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Abstract: To track multiple maneuvering targets in cluttered environments with uncertain
measurement noises and uncertain target dynamic models, an improved joint probabilistic data
association-fuzzy recursive least squares filter (IJPDA-FRLSF) is proposed. In the proposed filter,
two uncertain models of measurements and observed angles are first established. Next, these two
models are further employed to construct an additive fusion strategy, which is then utilized to
calculate generalized joint association probabilities of measurements belonging to different targets.
Moreover, the obtained probabilities are applied to replace the joint association probabilities calculated
by the standard joint probabilistic data association (JPDA) method. Considering the advantage of the
fuzzy recursive least squares filter (FRLSF) on tracking a single maneuvering target, which can relax
the restrictive assumption of measurement noise covariances and target dynamic models, FRLSF is
still used to update the state of each target track. Thus, the proposed filter can not only provide the
advantage of FRLSF but can also adjust the weights of measurements and observed angles in the
generalized joint association probabilities adaptively according to their uncertainty. The performance
of the proposed filter is evaluated in two experiments with simulation data and real data. It is found
to be better than the performance of other three filters in terms of the tracking accuracy and the
average run time.

Keywords: multiple maneuvering target tracking; joint probabilistic data association; fuzzy recursive
least square filter; information fusion

1. Introduction

The multiple maneuvering target tracking (MMTT) becomes a critical problem of multiple target
tracking in cluttered environments because of various uncertainties in the tracking process [1–4] such
as uncertain measurement noises and uncertain target dynamic models. In practical tracking situation,
the noise covariances of measurements are unknown, and they are uncertain. Similarly, the real target
dynamic models are unknown or only assumed, and they are also uncertain. The main procedure of
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MMTT consists of data association and state estimation. Data association denotes distinguishing the
real sources of measurements from targets or clutters, namely that the real source may be the real target,
the false target or the clutter generated by the observed environment. It mainly concerns the problems
related to clutter, noises and errors in the tracking process [5]. Currently, the existing data association
methods include the standard nearest neighbor (NN) method [6], the probabilistic data association
(PDA) method [7,8] and the joint probabilistic data association (JPDA) method [8–10]. In particular,
the JPDA method is a well-known and effective data association method for multiple target tracking.
It employs an association gate to prune away impossible hypotheses and then calculates the probability
of a possible hypothesis on each target. However, it only uses the current measurements belonging
to the target and does not utilize the historical measurements and the related motion information to
calculate the association probabilities. Hence, it is still a suboptimal Bayesian algorithm [10].

Following data association, state estimation is used to estimate the target states according to
the associated measurements. Under the hypothesis that both measurement noise covariances and
target dynamic models are known, the traditional maneuvering target tracking methods can achieve
perfect tracking performance [11]. Unfortunately, this hypothesis is difficult to satisfy in practical
applications because of various uncertainties in the tracking process [2,3]. To solve the uncertain target
dynamic model problem in target tracking, one strategy is to describe the unknown dynamic model of
a target trajectory as several typical dynamic models with known parameters or their combination. The
interacting multiple model (IMM) method is a representative algorithm to solve this problem, and its
modified versions are continually developed in many practical applications [12]. However, once the
IMM and its modified versions employ the assumed mismatched dynamic models, their tracking
performance becomes undesirable [13]. The other strategy is to assume the unknown parameters of
the target dynamic model as the random variables with a certain probability distribution function [14].
Unfortunately, because the actual target dynamic models and the tracking environments change over
time, it is difficult to obtain the prior information of the unknown parameters in practical applications.
In addition, the particle filter is also broadly applied in maneuvering target tracking [15]. For nonlinear
non-Gaussian motion models, an interacting multiple model particle filter (IMM-PF) was proposed
in [16,17]. However, since the computational complexity of the IMM-PF is increased in proportion to
the number of particles in target tracking, it is still difficult for IMM-PF to satisfy the requirements of a
real-time tracking system.

According to the above analysis, one must combine data association and state estimation for
MMTT. The interacting multiple model-joint probabilistic data association filter (IMM-JPDAF) is a
typical tracking method in MMTT and many of its modified versions have been proposed for different
application scenarios [18]. However, most the MMTT methods are based on the statistical framework
of the statistics theory under the assumption that the known measurement noise covariance and
target dynamic models are known. In fact, the related prior information of measurement noises
and target dynamic models are difficult to obtain in practical applications. This presents a great
difficulty in implementing MMTT. Moreover, each node in a sensor network must process a growing
number of data because of the large surveillance scale and a great number of sensors. In this big
data situation riddled with imprecision and uncertainty, the traditional MMTT methods have higher
computational complexity and processing requirements of the computation complexities while the
MMTT methods based on the statistical theory become increasingly complicated. Considering that
the fuzzy theory possesses the unique advantage in processing inaccurate and uncertain information,
it has been widely applied in target tracking [19–23]. The fuzzy recursive least squares filter method
(FRLSF) proposed in [22] utilizes measurement residuals and heading changes as two input variables
of the designed fuzzy system, and this system is further employed to adjust the fading factor and
realize single maneuvering target tracking. The improvement of FRLSF combined with the PDA
algorithm is utilized in cluttered environments [24], thus providing an effective method to solve the
MMTT problem.
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The incorporation of the motion features on a moving target into a MMTT method is a good
strategy to improve the accuracy of data association [22]. In particular, the observed angle is an
important motion feature on maneuvering targets and is often employed in maneuvering target
tracking [24,25]. Therefore, it can be introduced into the calculation of association probabilities
to improve the association accuracy. Based on these facts, we have presented at a conference
the generalized joint probabilistic data association-FRLSF (GJPDA-FRLSF) for communication [25].
This filter attempts to incorporate multiple motion features into the calculation of association
probabilities and is able to achieve better tracking accuracy. However, it is difficult to illustrate how
and why they can improve the performance of association results. By modifying GJPDA-FRLSF, we
further propose the improved JPDA-FRLSF (IJPDA-FRLSF) for MMTT. The GJPDA-FRLSF method only
employs the observed angles and measurements to calculate the association probabilities and adopts
simulation data to analyze the effectiveness of the weights of the observed angles and measurements
in the association results by the additive fusion strategy. For clarity, this paper extends and updates
the previous work [25]. In addition, a real-data experiment is added to illustrate the feasibility of the
proposed IJPDA-FRLSF. In IJPDA-FRLSF, two uncertain models of measurements and observed angles
are estimated. Next, an adaptive additive fusion strategy is developed to calculate the generalized
joint association probabilities for reconstructing the joint association probabilities of measurements
belonging to different targets in JPDA. Hence, IJPDA-FRLSF can adjust the weights of measurements
and observed angles in the association results according to their uncertainty. In addition, considering
the advantage of the FRLSF method mentioned above, it is employed to update the state of each
target trajectory.

The rest of this paper is organized as follows. In Section 2, two uncertain models of measurements
and observed angles are established, and an uncertain fusion strategy is constructed to calculate the
generalized joint association probability. Section 3 presents a simplified form of FRLSF. IJPDA-FRLSF
is proposed for MMTT in Section 4. Section 5 presents the experimental results and the performance
comparisons with the existing algorithms. Finally, the conclusions are provided in Section 6.

2. Uncertain Models and Fusion of Measurements and Observed Angles

In practical applications, the performance of a MMTT method greatly depends on the quality of
uncertain measurements from each sensor. Hence, one must measure the uncertainty of measurements
first. Considering that observed angles are extracted from uncertain measurements, they also possess
uncertainty to some extent, which is defined in the following subsection. As a result, one must
measure the uncertainties of measurements and observed angles and then combine them to calculate
the associated probabilities.

2.1. Uncertain Models of Measurements and Observed Angles

To provide a quantitative description of the uncertainties of measurements and observed angles
at all times in a cluttered environment, such as shown in Figure 1 (only the measurements and the
clutters in the given associated gate are shown here), we make the following definitions:

Definition 1. The uncertain measure ωk of measurements is defined by

ωk = H(pt
k)/σk (1)

Here, pt
k is the simple expression of p(zk,i|xt

k), zk,i and p(zk,i|xt
k) denote the ith measurement and its

statistical probability belonging to the state xt
k of the target t. σk and H(pt

k) denote the standard deviation
and the statistical entropy of measurements, respectively, calculated by

σk =
mk

∑
i=1

[(
zk,i − ẑt

k|k−1

)T(
zk,i − ẑt

k|k−1

)]1/2
/mkgz (2)
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H(pt
k) = −

mk

∑
i=1

p(zk,i|xt
k) ln p(zk,i|xt

k) (3)

where ẑt
k|k−1 and mk denotes the predicted measurement and the number of measurements, respectively

while gz is the given association gate. In Equation (1), σk describes the clustering feature of
measurements at time k, and H(pt

k) describes the distribution of statistical probabilities assigned
to the measurements. For easy calculation in the following section, one can normalize the uncertain
measure ωk by ω′k = ωk/ωmax, where ωmax is the maximum value for all observed times.

Definition 2. The uncertain measure ω̃k of the observed angles is defined by

ω̃k = H̃(ut
k)/σ̃k (4)

Here, ut
k is the simple expression of u(φk,i|xt

k), u(φk,i|xt
k) is the corresponding fuzzy membership degree

belonging to the state xt
k of the target t. σ̃k and H̃(ut

k) denote the standard deviation and the fuzzy entropy of
observed angles calculated by

σ̃k =
nk

∑
i=1

[
(φk,i − φ̂t

k|k−1

)
(φk,i − φ̂t

k|k−1)
]1/2

/nkgθ (5)

H̃(ut
k) = −

nk

∑
i=1

u(φk,i|xt
k) ln u(φk,i|xt

k) (6)

where φk,i denotes the ith observed angle, and φ̂t
k|k−1 denotes the course angle for the target t, as shown in

Figure 2, which can be calculated by Equations (7) and (8). In addition, nk is the number of observed
angles, and gφ is the given association gate.

φk,i = arctan
[
(yk,i − ŷt

k−1)/(xk,i − x̂t
k−1)

]
(7)

φ̂t
k|k−1 = arctan

[
(ŷt

k|k−1 − ŷt
k−1)/(x̂t

k|k−1 − x̂t
k−1)

]
(8)

where xk,i, x̂t
k|k−1 and x̂t

k−1 are the components of measurement zk,i, predicted state x̂t
k|k−1 and state estimate

x̂t
k−1 in the x-axis direction, respectively, and yk,i, ŷt

k|k−1 and ŷt
k−1 are their corresponding components in the

y-axis direction. From Equation (4), σ̃k describes the clustering feature of the observed angles, H̃(ut
k) describes

the distribution of the fuzzy membership degrees assigned to the observed angles. For easy calculation in the
following section, one can normalize uncertain measure ω̃k by ω̃′k = ω̃k/ω̃max, where ω̃max is the maximum
value for all observed times.
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2.2. Analyzing the Influence of Clutters on Measurements and Observed Angles

To analyze the influence of clutter on two uncertain models established in Section 2.1, we consider
an example of a target moving with constant velocity in cluttered environments with five different clutter
densities as shown in Figure 1. Figures 3 and 4 show the corresponding variation curves of the uncertain
measures of measurements and observed angles calculated by Equations (1) and (4), respectively.
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As shown in Figure 3, both the non-normalizing and normalizing uncertain measure values
increase with an increasing clutter density according to their corresponding variation curves, although
the increasing rate of the latter becomes relatively weaker because of normalization. Moreover,
the uncertain measure value can vary with the clutter density at different times. Similarly to the
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uncertain measure of measurements, the non-normalizing and the normalizing uncertain measure
values of observed angles both present the same change trend of the clutter density. Hence,
we can utilize the uncertain measures of measurements and observed angles to describe their
uncertainty accurately.

2.3. Uncertain Fusion of Measurements and Observed Angles

In multiple-sensor multiple-target tracking, information fusion is usually applied to improve
the tracking performance by fusing multisource information [1]. To improve the association
accuracy, one can incorporate multisource information to calculate the association probabilities of the
measurements belonging to different targets. Two fusion strategies including multiplicative fusion
and additive fusion are often utilized to integrate multisource information as follows [26]:

p(s1
k , · · · , sl

k|x
t
k) =

l
Π

i=1
p(si

k|x
t
k) (9)

p(s1
k , . . . , sl

k|x
t
k) =

l

∑
i=1

wk,i p(si
k|x

t
k) (10)

where wk,i is the weight of the information si
k, p(si

k|x
t
k) denotes the probability of the information si

k
belonging to the state xt

k of the target t, and l denotes the order of the type of information.
Normally, the multiplicative fusion requires different information to be conditionally independent;

however, most of the motion information in the tracking process is correlated in practical
applications [27]. Hence, one can utilize additive fusion to process measurements and observed
angles in a uniform frame for the calculation the probability ρt

k,i:

ρ(zk,i, φk,i|xt
k) =

[
wk,1 p(zk,i|xt

k) + wk,2u(φk,i|xt
k)
]
/cρ (11)

Here, wk,1 = (ω′k)
−1; wk,2 = (ω̃′k)

−1; ρt
k,i is also called as the generalized joint association

probability; cρ is a normalizing constant. According to Equation (11), one can adjust the weights of the
statistical probability and the fuzzy membership degree adaptively in the generalized joint association
probability according to their uncertainty.

3. Fuzzy Recursive Least Squares Filter (FRLSF)

Assuming that there is a single target t in the surveillance field, its dynamic model and
measurement model are defined as follows:

xt
k+1 = Φt

kxt
k + wt

k (12)

zk,t = Ht
kxt

k + vt
k (13)

where xt
k denotes an n-dimensional state vector of the target t, zk,t denotes an m-dimensional

measurement vector, Φt
k is an n× n state transition matrix, and Ht

k is an m× n measurement transition
matrix. The process noise wt

k is assumed to be a Gaussian noise with zero mean and covariance Qt
k,

and the measurement noise vt
k is assumed to be a Gaussian noise with zero mean and covariance Rt

k.

E
(

wt
k(w

t
j)

T
)
= Qt

kδkj (14)

E
(

vt
k(v

t
j)

T
)
= Rt

kδkj (15)

where δkj denotes the Kronecker delta function.
To track a single maneuvering target in situations with unknown measurement noise covariances,

the FRLSF method proposed in [24] employs a fuzzy reference to adjust the fading factor of the
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recursive least squares filter (RLSF). It achieves good tracking performance if no clutter is present in
surveillance. Next, the filter is further extended for cluttered environments, and its simplified form is
deduced in [24]. The main equations of the FRLSF are given as follows:

x̂t
k = x̂t

k−1 + Kt
kVt

k (16)

Pt
k = (λ̃t

k)
−1

Pt
k−1 − Kt

kSt
k(K

t
k)

T (17)

where Pt
k is an n× n filter covariance matrix; Vt

k , St
k, Kt

k and λ̃t
k ∈ (0, 1] are the n-dimensional predicted

innovation, the n× n innovation covariance matrix, the n× n gain matrix, and the fuzzy fading factor.
They can be respectively calculated using the following equations

Vt
k = ẑk,t − Ht

kΦt
kx̂t

k−1 (18)

St
k = (λ̃t

k)
−1

HkPt
k−1(Ht

k)
T
+ I (19)

Kt
k = Pt

k−1(Ht
k)

T
(St

k)
−1 (20)

λ̃t
k =

L
∑

l=1
λ

l
r sup

vk,t∈Ãl
i ,θk,t∈B̃l

j

min
(

uÃl
i
(vk,t), uB̃l

j
(ϑk,t)

)
L
∑

l=1
sup

vk,t∈Ãl
i ,θk,t∈B̃l

j

min
(

uÃl
i
(vk,t), uB̃l

j
(ϑk,t)

) (21)

where ẑk,t is the fused measurement on the target t as described in reference [24], I is an n× n unit
matrix and L is the number of the designed fuzzy rules. Ãl

i and B̃l
i denote the corresponding fuzzy sets

for the measurement residual vk,t and heading change ϑk,t, respectively. λ
l
r is the corresponding value

when the membership function of λ̃t
k obtains the maximum value at each fuzzy set defined on; uÃl

i
and

uB̃l
j

denote their corresponding membership degrees. ϑk,t, vk,t and ẑk,t are calculated from equations

ϑk,t = |φk,t − φ̂t
k|k−1|/ϑmax (22)

vk,t =
[
(Vt

k )
TVt

k

]1/2
/vmax (23)

ẑk,t =
mk

∑
i=0

βt
k,izk,i (24)

zk,0 = Ht
kΦt

kx̂t
k (25)

where ϑmax and vmax are the corresponding empirical maximum value of the measurement residuals
and the heading changes, respectively. zk,i is the ith measurement associated with the target t
(in particular, zk,0 is called the zero measurement, and it denotes that there exist no measurements
belonging to the target t). βk,i is the association probability of measurement zk,i belonging to the target
t calculated by the standard probabilistic data association algorithm [7].

The estimation of the initial states of each trajectory is an important prerequisite to keep the
stability of the tracking performance of the designed filter, and its solution strategy will be studied
in later in this paper. Here, we mainly focus on the performance of the designed filter after the two
initial sampling points. To better illustrate its tracking performance, we assume that the target move
with a constant velocity at the two initial sampling points. Hence, similarly to RLSF, the initial states of
FRLSF can be approximately estimated with measurements z1 and z2 by

x̂2 = P2

[
HT

1 , HT
2

][
zT

1 , zT
2

]T
(26)
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P2 =
(
[HT

1 , HT
2 ][H

T
1 , HT

2 ]
T)−1

(27)

which is also demonstrated in [22,24]. Here, H1 and H2 are m×m measurement transition matrices,
and P2 is an n× n filter covariance matrix.

From Equations (16) and (17), FRLSF employs the fuzzy fading factor λ̃k to adaptively adjust
the weight of the predicted innovation Vt

k in the state estimate x̂t
k of the target t through the designed

fuzzy inference rules
Rl : IF vk,t ∈ Ãl

i AND ϑk,t ∈ B̃l
j , THEN λ̃l

k ∈ C̃l
r

where I is an m×m unit matrix while C̃l
r and uC̃l

r
are assumed to be the fuzzy set and the membership

function for λ̃t
k, respectively. Here, uÃl

i
, uB̃l

j
and uC̃l

r
adopt a triangular function given by Equation (28),

as shown Figure 5.

u(x) = 1− |x− σl
r |

cl
r

(28)

where x denotes a fuzzy variance, and [cl
i − σl

i , cl
i + σl

i ] is the corresponding interval of the ith fuzzy
set X̃l

i .
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4. Improved Joint Probabilistic Data Association-Fuzzy Recursive Least Squares
Filter (IJPDA-FRLSF)

Based on the above analysis, we can employ generalized joint association probabilities to
reconstruct joint association probability in the standard JPDA algorithm based on Equation (11) in
Section 2, utilize FRLSF in Section 3 to estimate the target states, and finally propose the IJPDA-FRLSF
method for MMTT in cluttered environments with unknown measurement noise covariances and
unknown target dynamic models. The main procedures of the proposed filter are described as follows.

4.1. Calculating the Generalized Joint Association Probability

Let us assume that the validated measurement set at time k is Zk =
{

zk,i}
mk
i=1 where mk is a number

of these measurements, and Zk =
{

Zl}k
l=1 denotes the cumulative set of validated measurements up

to time k. According to Equation (11), the generalized joint association probability is composed of the
statistical probability and the fuzzy membership degree. Next, we further derive the expression of the
generalized joint association probability in the JPDA frame as follows.

The statistical probability pt
k,i and the fuzzy membership degree ut

k,i in Equation (11) correspond
to the joint association probability and the fuzzy association degree, respectively

p(zk,i|xt
k) = βt

k,i (29)

u(φk,i|xt
k) = e−(φk,i−φ̂t

k|k−1)
2/2φmax /cu (30)

Here, βt
k,i is the joint association probability of measurement zk,i belonging to the target t

determined by the difference between zk,i and x̂t
k|k−1 (its detailed derivation can be found in [8] and
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is only briefly summarized below). ut
k,i is the fuzzy association membership degree of the observed

angles φk,i associated with the target t; φ̂t
k|k−1 denotes the corresponding course angle, θmax is the

maximum value for all observed angles at each time; and cu is a normalizing constant. According to
the standard JPDA method, the joint association probability can be expressed as follows

βt
k,i = ∑

θk

p(ek|Zk)ω̂t
i (ek) (31)

βt
k,0= 1−

mk

∑
i=1

βt
k,i (32)

p(ek|Zk) =
1
c

Φ!
VΦ

mk

∏
i=1

Nti (zk,i)
τi

N

∏
i=1

(Pt
D)

δt(1− Pt
D)

1−δt (33)

where ω̂t
i (ek) indicates a binary variable indicating whether the joint event ek contains the association

of the track t with the measurement i, βt
k,0 is the probability that there exist no validated measurements

belonging to the target, Nti (zk,i) is the probability density of the predicted measurements belonging
to the target ti, τi is the number of targets associated with the measurement i, δt is a target indicator
indicating whether there is a measurement belonging to a the target t (δt = 1) or not (δt= 0), Φ is the
number of clutters, Pt

D is the detection probability for the target t, V is the volume of the extension
gates of the target, and c is the normalizing constant.

Based on the presented definitions, the generalized joint association probability ρt
k,i in

Equation (11) can be modified as follows

ρ(zk,i, θk,i|xt
k) = (wk,1βt

k,i + wk,2ut
k,i)/cρ (34)

As for Equation (34), the generalized joint association probability can utilize the uncertainties of
measurements and observed angles to adjust their weights in the association results.

4.2. The propsed IJPDA-FRLSF

Based on Sections 3 and 4.1, the main equations of the proposed filter can be described as follows:

Step 1. Initialize state x̂t
2 and filter covariance Pt

2 of target t for t = 1, 2, · · · , nk using Equations (26)
and (27), and start the recursive formulas at time k = 3.
Step 2. Compute predicted innovation Vt

k,i on measurement zk,i using Equation (18).

Step 3. Compute innovation covariance St
k using Equation (19).

Step 4. Compute gain matrix Kt
k using Equation (20).

Step 5. Reconstruct the generalized joint association probability ρt
k,i using Equation (34).

Step 6. Compute the fuzzy fading factor λ̃t
k using Equation (21).

Step 7. Update the target state x̂t
k and filter covariance Pt

k by FRLSF using Equations (35) and (36)

x̂t
k = x̂t

k−1 + Kt
kVt

k (35)

Pt
k = (λ̃t

k)
−1

Pk−1 − (1− ρt
k,0)K

t
kSt

k(K
t
k)

T
+

mk

∑
i=0

ρt
k,i

[
x̂t

k,i(x̂
t
k,i)

T − x̂t
k(x̂

t
k)

T
]

(36)

where x̂t
k,i is the local state estimate by FRLSF.

Step 8. Repeat the steps 2–7 for the next iterations.

5. Experimental Results and Analysis

Two experiments using simulation data and real data have been conducted to evaluate
the performance of the proposed IJPDA-FRLSF in comparison with the intuitionistic fuzzy-joint
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probabilistic data association filter (IF-JPDAF) [21], the interacting multiple model-joint probabilistic
data association filter (IMM-JPDAF) [28] and the improved joint probabilistic data association-recursive
least squares filter (IJPDA-RLSF) in terms of the tracking accuracy and average run time.
The experiments were conducted on a computer with a computer with a dual-core CPU of Intel
Core(TM) 2.93 GHz, 8-GB RAM. The programs for the four methods were implemented in MATLAB
version 2014a and executed for 50 Monte Carlo runs. Here, the 50 Monte Carlo runs denote that
the data set of the true trajectories is fixed and the set of measurements is generated 50 times in the
following two experiments. Furthermore, the estimated error for each target denotes the average
root-mean-square (RMS) position error for 50 Monte Carlo runs.

5.1. An Example of a Simulation Data Set: Two Crossing Targets

In the simulation scenario, there are two crossing targets moving in the air surveillance of
a 2-D Cartesian xy-plane according to the given trajectories, as shown in Figure 6. Their initial
states are given as x̂1

0= (0 m, 180 m/s, 2000 m, − 45 m/s)T and x̂2
0= (0 m, 180 m/s, 100 m, 45 m/s)T.

The motion processes of the two targets are further divided into five periods, as shown in Table 1.
Here, the turn model of a moving target is approximately described by

xt
k =


1 sin vt

kT
vt

k
0 − 1−cos vt

kT
vk

0 cos vt
kT 0 − sin vt

kT

0 1−cos vt
kT

vk
1 sin vt

kT
vk

0 sin vt
kT 0 cos vt

kT

xt
k−1 + Gt

kwt
1,k (37)

Gt
k =

[
T2/2 T 0 0
0 0 T2/2 T

]T

(38)

zt
k =

[
1 0 0 0
0 0 1 0

]
xt

k + wt
2,k (39)

where xt
k = (xt

k,
.
xt

k, yt
k,

.
yt

k)
T

is the state vector of target t; xt
k and yt

k are the x and y coordinates of the

target t, respectively, and
.
xt

k and
.
yt

k are the corresponding velocities in the x and y coordinates.
vk = ±0.0524rad/s is the turn rate and T = 1 s is the sampling interval. In the CA period,
the acceleration velocity is ax = 5 m/s2. The detection probability of a true measurement PD is set to
1, and the gate probability PG is set to 0.99. For all the target dynamic models, the process noise wt

1,k
is assumed to be a Gaussian noise with zero mean and covariance Qt

k = diag([202m2s−4 202m2s−4]),
that is, wt

1,k ∼ N(0, Qt
k
)
. The measurement noise wt

2,k is also assumed to be a Gaussian noise with
zero mean and covariance Rt

k = diag([502m2 502m2]), that is, wt
2,k ∼ N(0, Rt

k
)
. In addition, the clutter

model is assumed to have a uniform distribution while the number of false measurements (or clutters)
is assumed to follow the Poisson distribution with the known parameter λ = 1 (the number of false
measurements per unit of volume (km2)).

Table 1. Dynamic models of two crossing targets.

Target I Target II

Periods Time Periods Time

constant velocity (CV) 14 s constant velocity (CV) 14 s
constant turn (CT) 1 s constant turn (CT) 1 s

constant acceleration (CA) 14 s constant acceleration (CA) 14 s
constant turn (CT) 1 s constant turn (CT) 1 s

constant velocity (CV) 5 s constant velocity (CV) 6 s
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Figure 6 shows the true crossing trajectories and their measurements, which correspond to the
measurements of one of the 50 Monte Carlo cases. Considering that the performance of IMM-JPDAF
is constrained by the target dynamic models assumed, it is further divided into three types to
facilitate the comparison as follows: (i) two dynamic models (constant velocity (CV) and constant
acceleration (CA)) with the mismatched measurement covariance Rt

k = diag([202m2s−4 202m2s−4]);
(ii) three dynamic models (CV, CA and constant turn (CT)) with a matched measurement noise
covariance; (iii) three dynamic models (CV, CA and CT) with the mismatched measurement noise
covariance Rt

k = diag([302m2s−4 302m2s−4]). These three versions of IMM-JPDAFs are denoted as
IMM-JPDAF(II), IMM-JPDAF(IIIA) and IMM-JPDAF(IIIB), respectively. Figure 7 shows the tracking
results of the four evaluated filters. Figures 8 and 9 show the estimates of the fading factor λ̃ for Targets
I and II. and Figures 10 and 11 provide the average RMS position errors of all filters.

Figures 8 and 9 belong to one of the Monte Carlo cases of the estimates of the fading factors. As for
Figures 8 and 9, the fading factor can reflect the changes of the maneuvering characteristics for the two
targets correctly. The stronger the target maneuver, the smaller the fading factor. This is consistent
with the target maneuvering motion. Hence, employing the fading factor to adjust the proposed filter
is an effective strategy.

With respect to Figure 7, all estimated filters achieve the correct association results despite the two
targets crossing, but they achieve different performance in tracking accuracy. Obviously, IF-JPDAF
and IJPDA-RLSF perform well in the CV periods but perform poorly in the CA periods because they
utilize the Kalman filter (KF) or RLSF, and these generally perform well for the CV model and are
unsuitable for maneuvering motion. Because the tracking performances of these two filters are poor for
maneuvering motion, we don’t further analyze their performance below. Similarly, the three versions
of IMM-JPDAFs can also obtain a good tracking performance in the CV period.

As for Figures 10 and 11, IMM-JPDAF(IIIA) is found to perform better on the whole than the
other three estimated filters based on the whole motion process because it employs the matched
measurement noise covariance and dynamic models. In addition, the performance of IJPDA-FRLSF
is close to that of the IMM-JPDAF. Hence, when the measurement noise covariance and the target
dynamic model are unknown or mismatched, the tracing performances of both IMM-JPDAF(II) and
IMM-JPDAF(IIIB) are unsatisfactory in maneuvering situations. In this situation, the performance
of IJPDA-FRLSF is better than the one of IMM-JPDA(II) and IMM-JPDAF(IIIB). One major reason
for this case is that IJPDA-FRLSF utilizes FRLSF, which doesn’t require a known measurement noise
covariance and dynamic models.

For a better illustration of the performances of the four evaluated filters, Tables 2 and 3 provide
the average RMS position errors of five motion periods and the whole motion process (without the
initial two samples) on targets I and II, respectively. Here, the five motion periods for target I in turn
are: CV period (3–15 s), CT period (16 s), CA period (17–30 s), CT period (31 s), and CV period (32–36 s).
Furthermore, the average RMS position errors of the five motion periods are beneficial for analyzing
the performance of each filter for different dynamic models.

Table 2. The average root-mean-square (RMS) position error for Target I (unit: m). Improved joint
probabilistic data association-fuzzy recursive least squares filter (IJPDA-FRLSF), interacting multiple
model-joint probabilistic data association filter (IMM-JPDAF).

Filter CV CT CA CT CV

IJPDA-FRLSF 21.5 22.0 22.1 22.5 22.0
IMM-JPDAF(II) 14.8 13.3 32.0 37.3 37.0

IMM-JPDAF(IIIA) 17.5 16.9 26.2 35.3 25.0
IMM-JPDAF(IIIB) 22.7 23.5 35.3 47.2 38.5
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Table 3. The average root-mean-square (RMS) position error for Target II (unit: m).

Filter CV CT CA CT CV

IJPDA-FRLSF 22.1 21.9 22.1 22.6 21.8
IMM-JPDAF(II) 15.0 15.0 30.9 36.8 37.2

IMM-JPDAF(IIIA) 16.5 15.9 24.6 32.4 24.8
IMM-JPDAF(IIIB) 23.7 23.4 36.0 46.5 38.1

According to the total average RMS position error in Tables 2 and 3, IMM-JPDAF(IIIA) performs
better than IJPDA-RLSF, IMM-JPDAF(II) and IMM-JPDAF(IIIB) in the tracking accuracy. This finding
is similar to the results obtained from Figures 10 and 11. Although the IMM-JPDAF(IIIA) approach
can obtain the highest accuracy when its assumed measurement noise covariance and target dynamic
models are matched with the corresponding real values, this assumption is difficultly satisfactory
in practice. In the situation with a mismatched measurement noise covariance and target dynamic
models, the performance of the proposed filter is a close approximate of IMM-JPDAF(IIIA). Hence,
the tracking accuracy of each filter as shown in Tables 2 and 3 is consistent with the presented analysis
using Figures 8 and 9.

We further analyze the performance of each evaluated filter for different dynamic models.
According to Tables 2 and 3, IMM-JPDAF(II) performs better than IMM-JPADF(IIIA) and
IMM-JPDAF(IIIB) in the first CV period because it employs less, but better-matched dynamic models.
IMM-JPDAF(IIB) obtains the worst results because it utilizes mismatched dynamic models and a
measurement noise covariance. This fact shows that employing the matched dynamic models and a
measurement noise covariance directly affects the performance of the three versions of IMM-JPDAFs
directly. In the second CV period, the order of the performance of IMM-JPDAs only has a little change
because their performance is also influenced by the initial state estimates in this period, which are
assumed to be equal as the first CV period. Hence, their performance in the second CV period is similar
to the performance in the first CV period. Compared with IMM-JPDAF(II) and IMM-JPDAF(IIIA),
IJPDA-FRLSF is suboptimal in the CV period. However, it doesn’t need to satisfy the strict assumption
of the measurement noise covariance and dynamic models. Additionally, it is also hard to keep the
assumption consistent with the real measurement noise covariance and dynamic models in practice.

Based on the average values calculated by the average RMS position errors of each filter in the
four CT periods from Tables 2 and 3, IJPDA-FRLSF performs best in all filters while IMM-JPDAF(IIIB)
performs worst. Moreover, IMM-JPDAF(IIIA) is marginally better from IMM-JPDAF(II) because
IMM-JPDAF(IIIA) employs the matched dynamic models as shown in the presented analysis. Thus,
the order of the tracking performance from good to poor is: IJPDA-FRLSF, IMM-JPDAF(IIIA),
IMM-JPDA F(II), and IMM-JPDAF(IIIB). Such order of the tracking performance of four evaluated
filters is still valid in the CA period. As a result, IJPDA-FRLSF performs better in tracking accuracy
than the other three versions of IMM-JPDAFs in the maneuvering periods (CT and CA).

With respect to the analysis presented above, Table 4 summarizes the complete performance
evaluation of four evaluated filters. Using Table 4, it is easy to illustrate the tracking performance of
each filter for different dynamic models. It also shows the total performance evaluation for each filter.
In addition, the average run time of IJPDA-FRLSF, IJPDA-RLSF, IMM-JPDAF(II), IMM-JPDA(IIIA),
IMM-JPDA(IIIB) and IF-JPDAF is 0.0083 s, 0.0130 s, 0.0214 s, 0.0248 s, 0.0235 s, and 0.1082 s, respectively.
The average run time of IJPDA-FRLSF is less than that of the other three types of the IMM-JPDAF.
Because IMM-JPDAF must execute the filtering procedure for all sub-models, its average run time
becomes longer with the increasing number of sub-models. Then, both the IMM-JPDAF(IIIA) and the
IMM-JPDAF(IIIB) methods consume more time than IMM-JPDAF(II). Moreover, because the execution
of the fuzzy reference consumes a certain amount of time, IJPDA-FRLSF requires more time than
IJPDA-RLSF. The average run time of IF-JPDAF is the longest of all filters because the fuzzy clustering
for all measurements consume a lot of time.
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In short, IJPDA-FRLSF can achieve satisfactory performance in tracking accuracy for MMTT. It has
the advantage of efficiency and robustness compared with IMM-JPDAF, IF-JPDAF, and IJPDA-RLSF
in situations with the unknown measurement noise covariance and the target dynamic models.
The tracking performance of IMM-IJPDAF is influenced by the assumed measurement noise covariance
and dynamic models. It can achieve a good tracking performance only if the assumed values are
consistent with the real measurement noise covariance and dynamic models.

Table 4. The total performance evaluation for each filter.

Filter CV CT CA Total

IJPDA-FRLSF mean good good fair
IMM-JPDAF(II) good mean mean mean

IMM-JPDAF(IIIA) fair fair fair good
IMM-JPDAF(IIIB) poor poor poor poor
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5.2. An Example of a Real Data Set: Three Crossing Targets

To further illustrate the feasibility of the proposed filter, a real data set is obtained from
one of outfield experiments by using a single certain type of proximity radar, and the tracking
targets are the three crossing civil aviation aircrafts. This data set is utilized to evaluate the
performance. The real data set of three crossing targets is shown in Figure 12. It consists of
147, 113 and 80 periodic track dots. The parameters of the clutter model are the same as in
Section 5.1. The radar performance parameters are given as follows: sampling interval T = 10 s.
The process noise covariance Qt

k is set to diag([202 m2s−4 202 m2s−4]), and the measurement noise
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covariance Rt
k is equal to diag([1502m2 1502m2]). The initial positions of three targets are given by

z1
0= [− 122.15 km,−18.26 km]T, z2

0= [131.57 km,−176.90 km]T and z3
0= [− 44.06 km,−214.29 km]T.

Because the dynamic models of the three targets in the real scenario are unknown and complex,
it is difficult to design their matched sub-models. For simplicity to illustrate the feasibility, the tracking
results of IMM-JPDAF are unsatisfactory and even diverged so we only utilize the proposed filter for
MMTT here. Figures 13–15 show the average RMS position error of the proposed filter for the three
targets on 50 Monte Carlo runs. According to the tracking results, the proposed filter can track MMT
accurately in a real life situation with unknown measurement noise covariances and target dynamic
models. Hence, we can conclude that the proposed filter is feasible in a real MMTT applications.
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6. Conclusions

This paper presented an improved joint probabilistic data association-fuzzy recursive least
squares filter (IJPDA-FRLSF) for multiple maneuvering target tracking (MMTT) in situations with
unknown measurement noise covariances and unknown target dynamic models. In the proposed
filter, two uncertain models of measurements and observed angles were established, and their related
parameters were analyzed in temporal and spatial sense. Using these two uncertain models, an
additive fusion strategy was constructed to calculate the generalized joint association probabilities of
measurements belonging to different targets, which were utilized to replace the joint association
probabilities of the standard joint probabilistic data association (JPDA) algorithm. The FRLSF
method was utilized to update all tracks. The proposed filter can relax the restrictive assumptions of
measurement noise covariances and target dynamic models. It benefits from FRLSF by not requiring a
maneuver detector for a maneuvering target. Moreover, the filter can utilize multisource information
to adjust the corresponding weights in the association results according to the uncertainties of
measurements and observed angles.

The application of the improved JPDA algorithm and the FRLSF method has been found to be
effective in solving the data association and the state estimation problem for MMTT. The experimental
results on simulation data and real data illustrate that the proposed filter is effective and can be applied
in situations with unknown measurement noise covariances and target dynamic models. The uncertain
relationship between measurements and observed angles will be further studied in our future work on
uncertain target tracking.
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