensure that information is generally reliable enough for the purposes of the 

ecosystem within the envelope in which the selection pressures apply. However, quality issues and 

the limitations discussed below mean that outside this envelope we should not expect ecosystem 

conventions to deliver reliable results [6–8]. This is particularly important in an era of rapid change, 

such as the current digital revolution, in which IEs cannot keep pace with the change—for example 

creating the “digital divide” for people [22,23] and less market success for businesses [11]. For 

people, ecosystems can be age-related—for example, “digital natives”, “digital immigrants” and 

“digital foreigners” [24] differ in their approach to the use of digital information. 

2.1. AI and Machine Learning 

AI is causing much debate at the moment. On the one hand it promises to revolutionize 

business [25] and on the other it may help to trigger the singularity [1,2,26]. The major recent 

developments in AI have been in machine learning—Domingos provides an overview in [27]. 
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In this paper, we are concerned with the relationship between AI and information (as described 

in the previous section). As [25] demonstrates, AI can impact many elements of information 

processing for organizations. Importantly, it can make a significant improvement to all levels of 

fitness but to turn this into benefits, an implementation for an organization needs to link a detailed 

understanding of the three levels of fitness, their relationship and how each AI opportunity can 

improve them. In turn, this requires an understanding of measures of information such as friction, 

pace, and quality [5,6]. These points are expanded below. 

2.2. Capability Requirements 

To help understand how IEs can provide the levels of fitness required to thrive we can draw a 

capability model using a technique from enterprise architecture [12]. This approach is an elaboration 

of the approach taken in [5–8]. A capability is the ability to do something and we can draw a 

capability model for information capabilities, as in Figure 2, using the three levels of fitness 

identified in the previous section. Please note that this is a generic capability model that applies to all 

IEs and the degree to which capabilities are present in any IE may vary hugely. There are many other 

such models (for example, Figure 5 in [15]) highlighting different viewpoints but Figure 2 focuses on 

the issues that relate to fitness. 
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Figure 2. Information capability model. 

An IE needs the capability to interact and, in turn, this needs the ability to sense and respond to 

the environment (for example, to understand speech and to talk). To manage the different levels of 

fitness it needs to be able to: 

 manage each interaction and to decide how to respond (if at all)—each type of interaction may 

require different specific capabilities; 

 prioritize the response to different interactions of the same or different types; 

 respond to environment change—this is a priority for businesses as the world becomes 

increasingly digital and the implementation of AI and machine learning takes hold [11]. 

In each case there is a five steps process that applies at the appropriate level, involving: 

 understand the situation—identifying what is relevant (distinguishing signal from noise), 

interpreting the relevant information in the environment by connecting it to information in 

memory, and distilling it to an appropriate level for analysis and decision-making; 

 link the situation to potential outcomes and understand their relative favorability; 

 decide how to respond; 

 implement the change—in information terms this means converting the decision into 

instructional information; 
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 learn and improve. 

Each capability describes what an IE could do but not how it does it or the degree to which it 

does it. Any particular IE will have a set of components conforming to a component pattern that 

provides the capabilities. The nature of component patterns is discussed in Section 3. 

3. The Limitations of Information and Applications of AI to Business 

Information and its processing is subject to many limitations—these are discussed at length in 

[5–8]. These limitations occur because it is difficult linking environment states with future outcomes 

and the required actions to achieve favorable outcomes under the influence of selection pressures. 

The impact is always that perfection is impossible and under different selection pressures there are 

tradeoffs with respect to the different components of fitness. 

This section provides an overview of these problems and how different ecosystem conventions 

and modelling tools can help to overcome them. In particular, it discusses the impact on the 

problems of AI and how the use of AI can, in some cases, help to resolve them. 

The first problem is combinatorial. The number of possible environment states, outcomes, and 

the relationships between them is huge and in each interaction, these must be boiled down by an IE 

to a single action (including the possibility of inaction). The basis for overcoming this problem is 

provided fundamental characteristics of information—symbols and the means of associating them in 

different ways. 

The second problem is how to make the tradeoffs between the information measures (like pace, 

friction, and quality [5,6]) required to support favorable outcomes. This problem breaks down into 

several sub-problems: 

 what properties to measure in the environment and to what quality? 

 how to overcome the complexities involved in interpretation, inference, and instruction—how 

to develop shortcuts in the provision of the required quality? 

 how to overcome contention at different levels—between different information measures, 

between the needs of the present and the needs of the future, between the needs of different 

interaction types, between different ecosystems (especially at ecosystem boundaries) and how 

to keep the IE aligned with fitness even as the requirements of the environment change? 

 how to challenge the level of quality achieved—how the ecosystem can apply selection 

pressures of its own to ensure quality? 

The final problem is architectural (in the sense of [12])—what component pattern is best and 

how should this change over time? 

The ways in which these problems are resolved in different ecosystems determine the 

ecosystem conventions and the detailed selection mechanisms that apply. 

3.1. The Combinatorial Problem 

Information overload has been much discussed [28] but this is but one symptom of a deeper 

problem: there is an unimaginably large number of measurable potential environment states, 

potential outcomes, and connections between them. 

An environment state or, indeed, any slice, even if measured with relatively poor quality, is not 

easy to manipulate and process—there are a (potentially large) number of properties and their 

values to consider. Therefore, there is a large processing saving (and reduction in friction and pace) 

if a simple identifier, associated with the slice, is used instead. If the identifier is connected, in some 

way, with the slice and it is clear what the identifier means (by reference to the slice properties, as 

needed), then processing will be simplified hugely. Therefore, it is unsurprising that identifiers are 

widespread in information storage and processing in the form of symbols or sets of symbols. The 

nature of the symbol is not relevant (and the fact that symbols can be arbitrary is a fundamental 

principle of semiotics [29]). What matters is that the symbol can be connected, as needed, to the slice 

it is connected to and that it can be discriminated from other symbols. (Please note that the 
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requirement that symbols can easily be discriminated foreshadows one of the benefits of the digital 

world—see the discussion in [30].) 

This helps to solve the processing problem but if we need a symbol for each possible slice then 

we have not escaped the combinatorial problem entirely. It would also be useful for a symbol to 

apply to a set of slices that have something in common—that meet some set of constraints. This is, 

for example, the way language works: verbs relate to sets of event slices with common properties; 

adjectives relate to sets of slices with some common properties and so forth. 

Set inclusion is binary: in or out. Therefore, by taking this route to solve the combinatorial 

problem, the use of symbols has built in a fundamental issue with information that underpins many 

of the limitations analyzed in [5–8]. The authors discuss this question in their analysis of patterns in 

[28] and say: “It is paradoxical that the similarity of the elements of a set creates a difference between 

the very elements of the set and all of the things not in the set”. If one or more pieces of content maps 

close to the boundary of a set (in the sense that a small change in property values moves it to the 

other side of a boundary) then an interpretation, inference or instruction that relies on that 

positioning requires the quality to be high enough to guarantee the positioning. Call this the 

discrimination problem. An extreme form of the discrimination problem arises from chaotic effects 

[31] in which arbitrarily small changes can give rise to large outcomes. As demonstrated in [5,6], 

much routine information processing ignores this question entirely. In machine learning terms, the 

discrimination problem translates into the levels of risk and tolerance associated with false positives 

and false negatives [32]. 

The use of symbols enables another trick: symbols can relate to other symbols not just to sets of 

slices (this is because symbols correspond to sets of slices conforming to constraints in a particular 

ecosystem [5]). Therefore, as described in [6,7], we need to be careful to distinguish between content 

slices—those interpreted as symbols in an ecosystem (by IEs in the ecosystem)—and event 

slices—those that do not. 

Of course, all the discussion about symbols is ecosystem-specific. A symbol in one ecosystem 

may not be one in another—words in one language may not be in another language, mathematics is 

meaningless to non-mathematicians. 

The combinatorial challenge is magnified when we consider multiple interaction types and 

environment change. Multiple interaction types may need more slice properties, more symbols and, 

perhaps, different ecosystems and ecosystem conventions. In addition, recognizing environment 

change requires the ability to store and process historical data that will allow the identification of 

trends (access to this historical “big data” has been one of the drivers of machine learning). 

This leads to another aspect of the combinatorial challenge: how should information and 

components be structured to enable fitness at the various levels (including adaptiveness). 

Remembering that information is about connecting states, outcomes and actions, there is a key 

structuring principle here (used commonly in the technology industry [9]). Decoupling two 

components enables one to be changed without changing the other (decoupling is discussed more in 

the discussion about component patterns below) and this requires them to be separable in some 

sense. We can replay the discussion above in the following way: 

 The use of symbols separates information from source slices and their properties; 

 Ecosystem conventions separate symbols from particular slice representations (so words can be 

written or spoken, for example); 

 Evolving ecosystem conventions separate processing (and the making of connections) from 

particular IEs (so computers can automate some human activities, for example); 

 Communication separates content from a physical location (so content can be duplicated at 

distance). 

In this way, the evolution of ecosystem conventions progressively frees up information from 

the particular process that generates it. This progression is neatly reflected in the development of 

organizational enterprise architectures [12] in which two major themes have emerged: 
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 Developments in data warehouses, business intelligence, data engineering, data lakes and data 

hubs enable the collation and manipulation of data from many different sources; 

 Digital technologies enable information to be available at widely different times and places and 

on many different devices. 

One strategy for addressing the combinatorial problem is increasing processing power and this 

is precisely what Moore’s law [33] has provided for machine learning (combined with access to 

access to large volumes of data—so-called ”big data”). This increase in power and access to data has 

been one of the drivers of the current boom in AI but is, as yet, a considerable distance away from 

resolving the combinatorial problem, even aside from the other difficulties outlined below. 

3.2. Selection Tradeoffs, Viewpoints and Rules 

The impact of the combinatorial problem is that information processing uses a strict subset of 

the properties of environment states available, makes quality tradeoffs and may be linked to a strict 

subset of possible outcomes. In other words, all information processing has a viewpoint (using the 

terminology employed in [7,8]). This is routine in day-to-day life—for example: 

 with the same evidence, different political parties reach very different conclusions about the 

right course of action in any case; 

 in legal cases, the prosecution and defense represent different viewpoints; 

 even in science, there are divisive debates about the merit of particular hypotheses (this is 

represented, for example, in Kuhn’s philosophy of science [34]). 

Since these viewpoints are inevitable, we need to understand their impact. This is the focus of 

the following sections. 

3.2.1. Measurement 

Measurement is about converting environment states into properties and values or more 

abstract content (subject, of course, to the prevailing ecosystem conventions). How does this relate to 

fitness measures? 

One dimension is the number of properties measured, how they are measured and the quality 

of the measurement. In addition, once properties are measured, how often do they need to be 

re-measured—to what extent is timeliness an issue [5]? 

When multiple types of interaction are considered, an extra dimension comes into play—to 

what extent can measurement required for one interaction type be used for another—if the different 

interactions use different ecosystem conventions, can the properties be measured and processed in 

the same way and what are the implications if they are not? This a common problem in 

organizations—the quality of information needed to complete a process successfully may be far less 

than that required for accurate reporting. 

Finally, when the environment is changing, there may be a requirement for new properties to 

be measured or for changed ecosystem conventions to be considered. 

Machine learning can be one of the drivers behind improved measurement for organizations 

because the recognition of patterns and its automation [27] are fundamental principles in the 

discipline [32]. Machine learning can improve pace, reduce friction and, in some cases, improve 

quality also through the automation of learning based on good quality data (although there have 

been some significant difficulties [17,18]). 

3.2.2. Information Processing Limitations and Rules 

As discussed in [5–8], different strategies are possible for information processing depending on 

the degree to which each of quality, pace or friction is prioritized in terms of narrow fitness. A 

rigorous process focusing on quality requires an approach such as that of science but many 

ecosystems cannot afford this overhead. Instead they rely on rules that exploit the regularities in the 

environment, as discussed by the authors in [19], who say: 
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“What makes relevant inferences possible […] is the existence in the world of dependable regularities. 

Some, like the laws of physics, are quite general. Others, like the bell-food regularity in Pavlov’s lab, are quite 

transient and local. […] No regularities, no inference. No inference, no action.” 

There can be difficulties associated with exploiting these regularities both for people and 

machines. As Kahneman points out [4] with respect to our innate, subconscious responses (what he 

calls System 1): “System 1 is radically insensitive to both the quality and quantity of information that 

gives rise to impressions and intuitions.” As Duffy says in [35] “and the more common a problem is, 

the more likely we are to accept it as the norm”. 

Machine learning [27] finds and exploits some of these regularities but has been subject to some 

well-publicized issues associated with bias [17,18] (although the biases revealed have, in some cases, 

been less than people display [18]). 

The nature of the regularities is discussed in [8] in which inference is categorized in terms of: 

 Content inference—using only the rules associated with a particular modelling tool (for 

example, formal logic or mathematics); 

 Causation—in which inference is based on one or more causation processes; 

 Similarity—in which inference is based on the similarity between sets of slices and the 

assumption that the similarity will extend. 

Machine learning is based on similarity, so this categorization poses a question. For what types 

of information processing is machine learning the most appropriate technique and when are other 

techniques appropriate? In particular, when is simulation (concerned with modelling causation) 

more appropriate? This question is discussed in Section 4. 

Content processing has clear benefits in terms of friction and pace—making the connection with 

events incurs much higher friction (this is the relationship between theoretical physics and 

experimental physics, for example, and consider the cost of the Large Hadron Collider). 

Wittgenstein also referred to this idea and the relationship between content and events [36,37] with 

respect to mathematics: 

“[I]t is essential to mathematics that its signs are also employed in mufti”; 

“[I]t is the use outside mathematics, and so the meaning [‘Bedeutung’] of the signs, that makes 

the sign-game into mathematics”. 

An equally insidious shortcut is output collapse (to use the term used in [8]). There are 

uncertainties about interpretation, inference and instruction caused by information quality 

limitations. However, an interaction results in a single action by an IE (where this includes the 

possibility of no action at all) and examining a range of potential outcomes and actions increases 

friction. Therefore, in many cases, interpretation and inference are designed to produce a single 

answer and the potentially complex distribution of possibilities collapses to a single output. If this 

collapse occurs at the end of the processing, then it may not prejudice quality. However, if it occurs 

at several stages during the processing then it is likely to. 

There is another type of shortcut. This is quality by proxy in which quality is assessed according 

to the source of the information (linked to authority, brand, reputation, conformance to a data model 

or other characteristics). In [38], the authors express this idea elegantly with respect to documents: 

“For information has trouble, as we all do, testifying on its own behalf... Piling up information 

from the same source does not increase reliability. In general, people look beyond information to 

triangulate reliability.” 

As a result, of selection tradeoffs, these various types of shortcut become embodied in 

processing rules that are intended to simplify processing with sufficient levels of quality. The rules 

are defined with a degree of rigor consistent with ecosystem conventions (for example, rigorous for 

computer systems but less so for social interaction). 

Organizations use rules such as this (called business rules) routinely. Business processes 

embody these business rules in two senses. At a large scale, a process defines the rules by which a 

business intends to carry out an activity (for example, how to manage an insurance claim). In 

addition, in a more detailed sense, business rules capture how to accomplish particular steps (for 

example, the questions to ask about the nature of the claim). Machine learning can improve both of 
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these aspects. In the first case, the context of the process (for example, information about the claim) 

may change the appropriate next step (for example, the appropriate level of risk assessment to 

apply). Therefore, rather than a fixed set of steps as captured in a process map, the process may 

become a mixture of fixed steps and something akin to a state machine [39] or, in some cases, just a 

state machine. This change relies on a continuous situation awareness (as described in Figure 2) that 

can use machine learning as a measurement tool. In addition, machine learning can also refine the 

business rules over time based on the developing relationship between the rules and fitness 

objectives (for example, the tradeoff between quality and friction or pace). It may be appropriate to 

change the rules (changing the questions to ask in this example) when more information is learnt 

about the effectiveness of the rules or it becomes possible to tune the rules more specifically to 

individual examples. 

3.2.3. Contention 

Selection tradeoffs are about managing contention and ecosystem conventions embed the 

tradeoffs. For a single interaction there is contention between pace, friction, and quality. This type of 

contention is discussed in detail in [5–8]. 

Multiple interactions and types of interaction introduce extra dimensions. The first is between 

the present and the future: how much should an IE optimize the chances of a favorable outcome for a 

single interaction against the possibilities of favorable interactions in the future? The second is 

between different interaction types: how much should an IE focus on one type of interaction 

compared to others? Or, to put it another way, how much should the IE specialize? Many authors in 

different disciplines have discussed specialization as a natural outcome of selection pressures—for 

example: 

 Philosophers from Plato [40] onwards discussing the division of labor; 

 Biologists including Darwin [10], since species themselves are examples of specialization; 

 Business writers discussing differentiation, including Porter [41]. 

More generally, there might be what we can call conflict of interest between narrow fitness and 

broad fitness especially when the nature of quality associated with narrow fitness does not match 

that associated with broad fitness. In [42], the author gives examples of the impact of conflict of 

interest on science. There have been several well-publicized examples concerning machine learning 

[18]. In these cases, narrow fitness is defined in terms of the data used to generate the learnt behavior 

but the data itself may embed human biases. As a result, narrow fitness (linked to training data) does 

not take ethical and social issues into account and broad fitness is reduced. 

The next point of contention arises from ecosystem boundaries. The conventions that apply on 

one side of the boundary may be very different from the other (we only need to consider speakers of 

different languages or the user experience associated with poorly defined web sites) and there may 

be contention at fundamental levels. One initial driver of AI (the Turing Test [43]) was aimed at 

testing the human/computer ecosystem boundary. This is still of considerable importance but a 

related question in organizations is understanding how AI and people can work together [44] and 

how AI can support other ecosystem boundaries. 

Finally, there may be contention in the balance of the selection pressures as the environment 

changes. For example, in the digital revolution engulfing the world of business [11] the balance 

between friction, pace and quality is changing—the ability to respond fast (i.e., pace) is becoming 

more important. Machine learning plays a part here since it is a mechanism for constantly 

re-learning from the environment. 

3.2.4. Challenge and Assurance 

For an IE, information processing is reliable if it helps to achieve a favorable-enough 

outcome—if the IE can rely on the processing within the envelope provided the ecosystem selection 

pressures (as discussed in [6–8], outside this envelope is it not guaranteed to be reliable enough). 

Therefore, how can ecosystems apply their own selection pressures to improve the reliability of 
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information processing? An element that many ecosystems have in common is that of challenge. 

Table 1 (copied from [8]) shows some examples. 

Table 1. Challenge. 

Ecosystem Hypothesis Challenge 

English criminal law 

(prosecution) 
The defendant is guilty 

The defense (plus, potentially, the 

appeals process) 

Science 
A prediction made by a 

hypothesis is true 

Experiments to refute or confirm 

the prediction  

Mathematics A theorem is proved Peer review 

Computer systems 
The system will perform as 

required 

Tests that the system meets its 

requirements 

The objective of each challenge is to identify weaknesses in information processing either in 

terms of its output (e.g., refutation in scientific experiments), the input assertions on which it is 

based (e.g., the evidence in a trial) or the steps of the inference (e.g., peer review in mathematics). 

The generic mechanism is similar in each case. A related ecosystem has selection pressures in 

which favorable outcomes correspond to successful challenges. The degree to which the challenge is 

rigorous depends on the selection pressures that apply to it and, in some cases, the degree to which a 

different IE from the one making the inference conducts it (to avoid the conflicts of interest discussed 

in [42], for example). 

Therefore, given that challenge is a type of selection pressure, how does the nature of challenge 

relate to fitness criteria? There are some obvious questions. First, is the inference transparent enough 

to be amenable to challenge? This is one of the questions that has been raised about deep learning 

although recent research has started to address this question [45]. 

Secondly, what is the degree of challenge—how thorough is it? This is an important issue 

addressed by organizations as they implement machine learning—how does the assurance of 

machine learning relate to conventional testing and are additional organizational functions required. 

This is discussed below. 

Thirdly, what is the scope of the challenge is relation to fitness—is it concerned with narrow 

fitness or does it incorporate broad fitness and adaptiveness as well? This is one of the 

considerations described in detail with respect to technology in [9]; but the issue as applied to 

machine learning is more extensive because machine learning learns from historic data that may not 

encapsulate the desired requirements of broad fitness and is unlikely to include the requirements of 

adaptiveness. 

Challenge and assurance is important for machine learning since there are many public 

examples in which machine learning has delivered unacceptable results [17,18]. An element of broad 

fitness that has been the subject of much attention is ethics [46], because of these issues and also the 

long-term direction of AI and the potential singularity [1,2,26]. 

The purpose of the challenge is to identify what the software industry calls test cases [39]—a set 

of inputs and outputs designed to cover the range of possibilities thoroughly enough to provide 

confidence of reliability (in the context of the ecosystem conventions). In clearly defined domains 

such as Go and chess, the test cases themselves can be generated by machine learning but where 

there is a level of organizational risk involved (e.g., reputational, ethical, operational or 

security-related) then more traditional forms of assurance may be required focusing on the training 

data, the selection of a range of scenarios to test and an organizational assurance function to analyze 

examples of the discrimination problem and potential impacts. Since machine learning can re-learn 

periodically, these forms of assurance may need to be applied, in some form, regularly. 

Therefore, we can conclude that, as AI becomes more prevalent and the issues discussed above 

become more important, organizations will need to understand and manage the potential impacts 

and risks. This will require an organizational assurance function that will ensure that the right 
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degree of challenge is applied and analyze and, where necessary, forecast the impact of AI on 

business results. 

3.3. Component Pattern 

Components are the physical realization of capabilities (see Figure 2) and components can be 

arranged in different patterns. Table 2 shows some examples of components. The relationship 

between capabilities and components for business and technology architectures is part of the 

day-to-day practice for enterprise architects [12]. The development of component patterns to meet 

future fitness requirements is a key part of developing future architectures to support organizational 

fitness requirements [9]. We can use these ideas to analyze component patterns for IEs. 

Table 2. Examples of components. 

IE Interaction Component 
Interpretation, Inference, and Instruction 

Component 

People Senses (eyes,…) Different brain mechanisms (see [19]) 

Organization

s 

Sales people, customer research, 

web sites, … 

Different organizational functions and their 

supporting computer systems (for example, 

qualifying sales opportunities, deciding the 

chances of winning and deciding how to price 

the product or service) 

Computer 

system 

architectures 

Virtual assistants (e.g., Alexa, Siri), 

apps, enterprise applications, 

security intrusion detection, …  

Algorithms, machine learning tools 

Components evolve incrementally and become integrated to meet the need to connect 

environment states to outcomes and actions. The nature of the integration and the pre-dominance of 

certain components can imply different patterns. These patterns have a set of characteristics based 

on the capabilities shown in Figure 2: 

 Channel-aligned: in this case, interaction components extend to encompass wider information 

processing. For example, Pinker [47] gives many examples in which the processing of the 

human brain is influenced (and constrained) by language and, indeed, some believe that 

language processing underpins all of human thought (for example in [48] the author says “I 

believe that language is also the medium by which we formulate our conceptual thinking. I 

regard thinking as silent language.”). 

 Function-aligned: in this case, components (like interaction components) are built out from 

particular functions. For example, many organizational capabilities (such as finance and HR) 

are supported by software products that have developed from a functional base and also 

provide interaction (e.g., through web sites) and analytics. 

 Multi-function: in this case, different components providing different functions are integrated 

together. For example, in [19], the authors make the case that many specialized inference 

mechanisms have evolved in people; they say: “inference, and cognition more generally, are 

achieved by a coalition of relatively autonomous modules that have evolved […] to solve 

problems and exploit opportunities”. Another example is an extension of the previous case in 

which organizations have specific components to support finance, HR, manufacturing, retailing 

and other organizational functions. 

 Information-aligned: in this case, components are based on the capability model in Figure 3. For 

example, many organizations have built data warehouses to support business intelligence as 

well as data lakes and analytics capabilities [49]. 
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These different types of pattern have different strengths and weaknesses based on the core 

components. IEs often have a combination of these patterns and the balance between them impacts 

elements of fitness. Component patterns embed the information structure and processing tradeoffs 

implicit in ecosystem conventions and these both enable and constrain different elements of fitness. 

For example, channel-aligned patterns are strong when interaction is a large element of fitness; 

information-aligned patterns are strong when information needs to be integrated separately outside 

the processes that generated the information. 

However, component patterns may need to change. For example, there is a clear trend [30] for 

organizations to respond to the digital economy by adding an information-aligned pattern that takes 

advantage of machine learning. Figure 3 shows a generic information-aligned component pattern. 

 

Figure 3. Information-aligned component pattern. 

A more extreme example of change is the trend towards the AI-assisted human and the need 

for humans and AI to work together [44]. 

Components need to be integrated in order to link environment states to outcomes and actions. 

Narrow fitness demands short and efficient processing embedding rules that deliver sufficient 

quality. Broad fitness requires additional processing complexity and may also require the 

integration of different ecosystems with different conventions. Both of these are drivers for tight 

integration between components. 

However, adaptiveness requires decoupling—the ability to change components independently 

[9]—because otherwise change incurs too much friction. This generates a tension between the 

different types of fitness; without a sufficiently strong adaptiveness selection pressure, the nature of 

the component integration can be brittle and resist change. 

For organizations, machine learning has a role to play here. If some or all of the business rules 

are based on machine learning, then periodic re-learning can update the rules (but see the 

discussion about re-learning below). For this to be the case, the organization will need a component 

pattern that is sufficiently information-aligned. As AI becomes embedded in more and more 

technology, the shift towards information-alignment, or the addition of information-alignment, will 

become more and more important. 

The same change (towards information-alignment) is also true of quality improvement. 

Better-informed people make better decisions and the same principle underpins the 

implementation of machine learning in business. Improvements in interpretation and inference 
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quality require richer access to information [5,8] that channel-alignment or function-alignment 

alone cannot provide. 

In [19], the authors demonstrate that human inference has many different inference patterns. In 

addition, the mind does a wonderful job of giving us the illusion that things are well integrated 

even when, underneath, they are not; this is what magic relies on [50]. Machine learning may be 

heading in the same direction—current developments in AI contain several different patterns. 

Domingo [27] categorizes these as symbolists, connectionists, evolutionaries, Bayesians, and 

analogizers. However, more generally, AI is becoming a set of techniques embedded in numerous 

applications using whatever technique(s) is appropriate in each case. In this case, the integration 

question takes on another dimension: how can the interpretations and inferences of multiple 

components including AI integrate into reliable interpretations and inferences for the organization 

as a whole. The different components may use different ecosystem conventions with different 

information structures and process tradeoffs. There may be gaps between their domains (as in the 

magic example above). Other problems identified above (output collapse and contention) may 

apply. There is also an uneasy relationship between AI component integration and the 

discrimination problem. If inference relating to a critical boundary condition relies on integration 

between machine learning components, then the reliability of the integration needs to be tested 

rigorously. 

The challenge becomes greater when we consider re-learning. One of the advantages of 

machine learning is that rules can be re-learnt as the environment changes. However, when many 

machine learning components are integrated to support a complex set of business functions, how 

should this re-learning work? Again, the principle of decoupling applies—we want the different 

interpretations and inferences to be independent. However, how do we know that this is the case? 

With more data or a change in the environment, new patterns may emerge in the data (that, after 

all, is the whole point of re-learning) and these new patterns may create new dependencies between 

the rules. This reinforces the need for assurance (as discussed above). 

Therefore, we can conclude that, as machine learning becomes more pervasive, integrating 

different approaches to machine learning, each supporting different viewpoints and ecosystem 

conventions, will provide challenges in the following four areas: 

 Providing high quality, coherent descriptive, predictive, and prescriptive information from 

disparate components each learning in different ways from different subsets of data at 

different times; 

 Tackling the discrimination problem especially where components need to be integrated; 

 Ensuring that content information processing does not suffer from the same limitations as for 

humans; 

 Ensuring that the underlying data is of the required quality for each component. 

These challenges provide a foretaste of the deeper issues with AGI discussed in the next 

section. 

4. The Limitations of Information and AGI 

AGI is one of the main factors driving AI research (see, for example, [26]) and, in the view of 

many authors (for example, [1,2]), AGI is a step on the road to the singularity. Therefore, it is 

important to understand the impact of the limitations of information and the theoretical and 

practical difficulties that they imply about AGI. 

In this section, we discuss the following challenges for AGI based on the analysis above: 

 How is fitness for AGI determined? 

 How will AGI handle the integration of components, the need to accommodate different 

ecosystem conventions and be sufficiently adaptive? 

 How will AGI process and relate abstractions and will it be able to avoid the difficulties that 

humans have with the relationship between abstractions and information quality? 
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One difference between narrow AI and AGI is that AGI needs to handle many interaction types 

and combinations of them, so how is it possible to define or characterize all of them? And how can 

we apply the right selection pressures—to use the terminology of IT, how can we define all of the 

test cases required? One approach of the AI community is to use AI techniques (like adversarial 

generative networks) to this further question. However, for difficult questions, and for broad fitness 

in general, at some stage people will need to be sure of the potential outcomes, so people will need to 

apply the right selection criteria even to those further AI techniques. It is difficult to see this as other 

than another manifestation of the combinatorial problem but magnified by the number of different 

interactions types and their combinations. Defining broad fitness for people and organizations 

includes the legislation of a country as well as cultural and moral imperatives, so how can we define 

it for AGI? (This topic has been recognized widely including by such multi-national bodies as the 

World Economic Forum who ask the question “How do we build an ethical framework for the 

Fourth Industrial Revolution” [51]). As well as these aspects, broad fitness for AGI will require 

rigorous security fitness. The combination of all of these is a dauntingly large task. 

This implies that it is very difficult to define even what AGI is in enough detail to be useful in 

practice. In addition, we need a specific definition because overcoming the discrimination problem 

requires appropriately high information quality—for AGI, the discrimination required may include 

many issues concerning human safety, as we have already seen with autonomous cars. 

One way round this is the AGI equivalent of “learning on the job”—allowing AGI to make 

mistakes and learn from them in the real world. Whether or not this is feasible depends on the fitness 

criteria that apply—it is difficult to see that this would be acceptable for activities with significant 

levels of risk. It has already caused reputational damage in the case of simple, narrow AI [17,18]. In 

[52], the authors address this issue when they ask the question: “why not give AGI human 

experience”? They then show how human experience is difficult to achieve. Given the discussion in 

Section 3 about viewpoints, if the experience of AGI is different from human experience then, 

necessarily, its viewpoint will be different and its behavior will be correspondingly different. 

How about integration? In humans, different types of interpretation and inference use different 

components [19]. Currently, the same is true of machine learning—increasingly, it is a computing 

technique that is applied as needed. Therefore, it seems likely that AGI will need to integrate many 

different learning components. Domingos [27] suggests one integration approach and there are other 

approaches (e.g., NARS [53,54]). There are several issues here: ecosystem conventions, content 

inference, selection tradeoffs and component patterns. 

Just as people may engage with different ecosystems (e.g., different languages, different 

organizational functions, computer systems, different fields of human endeavor (sciences, 

humanities)) AGI will need to be able to deal with different ecosystems and their relationships. 

Different ecosystems have different conventions and fitness criteria so AGI will need to manage 

these and convert between them. Again, the discrimination problem raises its head—different 

ecosystem conventions are not semantically interoperable. Combining processing using different 

ecosystem conventions risks what [7,8] refer to as “interpretation tangling” or “inference tangling” 

in which conventions that apply to one ecosystem (e.g., mathematics) are implicitly assumed to 

apply to another (e.g., language) resulting in unreliable results. A learning approach could only 

address these issues if the combinatorial problem described above does not apply (and in reality, it 

may not be possible even to identify or source all the possible combinations to learn). 

Deep learning uses layers of neural networks in which intermediate layers establish some 

intermediate property and subsequent layers use these abstractions; thus, these subsequent layers 

are then using content processing. Metalearning [27] provides another example of content 

processing. In these examples, because they apply to narrow AI, the limitations of content 

processing described in Section 3 have little impact. However, when we scale up to AGI with many 

components of different types developed for different ecosystems providing abstractions that are 

integrated by one or more higher levels of machine learning then the limitations of content 

processing may become a problem. 
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Content processing is used by ecosystems because the use of content rules is much faster and 

more efficient than event processing (testing against the properties and values of sets of slices)—this 

is an outcome of the combinatorial problem. Therefore, is it feasible that this requirement not be 

present for AGI? Only if the AGI could relate all information processing to events (not content) as it 

was needed. In the face of the discrimination problem this amounts to the ability to provide 

processing power to overcome much of the combinatorial problem. Even if Moore’s law [33] 

continues, this is a difficult proposition to accept for the foreseeable future and even if it was 

feasible, there is no guarantee that it would not be subject to selection tradeoffs. 

Therefore, we can conclude that content processing will likely be a part of AGI and therefore 

that the limitations of content processing will also apply and that, as a result, information quality 

will be compromised. However, without a definite AGI model to base the analysis on, the impact of 

this is unclear. 

What about adaptiveness? Adaptiveness is, partly at least, an attribute of the component 

pattern. However, the experience from the technology industry, most recently in developing digital 

enterprise architectures [55] is that developing new component patterns is a change of kind not of 

degree—component pattern changes are difficult to evolve by small degrees. Thus, we cannot expect 

linear progress. This is discussed in [52] in which the authors include the following quote from [56] 

“The learning of meta-level knowledge and skills cannot be properly handled by the existing 

machine learning techniques, which are designed for object-level tasks”. Perhaps AGI will need the 

ability to learn about component patterns themselves—when a new component pattern is needed 

the AGI will need to recognize it and evolve a new one; but even if this is feasible, where will the 

data come from? 

In principle, AGI could be adaptive, within the context of a single component pattern, because it 

can re-learn periodically. However, re-learning will be subject to selection pressures and the 

possibility of tradeoffs and different ecosystem conventions. Thus, in practice, different machine 

learning components may re-learn at different rates and times raising the possibility of inaccuracies 

and inconsistencies exacerbating the discrimination problem and quality in general. 

As Section 3 points out, the degree of decoupling within the component pattern is important for 

adaptiveness. The human brain masks the cognitive integration difficulties we all have [50] between 

different components. It is possible that this type of integration difficulty is a natural consequence of 

the tradeoffs between adaptiveness and other levels of fitness. Can we be sure that the same does not 

apply to AGI? 

The discussion about information processing in Section 3 (and [8]) highlights another potential 

difficulty with machine learning and AGI. One of the prevalent ideas in technology at the moment, 

driven partly by the Internet of Things and the ability to understand the status of entities, is that of 

the “digital twin”—a simulation of those entities. Similar ideas are driving technologies such as 

virtual reality and, of course, in many scientific and other fields, simulation has long been a critical 

tool. Bringing these ideas together will support the creation of models of the environment enabling a 

richer simulation of external activities, leading to the question: under what circumstances will 

simulation be preferable to AI and how can they work together? 

Machine learning exploits “the existence in the world of dependable regularities”. However, 

will these dependable regularities occur reliably enough in the information available to machine 

learning to provide sufficient quality to overcome the discrimination problem? Might not inference 

based on causation be required to address some difficult instances of the discrimination problem? 

This question is the AI equivalent of the “blank slate” issue discussed by Chomsky [57] and many 

others. Since complex simulation relies on complex theoretical models, inference based on causation 

it is not, in the foreseeable future, amenable to machine learning. 

5. Conclusions 

The analysis of fitness and the limitations of information above provide a sound theoretical 

basis for analyzing AI both for implementation in organizations now and with respect to AGI. This 
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analysis is validated by the current experience of AI and can also be used to define the following 

important implementation principles. 

 Fitness: AI can make a significant improvement to all levels of fitness but to turn this into 

benefits the implementation of AI for organizations should be based on a detailed 

understanding of the three levels of fitness, the relationship of the levels and how each AI 

opportunity can improve them. In turn, this requires an understanding of measures of 

information such as friction, pace, and quality. 

 Integration: Organizations will need to analyze the integration challenges of different AI 

approaches. As AI becomes more pervasive, integration will provide challenges in the 

following four areas: 

o Providing high quality, coherent descriptive, predictive, and prescriptive information from 

disparate components each learning from different subsets of data at different times using 

different techniques; 

o Tackling the discrimination problem especially where components need to be integrated; 

o Ensuring that content processing does not suffer from the same limitations that it has for 

humans; 

o Ensuring that the underlying data is of the required quality for each component. 

 Ecosystem boundaries: One initial driver of AI (the Turing Test) was aimed at the 

human/computer ecosystem boundary. This is still important but a related question in business 

is understanding how AI and people can work together and how AI can support other 

ecosystem boundaries. 

 Assurance: As AI becomes more prevalent and the issues discussed above become more 

important, organizations will need to understand and manage the potential impacts and risks. 

This requires an organizational assurance function that will analyze and, where necessary, 

forecast the impact of AI on business results. 

These topics increase in importance with respect to AGI because the theoretical difficulties will 

become more profound. The following questions highlight important theoretical difficulties for 

which AGI research will require good answers: 

 How is fitness for AGI determined? 

 How will AGI handle the integration of components, the need to accommodate different 

ecosystem conventions and be sufficiently adaptive? 

 How will AGI process and relate abstractions and will it be able to avoid the difficulties that 

humans have with the relationship between abstractions and information quality? 

When we analyze these questions, it is clear that there are difficult information theoretic 

problems to be overcome on the route to the successful implementation of AGI. 
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