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Abstract: Keypoint matching is of fundamental importance in computer vision applications. Fish-eye
lenses are convenient in such applications that involve a very wide angle of view. However, their
use has been limited by the lack of an effective matching algorithm. The Scale Invariant Feature
Transform (SIFT) algorithm is an important technique in computer vision to detect and describe
local features in images. Thus, we present a Tri-SIFT algorithm, which has a set of modifications
to the SIFT algorithm that improve the descriptor accuracy and matching performance for fish-eye
images, while preserving its original robustness to scale and rotation. After the keypoint detection
of the SIFT algorithm is completed, the points in and around the keypoints are back-projected to
a unit sphere following a fish-eye camera model. To simplify the calculation in which the image
is on the sphere, the form of descriptor is based on the modification of the Gradient Location and
Orientation Histogram (GLOH). In addition, to improve the invariance to the scale and the rotation in
fish-eye images, the gradient magnitudes are replaced by the area of the surface, and the orientation
is calculated on the sphere. Extensive experiments demonstrate that the performance of our modified
algorithms outweigh that of SIFT and other related algorithms for fish-eye images.

Keywords: SIFT; triangulation; detection; matching; fish-eye

1. Introduction

Visual feature extraction and matching are the most basic and difficult problems in computer
vision and application of optical engineering. Many applications are built on visual feature matching,
such as robotic navigation, image stitching, 3D modeling, gesture recognition, and video tracking.
In most of these applications, unconventional lensed cameras with nonlinear projection exhibit
numerous advantages compared to regular cameras. A camera equipped with micro-lenses and
borescopes enables the visual inspection of cavities that are difficult to access [1], whereas a camera
equipped with a fish-eye lens can acquire wide field-of-view (FOV) images for a thorough visual
coverage of environments. Such a camera also improves the performance of geomotion estimation by
avoiding the ambiguity between translation and rotation motions [2,3].

However, the visual feature matching algorithms designed for perspective images cannot handle
the strong radial distortion introduced by the optics [4–7]. The entire hemispherical field is covered in
front of the fish-eye camera, and the view angle of fish-eye lenses is in the range of 0◦–180◦. In addition,
a fish-eye lenses obey other projection models because the hemispherical field of view cannot be
projected on a finite image plane through a perspective projection. Thus, the fish-eye model is different
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from the common camera model, and the inherent distortion of a fish-eye lens is similar to that of the
pinhole model [8]. Because of the distinctive feature of the camera lens and the valuable wide angle
of the images, fisheye images suffer from large radial distortion and change in scale according to the
image locations.

In this paper, we propose the Tri-SIFT feature matching method to overcome radial distortion of
fish-eye cameras. We demonstrate how radial distortion affects the performance of the original Scale
Invariant Feature Transform (SIFT) algorithm and propose a set of modifications that improve the
matching effectiveness. The paper provides a detailed account of the method, presenting details of a
thorough analysis and experimental validation.

In detail, we propose a triangulation-based detection and matching algorithm combined with the
camera’s imaging model to eliminate the impact of distortion. Our method improves the robustness
of the proposed method to distortion and enhances the efficiency of feature point matching in large
distortion areas.

In Section 2, we present the related works. In Section 3, we briefly introduce the SIFT algorithm.
In Section 4, we describe the proposed tri-SIFT. In Section 5, we present and discuss the experimental
results. Finally, we summarize the features of the proposed algorithm in Section 6.

2. Related Work

SIFT is an algorithm in computer vision used to extract and describe local features in images [9].
It is able to extract stable features from resized and rotated images. The SIFT algorithm exhibits stable
performance in terms of the images’ scale, size, and noise in the Gaussian scale space. Moreover,
the SIFT algorithm can adapt to perspective and lighting transformations. SIFT’s superior performance
has rapidly made it the most commonly used feature extraction algorithm.

Recently, several algorithms concerning keypoint detection and matching in fish-eye images have
been proposed [5–7,10,11]. In a series of studies [6,7], Hansen, Corke, and Boles proposed a method
that involves using stereographic projections for approximating the diffusion on a sphere. In their
methods, SIFT was modified for images with significant distortion. In [10], Lourenço et al. proposed
the adaptive Gaussian filtering to correct the SIFT algorithm. This method detects keypoints by looking
for extrema in a scale-space representation obtained using a kernel that adapts the distortion at each
image pixel position. It also achieved description invariance to RD (radial distortion) by implementing
implicit gradient correction using the Jacobian of the distortion function. In [11], Denny et al. described
a method to photogrammetrically estimate the intrinsic and extrinsic parameters of fish-eye cameras,
with the aim of providing a rectified image for scene viewing applications. While some works simply
ignored the pernicious effects of the radial distortion and directly applied the original algorithm
to distorted images [12], others performed a preliminary correction of distortion through image
rectification and then applied SIFT [13]. The latter approach is quite straightforward, but it has two
major drawbacks: the explicit distortion correction can be computationally expensive for the case
of large frames; more importantly, the interpolation required by the image rectification introduces
artifacts that affect the detection repeatability.

3. SIFT Algorithm Theory

In this section, we briefly introduce the SIFT algorithm, which the Tri-SIFT algorithm is inspired
by. The major steps of the SIFT algorithm are: detecting the threshold in scale space, locating features,
selecting the dominant orientation for feature points, and establishing the features’ descriptor. For an
image I(x,y),

G(x, y, σ) =
1

2πσ2 e−(x2+y2)/2σ2 (1)
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using the Gaussian function (1) as the convolution kernel, the scale space of a two-dimensional image
can be obtained using a Gaussian kernel convolution. σ is the width parameter of the function, which
controls the radial extent of the function.

L(x, y, σ) = G(x, y, σ)× I(x, y) (2)

The SIFT algorithm determines the feature points by detecting local keypoints in a
two-dimensional Difference of Gaussian (DoG) scale space to ensure the unique and stable feature
points. The DoG operator is defined as the subtraction of the two different scales of the Gaussian
kernel. k is the scale factor. It is the approximation of the normalized 16× 16 Laplacian of Gaussian
(LoG)

D(x, y, σ) = (G(x, y, kσ)− G(x, y, σ)) ∗ I(x, y) = L(x, y, kσ)− L(x, y, σ) (3)

The feature point requires a total of 26 neighborhood pixels to ensure that the chosen pixel is the
local keypoint in the scale space and the two-dimensional image space. SIFT detects the local keypoint
by fitting a three-dimensional quadratic function to determine the location and scale of feature points
(up to sub-pixel accuracy). In addition, the SIFT algorithm excludes low-contrast feature points and
unstable edge response points to enhance the matching stability and suppress noise. By assigning a
dominant orientation for every feature point, the feature point’s descriptor is described in its dominant
orientation to achieve rotation invariance. The value of the gradient m(x, y) and the orientation θ(x, y)
of each image L(x, y) are obtained by the differences between pixel points.

Finally, a 16× 16 neighborhood window of the feature point in the rotated image is obtained,
and the window is evenly divided into sub-regions. A gradient orientation histogram of eight
orientations in every sub-region is calculated, and the values of all gradient d orientations are
accumulated. The feature point’s descriptor is a 4× 4× 8 = 128 dimensional vector. Then, SIFT
re-normalizes the dimensional vector to eliminate the impact of the light transform.

4. Tri-SIFT Algorithm

We propose the Tri-SIFT algorithm, which is an extension of the SIFT algorithm, for application to
fish-eye images. The first stage of Tri-SIFT is the search for keypoints over all scales and image locations.
It is implemented efficiently by using a DoG function to identify potential interest points that are
invariant to the scale and orientation. For each candidate location, a detailed model is fit to determine
the location and scale, and keypoints are selected based on their stability. To match the points extracted
from different fish-eye images, and those obtained using the proposed algorithm, a Local Spherical
Descriptor (LSD) is computed at each point on the surface of a unit sphere. The descriptor is obtained
using the spherical representation of the image and consists of a set of histograms of orientations in
the region around the given point. The size of the region depends on the scale (σ) at which the point
has been detected. The magnitude of the LSD is calculated by the area of the triangle obtained by
triangulating the points in a circular area surrounding the keypoint. The orientation of the LSD is
along the normal component of the plane determined by the three vertices of the triangle.

In this section, we first introduce back-projection and triangulation and the Delaunay triangulation
algorithm, and then describe the method of calculation of the dominant orientation and the
descriptor construction.

4.1. Back-Projection

The distortion caused by the nonlinear projection of a fish-eye camera lens causes nonuniform
compression of the image structures, which affects the SIFT matching performance. The conventional
method is to rectify the fish-eye image to the undistorted image by explicitly correcting the distortion
and applying classical SIFT to the rectified image [14,15]. The solution is straightforward; however,
the problem is that the distortion correction by image resampling requires reconstruction of the
signal from the initial discrete image. Thus, there are high-frequency components that cannot be
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recovered (e.g., low resolution and aliasing), and the reconstruction filters are imperfect. This outcome
negatively affects the construction of the descriptor and decreases thus the accuracy of keypoint
matching on images.

In this paper, we propose a model-based approach by transforming the fish-eye image to its
original state, in which the lights of the physical world pass through the camera lens. As shown in
Figure 1, the projection process of the spherical model for an omnidirectional camera can be divided
into two steps [16–18]. We assume a point P(X, Y, Z) in space to demonstrate these two steps. In the
first step, the point is linearly projected along the incident ray to a point p̃ on the unit sphere, where θ

is the angle between the incident ray oP and the principal axis zc. r is the distance between the image
point and the principal point. In the second step, the point p̃ is then non-linearly projected to a point p
on the image plane XOY. There are several mathematical models to describe the second projection
step, such as the following polynomial formulation.

r(θ) = k1θ + k2θ3 (4)(
X
Y

)
= r(θ)

[
mu 0
0 mv

](
cos ϕ

sin ϕ

)
+

(
xc

yc

)
. (5)

where k1 is the radial or polar distance from the image point to the origin of the world coordinate
system; i.e., k1 is the focal length. k2 is the distortion coefficient. X and Y are the image coordinates,
and xc and yc are the pixel coordinates of the principal point. ϕ is the angle between the X-axis and
the radial line passing through the image point p. mu and mv are the two scale factors denoting the
number of pixels per unit distance in the horizontal and vertical orientations, which should be known
beforehand. The mapping between the point P in the space and the image point p is reversible, and the
reversal can be performed by using (5)—the detailed process is reported in [16].
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Using the camera model, the fish-eye images can be back-projected to the unit sphere, as if the
sensor is on the surface of the fish-eye lens. The scene of the actual world is linearly projected to the
lens, with the scale corresponding sequentially to that scale of the real world. As a result, the light is
no longer non-linearly projected to the sensor plane, and the consequent distortion is eliminated from
the fish-eye image that then becomes a back-projected image.

4.2. Triangulation

If the size of the selected region is fixed on the back-projected image to calculate the orientation
of the keypoint or the descriptor, the number of pixels in the region varies when the location of the
region changes. In theory, the number of the pixels decreases when the polar angle θ increases, which
makes the feature points rotation-variant. In Figure 2, there are four panoramic test images, which
contain degrees of distortion: 10%, 20%, 30%, and 40%, respectively. In Figure 3, the groundtruth of the
keypoints are detected by SIFT in the images without degree of distortion. Then, the keypoints of the
four test images with different degrees of distortion are compared with the groundtruth to estimate the
keypoints detection effect. Repetition represents the percentage of keypoints, which are detected both
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in groundtruth and the test images. New detection represents the keypoints detected in the test images
which are not detected in the groundtruth. Wrong detection represents the wrong points which are
detected as keypoints in the test images. In Figure 4, shows the matching results of keypoints in four
test images with groundtruth. Recall and precision of the four test images are calculated point by point.
As shown in Figures 2–4, the asymmetry introduces significant changes in the gradient histogram,
and consequentially affects the orientation and the descriptor of the keypoints, which increases the
difficulty in matching the keypoints.
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In Tri-SIFT, we calculate the area of the surface in a region instead of the gradient such that the
number of keypoints is invariant to orientation. An image is described in the three-dimensional space
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using the coordinates of the horizontal pixel axis, vertical pixel axis, and grayscale. We assume that
the gradient of a slope with a fixed orientation is A. If the slope has 5 pixels on it, the histogram on the
particular location and orientation adds 5A. If the slope has 10 pixels on it, the histogram will add 10A.
This indicates a significant difference. However, the area of the slope is fixed, and irrespective of the
number of pixels on the slope, the sum of the areas is fixed.

To calculate the area of the surface, we triangulate the set of points P using Delaunay triangulation,
which has a time complexity of O(nlogn). The Delaunay triangulation for a set of points P in a plane is
a triangulation DT(P) such that no point P is inside the circumcircle of any triangle in DT(P), as shown
in (6). V is the vertices of the polygon, and E is the edge between the vertices. Delaunay triangulations
maximize the minimum angle of all the angles of the triangles in the triangulation, while avoiding
skinny triangles.

DT = (V, E) (6)

We use Delaunay triangulation to calculate the orientation in Section 4.3 and the descriptor in
Section 4.4.

4.3. Orientation

In the tri-SIFT, we do not calculate the gradient at each point in the region to determine the
dominant orientation or descriptor; instead, the gradient at each triangle is obtained using Delaunay
triangulation. The gradient magnitude and orientation are replaced by the area and the normal
component of the triangle, respectively.

The sphere on which the image is located is a compact manifold of constant positive curvature.
After the image has been back-projected to the sphere, each point, in spherical coordinates, is a
three-dimensional vector. We define the point set as Ps:

Ps =
{

p : p = (rsinθ cos ϕ, rsinθ sin ϕ, rcosθ)T
∣∣∣ϕ ∈ [0, 2π), θ ∈ [0, π), r = 1

}
(7)

Simultaneously, we define another point set as

Pg =
{

p : p = (g sin θ cos ϕ, g sin θ sin ϕ, g cos θ)T
∣∣∣ϕ ∈ [0, 2π), θ ∈ [0, π), g ∈ [0, 1]

}
(8)

Obviously, the elements of Pg and Ps have the following relation functions,

ps = fgs(pg) (9)

pg = fgs
−1(ps) (10)

in which ps ∈ Ps, pg ∈ Pg. Then, for each considered keypoint of the sphere, we calculate the
orientations of the surrounding points on the circular region with a radius 3σ, which is centered at the
keypoint (where σ is the scale at which each keypoint is located). To define this region, the distance
between two points on the unit sphere, ps1 ≡ (θ1, ϕ1) and ps2 ≡ (θ2, ϕ2), must be calculated. The
distance can be obtained using Vincenty’s formulae. The angular distance ∆σ is

∆σ = arctan


√
(sin θ2 sin ∆ϕ)2 + (sin θ1 cos θ2 − cos θ1 sin θ2 cos ∆ϕ)2

cos θ1 cos θ2 + sin θ1 sin θ2 cos ∆ϕ

 (11)

and the distance between the two points is

d = r∆σ (12)
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The points on the plane are back-projected to the unit sphere, and the distance between the two
points on the plane is not the same as that on the surface of the unit sphere. In a fish-eye image with
radial distortion, the distance between two adjacent pixels near the principal point is different from
that near the edges. According to the fish-eye camera model, the distortion at the principal point is
almost 0. Therefore, at the same scale, we back project two adjacent pixels at the principal point on
the plane to the sphere and compute the distance µ f g using (11) and (12). We take this value as the
unit of measurement on the sphere and we can obtain the transformation of the distance on the plane
using (13)

dissphere = µ f gdis f lat (13)

where dissphere is the distance between the two points on the plane, and dis f lat is the distance between
the two points on the sphere.

Assuming that pse is a keypoint in Ps, we select a circular window with the center at pse and
radius 3µ f gσ. The keypoints Psori within the circular window are shown in Figure 5. Then, we obtain
another point set Pgori = fgs(Psori), as shown in Figure 6. The point set Pgori is Delaunay triangulated
to the triangle set Stris, as shown in Figure 6:
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Each triangle in Stris is calculated individually. Let us define two vectors
−−−→
G1G3 and

−−−→
G1G2 to

represent the two edges of the triangle (cf. Figure 7). We have

→
G1G3 ×

→
G1G2 =


→
α1

→
α2

→
α3

g1 g2 g3

h1 h2 h3

 = (nα1 , nα2 , nα3)
T =

→
ntri (14)
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Figure 7. A triangle after triangulation.

We use the incenter of the triangle as its location. The incenter is the center of the inscribed
circle and must be located in the triangle. Compared with the circumcenter and other representations,
the incenter is more representative of the location of the triangle. The incenter Otri is obtained by

−−−→
G2G3 ×

−−−→
OtriG1 +

−−−→
G1G3 ×

−−−→
OtriG2 +

−−−→
G1G2 ×

−−−→
OtriG3 =

→
0 (15)

After we have obtained the normal and location of each triangle, we calculate the dominant
orientation based on this information. Unlike SIFT, we compute the area of the triangle instead of the
gradient magnitudes by using

A =
1
2
‖−→ntri‖ (16)

where A is the area of a triangle.
We denote the point Otri(θ, ϕ, g) as the location of a triangle and obtain Ostri = fgs(Otri), as shown

in Figure 8. In the Cartesian coordinate system α (the basis is (
→
α 1,
→
α 2,
→
α 3)), the coordinates of Ostri are

Ostri = (k1, k2, k3)
T = (cos ϕ sin θ, sin ϕ sin θ, cos θ)T (17)
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To facilitate the computation of the orientation of the triangle, we convert the basis from(→
α 1,
→
α 2,
→
α 3

)
to
(→

β 1,
→
β 2,
→
β 3

)
, where

→
β 3 is a unit vector of

→
OP;

→
β 2 is the unit vector of the tangent

vector that is in the meridian through Ostri and
→
β 1 is determined by

→
β 2 and

→
β 3 according to the

right-hand rule
α =

(→
α 1,
→
α 2,
→
α 3

)
= In (18)
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→
β 20 = k1

→
α 1 + k2

→
α 2 + k3

→
α 3,

→
β 30 = −k1

→
α 1 − k2

→
α 2 +

sin2 θ
cos θ

→
α 3,

→
β 10 =

→
β 20 ×

→
β 30

(19)

β =

(→
β 1,
→
β 2,
→
β 3

)
=


→
β 10∥∥∥∥→β 10

∥∥∥∥ ,

→
β 20∥∥∥∥→β 20

∥∥∥∥ ,

→
β 30∥∥∥∥→β 30

∥∥∥∥
 (20)

where α is the basis of the original coordinate system, and β is the basis of the new coordinate system.
Because α is a unit matrix, we compute the transitional matrix Tαβ using

β = αTαβ ⇒ Tαβ = α−1β = β (21)

According to Tαβ, we can convert −→ntri to −→nβtri into the β coordinate system

−→nβtri = (nβ1, nβ2, nβ3)
T = Tαβ

−→ntri (22)

We define the orientation of the triangle by

φori = arc tan(
nβ2

nβ1
) (23)

The area value of each triangle adds to the histogram after being weighted by a Gaussian centered
on the keypoint with 1.5 times that of the keypoint.

Finally, once the histogram has been computed, the dominant orientation is calculated. If there are
bins greater than 0.8 times the biggest bin, they are also considered. This results in multiple dominant
orientations for the same point.

The pseudo algorithm for the computation of the dominant orientation is presented as Algorithm 1.
The pseudo algorithom for the computation of the dominant orientation is presented as Algorithm 1.

Algorithm 1 Algorithm for the computation of the dominant orientation

1. for each considered keypoint (xi, yi) do
2. bin←∅ the histogram of orientations
3. (xi, yi)→ (θi, ϕi, 1) back-projected to the unit sphere
4. Select a circular region of size 3µ f gσ centered at (θi, ϕi, 1) and obtain the point set Psori

5. Obtain the point set Pgori =
{

pg : pg = fgs
−1(ps)

∣∣ps ∈ Psori
}

6. Triangulate the point set Pgori

7. bin←Compute the orientation and the area of each triangle after being weighted by Gaussian operators
8. max←maximum value inside bin
9. for each bin value ≥ 0.8 max do
10. create a feature with corresponding orientation
11. end for
12. end for

4.4. The Descriptor Construction

The descriptors of the considered keypoints are computed using their corresponding dominant
orientations as reference. This descriptor is a three-dimensional histogram of orientations (two spatial
dimensions and one dimension for orientations) in which all the orientations are considered with
respect to the dominant orientation.
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We set a keypoint pse as the center, with a circular window of radius r = 3µ f gσ to compute the
descriptors. All points within the window are represented by the point set Psdes. To achieve invariance
to rotation, Psdes is rotated by the angle of the dominant orientation. As shown in Figure 8, we define
the dominant orientation in the β coordinate system, and convert the coordinates of all points in the
window from the α to the β coordinate system. After the rotation, the coordinate of p′sdesβ is converted
to p′sdes in the original α coordinate system. The calculation process is given below

psdesβ = (k1, k2, k3)
T = Tαβ psdes (24)

p′sdesβ =

 cos φori − sin φori 0
sin φori cos φori 0

0 0 1

psdesβ (25)

p′sdes = T−1
αβ p′sdesβ (26)

where psdes ∈ Psdes,p′sdes ∈ P′sdes.
With the new point set P′sdes, we triangulate the point set f−1

gs
(

P′sdes
)

and obtain the set of triangles.
The method for computing the location and the orientation of each triangle is described in Section 4.3.
The form of our descriptor is an extension of GLOH, whose histogram has 17 × 8 bins (17 bins for
the spatial dimension and 8 bins for the orientations). The descriptor is constructed on the sphere,
and so, a square window such as the one in SIFT, is difficult to select, which increases the difficulties in
the calculation. GLOH [19] is based on a circular window, which is easy to calculate on the sphere,
and thus, its performance is better than SIFT.

Our descriptor is computed for a log-polar location grid with 3 bins in the radial orientation
(the radius is set to 0.2, 0.5 and 1.0 of the original radius) and 8 bins in the angular orientation, which
results in 17 location bins. Note that the central bin is not divided in angular orientations to avoid
sudden changes in the location of the window. The gradient orientations are quantized in 8 bins.
The central bin is not divided in angular orientations to avoid sudden changes in the location of the
window. The gradient orientations are quantized in 8 bins. Each bin value corresponds to the weighted
sum of the surface areas of the triangles, which are triangulated from the set of points inside the
window, at the spatial location and orientation defined by the bin. The weight value is defined by a
Gaussian centered on the keypoint and having a standard deviation of 1.5σ.

To avoid boundary effects, the values of each area sample are distributed by linear interpolation
into adjacent histogram bins. The resulting histogram is normalized; each bin has a threshold of 0.2
and is normalized again, in order to make the histogram robust to contrast changes. The algorithm for
computing the Local Spherical Descriptors is summarized in Algorithm 2.
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Algorithm 2 Algorithm for the computation of LSD

1. for each considered keypoint (xi, yi) do
2. bin←∅ the histogram of orientations
3. (xi, yi)→ pse(θi, ϕi, 1) back-projected to the unit sphere
4. Computation the dominant orientation φori

5. Psdes←the points in a circular window (the center is pse, the radius is 3µ f gσ)

6. Compute the transition matrix of pse

7. Psdes is rotated into P′sdes with the angle φori

8. Triangulating the point set f−1
gs
(

P′sdes
)

9. The window is divided into 17 bins
10. for each triangle do
11. Compute the orientation and the location of the triangle
12. Determine the location in the histogram using the angle, the orientation and the distance
13. bin←compute the area of the triangle after being weighted by Gaussian operators
14. end for
15. Descriptor vector←transform bin
16. end for

5. Experiment

To determine the losses of generality, the experimental image data contain various configurations
of the camera: scaling, translation, affine transformation, and varying degrees of distortion. To test
the matching performance in fish-eye images, tri-SIFT is compared with the standard SIFT algorithm,
rect-SIFT (image correction before using SIFT algorithm) and RD-SIFT (radial distortion SIFT) [10].

Figure 9 shows the experiments panoramic image pairs. In Figure 9a, the scale of left images is
different to the scale of right images, and each two different scaled image is an image pair. In Figure 9b,
the translation of left images is different to the translation of right images, which are captured by the
same camera in the same scale. In Figure 9c, the left images have different affined angle with the
right images, which are captured by the same camera. We matched the images in Figure 9 with the
standard SIFT algorithm, rect-SIFT, RD-SIFT and tri-SIFT, sequentially. We removed the false matching
points by using the RANSAC (Random Sample Consensus) algorithm to obtain the appropriate match
points and plotted the 1-precision versus recall curves of the four algorithms, as shown in Figure 10.
By observing and comparing the various curves, we can see that the tri-SIFT algorithm shows a
generally good performance in terms of the distortion degrees and various changes in scale, translation,
and affine. The more distortion degrees, the worse matching results performed. While in the four
methods, the matching result of proposed method has the smallest impact of distortion degrees,
and the matching result of standard SIFT is most seriously influenced by the distortion degrees. The
standard SIFT algorithm can obtain more points at a 10% degree of distortion. However, without any
compensation for distortions in fisheye images, the performance of the standard SIFT dramatically
decreases when the degree of distortion is more than 20%. For the RD-SIFT algorithm, the performance
is better at 10% and 20% degrees of distortion. However, when the degree of distortion continues to
increase, the performance is not as exceptional, although it is still better than that of the standard SIFT
and worse than that of the rect-SIFT. The proposed tri-SIFT algorithm is superior to the rect-SIFT in
terms of performance at small degrees of distortion (10% and 20%), but it is inferior to the RD-SIFT
algorithm. However, in the case of a smaller number of match points, the proposed method shows
better matching performance. In tri-SIFT, the calculation of the points is replaced by the calculation of
the triangles. The method is thus more adaptable in the large distortion region and can obtain more
initial and accurate match points.
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The influence of the algorithms considering various poses and orientations is shown in Table 1
and Figure 11. In Table 1, we list the resulting matches of the standard SIFT, rect-SIFT, RD-SIFT and
tri-SIFT for various changes in the camera pose (near-far, translation, affine) and a degree of distortion
of 20%. In Table 1, the initial match is keypoints matching without RANSAC algorithm, and correct
match is the keypoints matching using RANSAC algorithm. Since there are some mismatching
keypoints, the initial match can match more keypoints than the correct match. Compared with the
SIFT, the tri-SIFT improves the matching performance by 24.5%, 12.1%, and 10.6% under the conditions
of scaling, translating and affine, respectively. Compared with the other three methods, under the
influence of conditions of scaling, translating and affine, respectively, although RD-SIFT can get the
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highest initial match, correct match is not as high as Tri-SIFT. Besides, according to the initial match
and correct match numbers, our method is much more than the standard SIFT and rect-SIFT. While,
considering the correct match can more obviously reflect the matching performance, our method
gets the most correct match numbers. Thus, our method can get the best matching performance.
From the data shown in Figure 11, we analyze the results of the standard SIFT and tri-SIFT, and the
distribution of the match points obtained by the standard SIFT at the center of the image. The distortion
at the image center is negligible. The distortion and scale on the image periphery are remarkable,
which makes the standard SIFT algorithms unsuitable to be applied to the peripheral area. When the
images have translation and affine distortion simultaneously, the matching becomes more complicated.
However, because of tri-SIFT concerns about distortion, the matching points obtained by tri-SIFT can
be distributed anywhere in the images, as shown in Figure 11b.

Table 1. Matching results of the four algorithms.

SIFT Rect-SIFT RD-SIFT Tri-SIFT

Initial
Match

Correct
Match

Initial
Match

Correct
Match

Initial
Match

Correct
Match

Initial
Match

Correct
Match

Scale 170 153 238 198 251 209 243 216

Translation 97 83 102 91 116 89 108 98

Affine 114 102 128 106 151 119 136 125

Information 2018, 9, x FOR PEER REVIEW  14 of 16 

 

Table 1.  Matching results of the four algorithms. 

 

SIFT rect-SIFT RD-SIFT  Tri-SIFT 

Initial 

match 

Correct 

match 

Initial 

match 

Correct 

match 

Initial 

match 

Correct 

match 

Initial 

match 

Correct 

match 

Scale 170 153 238 198 251 209 243 216 

Translation 97 83 102 91 116 89 108 98 

Affine  114 102 128 106 151 119 136 125 

 

. 

(a) 

 

(b) 

Figure 11. Matching Results: (a) for SIFT (b) for tri-SIFT. 

6. Conclusions 

In this study, we investigated the problem of matching feature points in fisheye images. A 

triangulation-based detection and matching algorithm in fish-eye images combined with the 

camera's imaging model to eliminate the impact of distortion was proposed. This paper has 

demonstrated how radial distortion affects the performance of the original Scale SIFT algorithm. 

Then, we proposed the method that calculates the area of the surface in a region instead of the 

gradient such that the number of keypoints is invariant to orientation and the Delaunay 

triangulation is used to calculate the orientation and the descriptor. The experiments validate the 

Figure 11. Matching Results: (a) for SIFT (b) for tri-SIFT.



Information 2018, 9, 299 14 of 15

6. Conclusions

In this study, we investigated the problem of matching feature points in fisheye images.
A triangulation-based detection and matching algorithm in fish-eye images combined with the camera’s
imaging model to eliminate the impact of distortion was proposed. This paper has demonstrated
how radial distortion affects the performance of the original Scale SIFT algorithm. Then, we proposed
the method that calculates the area of the surface in a region instead of the gradient such that the
number of keypoints is invariant to orientation and the Delaunay triangulation is used to calculate the
orientation and the descriptor. The experiments validate the robustness of the proposed method to
distortion and demonstrate the achieved high efficiency in matching feature points in large distortion
areas. Compared with SIFT algorithm, rect-SIFT and RD-SIFT, the proposed method can achieve the
best matching performance. Besides, the Tri-SIFT can be applied into several robot vision tasks, 3D
reconstruction based on panoramic images and other matching tasks with large distortion areas.

However, the proposed method also cannot match the image pairs with larger light effects
correctly. The keypoints in images captured from the ground and images captured from sky, which
have large affine transformation, cannot be match well. This kind of matching problem also needs other
information to help the keypoints to match. Thus, the matching problems for the images captured from
sky with large affine influence is the key future work, and it is useful for many driving automations,
detailed 3D reconstruction and so on.
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