
 information

Article

Efficient Public Key Encryption with Disjunctive
Keywords Search Using the New Keywords
Conversion Method

Yu Zhang 1,* , Yin Li 1 and Yifan Wang 2

1 School of Computer and Information Technology, Xinyang Normal University, Xinyang 464000, China;
yufeiyangli@gmail.com

2 Department of Computer Science, Wayne State University, Detroit 48202, USA; stacie0630@gmail.com
* Correspondence: willow1223@126.com; Tel.: +86-376-639-0765

Received: 8 October 2018; Accepted: 29 October 2018; Published: 1 November 2018
����������
�������

Abstract: Public key encryption with disjunctive keyword search (PEDK) is a public key encryption
scheme that allows disjunctive keyword search over encrypted data without decryption. This kind
of scheme is crucial to cloud storage and has received a lot of attention in recent years. However,
the efficiency of the previous scheme is limited due to the selection of a less efficient converting
method which is used to change query and index keywords into a vector space model. To address
this issue, we design a novel converting approach with better performance, and give two adaptively
secure PEDK schemes based on this method. The first one is built on an efficient inner product
encryption scheme with less searching time, and the second one is constructed over composite order
bilinear groups with higher efficiency on index and trapdoor construction. The theoretical analysis
and experiment results verify that our schemes are more efficient in time and space complexity as
well as more suitable for the mobile cloud setting compared with the state-of-art schemes.

Keywords: searchable encryption scheme; public key system; disjunctive keyword search; mobile
security; data privacy

1. Introduction

Searchable encryption has attracted tremendous research attention in recent years. This field can
be applied in many situations, such as email system, database management system and document
management system. Constructing such a scheme supporting complex query conditions like boolean
keyword search is an important issue. For creating a public key encryption system supporting boolean
keyword search, we need to study public key encryption with conjunctive keyword search (PECK)
and public key encryption with disjunctive keyword search (PEDK) first. The concept and security
models of PECK are first defined by Park et al. [1]. In their work, they also gave two constructions
based on these models. After this, Hwang and Lee [2] designed a more efficient PECK scheme under
the multi-users setting. However, all of these schemes need keyword fields. To eliminate the keyword
fields, a hidden vector encryption (HVE) scheme supporting conjunctive keyword search and range
search over the encrypted data was proposed [3].

For the conjunctive keyword search, designers only need to consider whether all query keywords
are included in the index keyword set, which means that the search algorithm only needs to consider
the situation of keyword matching. However, for the disjunctive keyword search, designers should
consider whether a part of keywords in the query are contained in the index keyword set, which means
that the search algorithm needs to recognize the situation of both keyword matching and keyword
non-matching at the same time. As a result, constructing an efficient PEDK scheme is more difficult

Information 2018, 9, 272; doi:10.3390/info9110272 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0001-8261-0627
http://www.mdpi.com/2078-2489/9/11/272?type=check_update&version=1
http://dx.doi.org/10.3390/info9110272
http://www.mdpi.com/journal/information

Information 2018, 9, 272 2 of 21

than a PECK one. The first solution of PEDK was proposed by Katz et al. [4]. They proposed a function
encryption paradigm called inner product encryption (IPE) that supports more advanced search
functions including disjunctive keyword search. In the IPE scheme, each secret key and ciphertext
are associated with a predicate vector ~v and an attribute vector ~x, respectively. If and only if ~v ·~x = 0,
the secret key can decrypt the corresponding ciphertext. By applying a keyword conversion method
which changes the index and query keywords into attribute and predicate vectors respectively, a PEDK
scheme can be created according to IPE. However, the PEDK scheme introduced in their work is
not very practical. Specifically, the keyword conversion method used in [4] relies on a polynomial
F = ∏n

i=1(xi − y1)(xi − y2) . . . (xi − ym) which contains (n + 1)m terms, where X = {x1, x2, . . . , xn}
and Y = {y1, y2, . . . , ym} are denoted as an index and a query keyword set, respectively. Note that
each term in F consists of two parts: the attribute part, which is the product of some elements in
X ∪ {1}, and the predicate part, which is the product of some elements in Y ∪ {1}. By using the
attribute part and the predicate part in each term, an attribute vector −→x and a predicate vector
−→y can be created. Obviously, if X ∩ Y 6= ∅, there is F = 0, which means −→x · −→y = 0. Since the
dimensions of predicate and attribute vector are (n + 1)m, the space and time complexity of the
obtained PEDK scheme increases in exponential order. To construct a more efficient PEDK scheme
supporting conjunctive keyword search simultaneously, Zhang and Lu proposed an approach that
changes an IPE scheme to a scheme called public key encryption with conjunctive and disjunctive
keyword search (PECDK), and gave a concrete construction [5]. In this scheme, the size of trapdoor
and each document’s index are both linear with O(ND). Moreover, the number of times of pairing
operations in the search algorithm is still linear with O(ND), where ND is the number of keywords in
all indices. Thus, there is still a great room to improve the efficiency for disjunctive keyword search.

In addition, IPE is not designed only for creating a searchable encryption scheme supporting
disjunctive keyword search. Thus, in order to obtain a highly efficient PEDK scheme, one should
utilize alternative methods.

In this paper, we aim to create efficient PEDK schemes with less time and space cost.
The contributions are listed as follows.

(1) A new method for converting the index and query keywords into a vector space model is
proposed. The dimension of the vectors generated by the proposed method is more small than
that generated by the previous methods. Moreover, our scheme is based on an equation of degree
n with one unknown. The coefficients of this equation is composed of the index keyword set,
while the roots of this equation is composed of the query keyword set. The coefficients and
roots create the attribute vectors and predicate vectors, respectively. Thus, our method can easily
be combined with other techniques, such as IPE scheme and composite bilinear order groups.
By combining the new approach with an efficient IPE scheme, we propose a more efficient
IPE-based PEDK scheme with a better time and space complexity (We denote this PEDK scheme
by PEDK-1).

(2) We also demonstrate that a construction of PEDK does not rely on IPE. Applying techniques of
dual system encryption and composite order group, a new PEDK scheme without IPE, denoted by
PEDK-2, is given. We show that this scheme can largely reduce the complexity of index building
and key generation compared with our former proposal.

Moreover, we design a experiment to show the efficiency of the previous PEDK schemes and
two proposed schemes. The experiment results show that the efficiency of proposed schemes is more
practical than the previous ones. We also give a detailed comparison between PEDK-1 and PEDK-2.
The theoretical analysis and experiment results show that the key generation, index building and
trapdoor generation operations in PEDK-2 are more efficient than that in PEDK-1, except for the test
operation. In addition, the space cost in PEDK-2 is less than that in PEDK-1. In practice, client device,
e.g., a mobile device, has less storage space and limited computation capacity. Thus, compared with
PEDK-1, PEDK-2 is much more suitable for the resource constrained environment.

Information 2018, 9, 272 3 of 21

Related work. There are two classes of searchable encryption schemes in terms of different cryptography
primitives: public key system and symmetric key system.

Song et al. first introduced the definition of searching symmetric encryption and gave a
specific scheme [6]. Then, Goh gave the concept and security definition of multi-keyword query
on encrypted data [7], and gave a more practical scheme by using a Bloom filter. Based on this concept,
improved schemes [8,9] were proposed to reduce computation and communication costs. However,
the time cost of search in these schemes is linear with the number of documents. To optimize the
query speed, some works utilize tree structure, such as r-tree and kd-tree, to obtain a sub-linear
search efficiency [10,11]. Since the query results in these works are not sorted, all related documents
will be returned, which will lead to a large network traffic problem. Based on the order-preserving
encryption (OPE) scheme [12], rank search schemes [13,14] were proposed, which can quickly search
top-k related documents. However, works mentioned above only support single keyword query.
Recently, some schemes were proposed to achieve multi-keywords rank search [15,16].

The first searchable public key encryption solution called public-key encryption with keyword
search (PEKS) is designed by Boneh et al. [17], which is related to the identity-based encryption (IBE)
proposed in [18]. Based on this, Abdalla et al. gave the computational and statistical consistency
of PEKS, and gave a concrete scheme [19]. However, these works fail to support multi-keyword
search. The framework and security model of PECK are proposed by Park et al. [1]. They also gave
two schemes in their work. One needs more bilinear pairing operations, while the other needs more
private keys. Then, Hwang and Lee designed a more effective solution for multi-user setting [2].
The PECK schemes mentioned above were using keyword field as an additional information which are
not practical in many applications. In order to avoid using a keyword field, a hidden vector encryption
(HVE) scheme supporting conjunctive keyword search and range search over the encrypted data was
proposed [3]. To achieve disjunctive keyword search, Katz et al. constructed the first IPE scheme [4],
which is related to the attribute-based encryption (ABE) [20]. Fully secure IPE schemes with better
decryption efficiency were proposed in [21,22].

In recent years, the work of searchable public-key encryption (SPE) has focused on two aspects.
On the one hand, it focuses on improving the efficiency of traditional SPE; on the other hand, it adds
special abilities on the traditional SPE, such as extra security mechanism and faster search rate. We use
Table 1 to show main works for SPE in the last ten years. According to Table 1, we found that PEDK
studies are relatively few, so this paper is devoted to building a more efficient PEDK scheme.

Table 1. Summary of previous searchable public key encryption schemes.

Type Ref. Query Condition Additional Security
Measures

Fast
Search

Standard
SPE

[23] Conjunctive keyword search - -
[24] Conjunctive keyword search - -
[22] Disjunctive keyword search - -
[3] Range, conjunctive keywords, subset search - -
[5] Conjunctive and disjunctive keyword search - -
[25] Range search - -

Special
SPE

[26] Conjunctive keyword search Verifiable -
[27] Conjunctive keyword search Verifiable -
[28] Single keyword search Verifiable and Access control -
[29] Single keyword search - Yes
[30] Single keyword search - Yes
[31] Fuzzy keyword search Access control -

The query condition represents the search mode supported by the scheme; the additional security mechanism
added in the scheme involves access control and the verification of query results; fast search means that
the work is committed to building a scheme whose search speed is similar to the searchable symmetric
encryption scheme.

Information 2018, 9, 272 4 of 21

Organization. We organize this paper as follows: in Section 2, the model of PEDK and its security
model are defined, and briefly review the concept of composite order bilinear groups and complexity
assumption. In Section 3, we introduce our keyword conversion method, and then propose two
concrete PEDK scheme based on our approach. The security proof of proposed schemes are given
in Section 4. The theoretical and experimental analysis are given in Section 5. Section 6 covers
the conclusion.

2. Preliminaries

In this section, we first introduce the definition of PEDK’s framework. Then, we present the
security definition of PEDK. Finally, we briefly review some techniques adopted in our work, including
complexity assumption and bilinear groups of composite order.

2.1. Model of PEDK

We suppose that pk is the public key, and sk is the secret key, where pk can be accessed by anyone
and sk can be only held by the receiver. A sender can send an encrypted plaintext M with an encrypted
index generated by using keywords w1, w2, . . . , wn of M and pk to a server. When the receiver would
like to retrieve the messages containing a specific list of keywords, the receiver can use sk and query
keywords to construct a trapdoor, and sends the trapdoor to the server. After receiving the trapdoor,
the server adopts the test algorithm to determine which documents match the trapdoor, and returns
the matched documents to the receiver. The architecture of this process is described in Figure 1.

Semi-trusted Cloud
Server

Data Senders(Data Owners) Data Receiver(Data User)

Figure 1. Architecture of the search over encrypted cloud data.

According to this architecture, we give the formal model of PEDK inspired by the model proposed
in [1] as follows.

Information 2018, 9, 272 5 of 21

Definition 1. The PEDK scheme involves four polynomial time algorithms, which are KenGen, IndexBuild,
Trapdoor and Test:

(1) KeyGen(γ): The algorithm takes a security parameter γ as input, and outputs a key pair (pk, sk), where “pk”
and “sk” represent public key and secret key, respectively.

(2) IndexBuild(pk,W): By taking advantage of “pk” and a keyword set W = {w1, w2, . . . , wn}, the sender
applies the algorithm to create an encrypted index IW .

(3) Trapdoor(sk,Q): By utilizing the keyword query Q = {q1, q2, . . . , qm} and “sk”, the receiver adopts this
algorithm to generate a trapdoor TQ, where m ≤ n.

(4) Test(pk, TQ, IW): The server executes this algorithm to test whether the encrypted index IW and the
trapdoor TQ contain at least one same keyword. It takes TQ, IW and “pk” as input. If Q ∩W 6= φ, then it
outputs 1; otherwise, 0 .

2.2. Security Definition of PEDK

The proposed schemes must be proven to be secure under a formal security definition. Similar to
the definition introduced in [1], we present the security definition as follows.

Definition 2. If an PEDK scheme can resist chosen plaintext attacks and is adaptively index-hiding, then it
must have that, for any probabilistic polynomial-time (PPT) adversary A, under a security parameter k, the A’s
advantage for winning the following game is negligible:

(1) Setup: The challenger C performs the KeyGen(1γ) algorithm to generate pk and sk. Then, C sends pk to
the attacker A.

(2) Phase 1: The attacker A can adaptively ask C for any trapdoor TQ of query Q he wants.
(3) Challenge: A randomly chooses two keyword sets W0 and W1, and gives them to C. Suppose that

Q1, Q2, . . . , Qt are the keyword sets which are queried to construct trapdoors in phase 1, where t is the
number of trapdoors queried in phase 1, there is a restriction in which Qi ∩W0 = ∅ and Qi ∩W1 = ∅ for
each i ∈ [1, t]. Then, C picks a random bit β ∈ {0, 1}, and creates Iβ = IndexBuild(pk, Wβ). After that,
A sends {Iβ, W0, W1} to A.

(4) Phase 2: Under the restriction mentioned above, A can continue to issue any query Q he wants. C responds
the corresponding trapdoor.

(5) Response: A outputs β
′ ∈ {0, 1}. If β

′
= β, then A wins the game.

According to the game mentioned above, A’s advantage in the above game is defined as:

AdvA
Game = |Pr[β

′
= β]− 1

2 |.

Generally speaking, the key is to ensure that the encrypted form of W0 and that of W1 are
computationally indistinguishable to the adversary.

2.3. Composite Order Bilinear Groups and Complexity Assumption

Boneh et al. [32] firstly uses the composite order bilinear groups to create cryptographic
algorithms. In our paper, we will adopt groups of order N that is a product of four (distinct)
prime. Moreover, by using a security parameter 1k, we apply a generator g to generate a description
I = (p1, p2, p3, p4, G, GT , ê); where p1, p2, p3, p4 are distinct primes, GT and G are cyclic groups of order
N = p1 p2 p3 p4, and ê : G× G → GT is a non-degenerate bilinear map such that:

1. Bilinear: ê(ga, hb) = ê(g, h)ab,where g, h ∈ G and a, b ∈ ZN ;
2. Non-degenerate: ê(g, g) is a generator of GT if g is a generator of G;
3. Computable: For any g, h ∈ G, an efficient algorithm must exist to compute ê(g, h).

In addition, we also further require that the group operations in G and GT is computable in
deterministic polynomial time under the security parameter k. Furthermore, we suppose that the

Information 2018, 9, 272 6 of 21

descriptions of G and GT contain generators of G and GT , respectively. For S ⊆ {1, 2, 3, 4}, the subgroup
of order ∏i∈S pi is denoted by G∏i∈S pi . Suppose that h1 ∈ G∏i∈S1

pi and h2 ∈ G∏i∈S2
pi , where S1, S2 ⊆

{1, 2, 3, 4}, it is easy to verify that ê(h1, h2) = 1 if gcd(∏i∈S1
pi ×∏i∈S2

pi|N2, N) = N. We call this
property as the orthogonality property, which is very important in our construction.

For proving the security of our construction, we introduce a complexity assumption called General
Subgroup Decision (GSD) Assumption [33] as follows.

GSD Assumption. Let S0, S1, S2, . . . , Sk be non-empty subsets of {1, 2, 3, 4} in which, for each j ∈ [2, k],
either Sj ∩ S0, Sj ∩ S1 are both empty or Sj ∩ S0, Sj ∩ S1 are both non-empty. Choosing a group generator
g, we can define the distribution as follows:

G = (N = p1 p2 p3 p4, G, GT , ê) R← g,

T0
R← G∏i∈S0

pi , T1
R← G∏i∈S1

pi ,

Z2
R← G∏i∈S2

pi , . . . , Zk
R← G∏i∈Sk

pi ,
D = (G, Z2, Z3, . . . , Zk).

The algorithm A’s advantage in breaking GSD Assumption is defined as:

Advg,A(k) = Pr[A(D, T0) = 1]− Pr[A(D, T1) = 1]. (1)

According to the description above, the definition of GSD assumption is given as follows.

Definition 3. For all PPT algorithms A, if the function Advg,A(k) is negligible of k, then we can say that,
for, generator g, GSD Assumption holds.

3. Proposed PEDK Schemes

In this section, we first introduce the conversion method that changes an index and a query
keyword set into a attribute vector and a set of predicate vectors, respectively. Then, we combine this
method into an efficient IPE scheme to construct the PEDK-1 scheme. Finally, we build the PEDK-2
scheme based on a composite bilinear order group.

3.1. Conversion Method

The key idea of this method is to first construct an equation of degree n with one unknown
by using the index and query keyword sets, where n is the number of keywords. Then, by using
the relationship between the roots and coefficients in this equation, an attribute vector for the index
keyword set and a set of predicate vectors for the query keyword set can be created. The concrete steps
are shown below.

Suppose that any keyword w can be expressed as a string in {0, 1}∗, and we define a function
H1 : {0, 1}∗ → Z∗p. Since p is a large prime and is larger than the number of the all words, H1 can
be collision-resistance. This means that, if i 6= j, then H1(wi) 6= H1(wj), where wi and wj are two
distinct keywords.

We first construct an equation of degree n with one unknown by using the index and query
keyword sets. After that, we use the roots and coefficients of the equation to create a set of query
vectors and an index vector. Let W = {w1, w2, . . . , wn} and Q = {q1, q2, . . . , qm} are two keyword sets,
where m < n. The approach is described as follows:

(1) For the keyword set W = {w1, w2, . . . , wn}, constructing a function:

f (x) = (x− H1(w1))(x− H1(w2)) . . . (x− H1(wn))

= anxn + an−1xn−1 + . . . + a0x0.
(2)

According to the coefficient of the f (x), a vector~a = {a0, a1, . . . , an} can be obtained.

Information 2018, 9, 272 7 of 21

(2) For each keyword qi in the keyword set Q, we construct ~qi = {H1(qi)
0, H1(qi)

1, . . . , H1(qn)n},
and output a vector set {~q1, ~q2, . . . , ~qm}.

Note that, if there is a keyword qi ∈ Q such that qi ∈ W, where i ∈ [1, m], according to the
Equations (2), it is not difficult to verify that~a · ~qi = 0.

As a result, we can test each qi ∈ Q with W to make a disjunctive keyword search. If Q ∩W 6= ∅,
then it must exist an i ∈ [1, m] such that~a · ~qi = 0. Based on this, two concrete PEDK schemes will be
proposed in the rest of this section.

3.2. PEDK-1

By using the method given in Section 3.1, we can give a new PEDK scheme based on the
IPE scheme.

Construction. In the IPE scheme, there are four algorithms: SetupIPE, EncIPE(pkIPE,~x, M),
KeyGenIPE(pkIPE, mskIPE,~v), and DecIPE(pkIPE, c, sk~v). We denote the public key and the master
secret key by pkIPE and mskIPE, respectively. ~x and ~v represent the attribute and predicate vectors,
respectively. The ciphertext and secret key are denoted by c and sk~v, respectively. By combining
the conversion method and an efficient IPE scheme introduced in [22], the PEDK-1 scheme works
as follows:

- KeyGen: it runs SetupIPE to generate a key pair {pkIPE, mskIPE}, and then sets pk = pkIPE and
sk = mskIPE.

- IndexBuild: For the keyword set W, it uses the Equation (2) to create an vector ~a. After this,
it outputs IW = EncIPE(pk,~a, message) as the index of W. Note that it sets the message to 1.

- Trapdoor: For the query Q, it generates a group of vectors {~q1, ~q2, . . . , ~qm}. By applying KeyGenIPE
to each vector, it creates a trapdoor TQ = {t1, t2, . . . , tm}, where ti = KeyGenIPE(pk, msk,~qi) and
i ∈ [1, m].

- Test: Given IW and TQ, it runs DecIPE(IW , ti, pk) for each i ∈ [1, m]. If there is at least one i ∈ [1, m]

such that DecIPE outputs 1, then it outputs 1. Otherwise, it outputs 0.

Correctness. If qi ∈ W, then there is ~a · ~qi = 0. Let IW and TQ be as the above. It exists that ti can
decrypt the index IW . As a result, according to the property of IPE, the DecIPE algorithm outputs 1
(Note that the message is set to be 1 in the IndexBuild algorithm.). This means that the Test algorithm
also outputs 1.

Security. The security of this scheme depends on that of the IPE scheme. The detailed security proof is
given in Section 1.

3.3. PEDK-2

The previous PEDK schemes are based on the IPE scheme. Considering the reason that IPE is a
general encryption prototype which is not designed only for disjunctive keyword search on encrypted
data, in this subsection, we aim to create a non-IPE PEDK scheme by using the composite order
bilinear groups.

Construction. The PEDK-2 scheme works as follows:

- KeyGen: Randomly selecting a bilinear group G of order N = p1 p2 p3 p4 (where p1,p2,p3,p4 are
distinct primes), αi, βi ∈ Z∗N , U1, A1 ∈ Gp1 and A4i, B4i, U4 and g4 ∈ Gp4 , where i ∈ [0, n], pk is
published as:

pk = {N, U1U4, A1
βi A4i, A1

αi B4i, g4, H1}.

The secret key sk is {αi, βi, U1, A1, g3}, where g3 is a generator of Gp3 .

Information 2018, 9, 272 8 of 21

- IndexBuild: Given a keyword set W = {w1, w2, . . . , wn}, the algorithm uses the Equation (2) to
create an vector~a = {a0, a1, a2, . . . , an}. Choosing n+ 3 random elements s, c0, c1, c2, . . . , cn, cn+1 ∈
Z∗N , for the vector~a, the encryption algorithm creates the index IW = (C10, C11, C12, . . . , C1n, C2) as:

C1i = (A1
βi A4i)

sai × (A1
αi B4i)

s × g4
ci

= A1
s(βiai+αi)C4i,

C2 = (U1U4)
s × gcn+1

4 ,

= Us
1C4

where C4i = Asai
4i Bs

4ig4
ci , C4 = Us

4gcn+1
4 and i ∈ [0, n].

- Trapdoor: Given a keyword set Q = {q1, q2, . . . , qm} where m ≤ n, the trapdoor generation
algorithm chooses r ∈ Z∗N and generates random elements R3ji where i ∈ [0, n], j ∈ [1, m] and R3j
by using g3 and raising it to the random exponents modulo N. Then, it chooses random elements
r1, r2, . . . , rm ∈ Z∗N and two random orthogonal vector bases B = (

−→
b1 , . . . ,

−→
bm)T , and B∗ =

(
−→
b1
∗, . . . ,

−→
bm
∗)T ∈ Zm×m

N in which
−→
bi ·
−→
bj
∗ = 0 (mod N) whenever i 6= j and

−→
bi ·
−→
bi
∗ = λ (mod N)

for all i ∈ m where λ is a random elements in Z∗N . Suppose that
−→
bt = {bt1, bt2, . . . , btm} and

−→
bt
∗ = {b∗t1, b∗t2, . . . , b∗tm} where t ∈ [1, m], it computes:

Kji = U1

r1b1j H1(q1)
i+r2b2j H1(q2)

i+...+rmbmj H1(qm)i

βi R3ji,

Kj = A1
∑n

i=0
αi(r1b1j H1(q1)

i+r2b2j H1(q2)
i+...+rmbmj H1(qm)i)

βi R3j,

where i ∈ [0, n], j ∈ [1, m]. The trapdoor of keyword set Q is :

TQ =

K10 K11 . . . K1n K1

−→
b1
∗

K20 K21 . . . K2n K2
−→
b2
∗

...
...

. . .
...

...
...

Km0 Km1 . . . Kmn Km
−→
bm
∗

 .

- Test: After receiving a trapdoor TQ and a secure index IW , the algorithm works as follows:

(a) The algorithm computes Mj =
∏n

i=0 ê(C1i ,Kji)

ê(C2,Kj)
for each j ∈ [1, m].

(b) Choosing a counter k, and setting k = 1.

(c) If k > m, then go to step d), otherwise the algorithm computes: Dk = ∏m
j=1 M

b∗kj
j . If Dk = 1,

then the algorithm outputs 1 and ends. Otherwise, it sets k = k + 1 and goes to the step c).
(d) The algorithm outputs 0 and ends.

Correctness. Let IW and TQ be as the above. Then, we have the following two equations:

ê(C2, Kj) = ê(Us
1C4, A1

∑n
i=0

αi (r1b1j H1(q1)
i+...+rmbmj H1(qm)i)

βi R3)

= ê(U1, A1)
s ∑n

i=0
αi (r1b1j H1(q1)

i+...+rmbmj H1(qm)i)

βi ,

(3)

Information 2018, 9, 272 9 of 21

n

∏
i=0

ê(C1i, Kji) = ê(A1, U1)
s ∑n

i=0
αi (r1b1j H1(q1)

i+...+rmbmj H1(qm)i)

βi

×ê(A1, U1)
s(r1b1j ∑n

i=0 ai H1(q1)i+...+rmbmj ∑n
i=0 ai H1(qm)i).

(4)

According to the Equations (3) and (4), we know:

Mj = ê(A1, U1)
s(r1x1b1j+r2x2b2j+...+rmxmbmj). (5)

In Equation (5), we can find:

xk =
n

∑
i=0

ai H1(qk)
i, where k ∈ [1, m]. (6)

Since
−→
bi ·
−→
bj
∗ = 0 (mod N) whenever i 6= j and

−→
bi ·
−→
bi
∗ = λ (mod N) for all i ∈ m, there is:

Dk =
m

∏
j=1

M
b∗kj
j

= ê(A1, U1)
s(r1x1

−→
b1
−→
bk
∗+...+rkxk

−→
bk
−→
bk
∗+...+rmxm

−→
bm
−→
bk
∗)

= ê(A1, U1)
srkxkλ.

Note that there is xk = 0 if the keyword qk in the trapdoor is also contained in the index.
Thus, Dk = 1 if qk ∈W.

Security. The security of this scheme depends on the assumption introduced in Section 2.3. The detailed
security proof is given in Section 4.2.

4. Security Analysis

4.1. Security of PEDK-1

The PEDK-1 scheme is based on the fully secure IPE scheme. Thus, we give the following proposition.

Proposition 1. The PEDK-1 scheme is secure if the IPE scheme that PEDK-1 is based on is secure.

Proof Sketch. If it exists an PPT algorithm A that can break the PEDK-1 scheme, then the IPE scheme
on which PEDK-1 is based can be broken by A. For the setup phase, C applies the SetupIPE algorithm
to creat pkIPE and skIPE, and sets pk = pkIPE, sk = skIPE. For the phase 1, A can adaptively query
trapdoors of keyword set {Q1, Q2, . . . , Qt}. These trapdoors are composed of a set of decryption keys
of IPE. For the challenge phase, under a constraint that Qi ∩W0 = ∅ and Qi ∩W1 = ∅, A randomly
chooses two challenge keyword sets W0 and W1, where i ∈ [1, t]. After this, C randomly chooses a
β ∈ {0, 1}, and sends an index IWβ to A. This index is composed of a set of challenge ciphertexts
of IPE. For the phase 2, A still asks for trapdoors which he wants under the restriction mentioned
above. For the response phase, A issues a guess β′. If A can break the PEDK-1 scheme, the value
of |Pr[β′ = β]− 1

2 | can not negligible. It means that the two challenge indices can be distinguished.
Because the challenge indices in the PEDK-1 scheme is equal to the challenge ciphertexts in the IPE
scheme, we can reckon that A can break the IPE scheme according to the security definition for IPE.

4.2. Security of PEDK-2

To prove the security of the PEDK-2 system, according to the dual system encryption, we first
introduce the concept of semi-functional trapdoor and index. The semi-functional trapdoor and
index will be adopted in the proof, but not in the real PEDK-2 system. This is similar to those
introduced in [34].

Information 2018, 9, 272 10 of 21

Semi-functional index: We denote the generator of the subgroup G2 by g2, and create
the Semi-functional index as follows. The encryption algorithm generates a normal index
C′10, C′11, C′12, . . . , C′1n, C′2. Choosing n + 2 random elements x, zc0, zc1, . . . , zcn and zc ∈ ZN , C1i is
set to be C′1ig

xzci
2 for each i ∈ [0, n] and C2 is set to be C′2gxzc

2 . The semi-functional index is
{C10, C11, . . . , C1n, C2}.

Semi-functional trapdoor: We denote the generator of the subgroup G2 by g2, and create the
semi-functional trapdoor as follows. A normal trapdoor K′j0, K′j1, . . . , K′jn, K′j is constructed by the
encryption algorithm, where j ∈ [1, m]. Choosing (n + 2)m + 1 random elements ξ, zkj0, zkj1, . . . , zkjn

and zkj ∈ ZN , Kji is set to be K′jig
ξzkji
2 for each i ∈ [0, n] and Kj is set to be K′jg

ξzkj
2 . The semi-functional

trapdoor is {Kj0, Kj1, . . . , Kjn, Kj}.
If we want to decrypt the semi-functional index by utilizing the semi-functional trapdoor,

an additional factor M′j = ê(g2, g2)
xξ(zczkj−∑n

i=0 zcizkji) will be generated for each j ∈ [1, m].
The security of PEDK-2 depends on GSD Assumption. The proof process is based a hybrid

method in which a set of games will be proven to be undistinguishable. We list these games as follows.

1. GameReal : This game is the original security game.
2. GameRestricted : Suppose that the keyword set W = {w1, w2, . . . , wn} is one of the challenge

keyword sets. We construct an n-degree polynomial f (x) = (x− H1(w1))(x− H1(w2)) . . . (x−
H1(wn)) = anxn + an−1xn−1 + . . . + a1x + a0. This game is identical to the real game except that
the attacker is not allowed to obtain a trapdoor in which the corresponding keyword set does
not contain any keyword w which satisfies ∑n

i=0 ai H1(w)i = 0modp2. This restriction will be kept
throughout the following games.

3. Gamek : For each k ∈ [0, q], we define Gamek identical to GameRestricted except that A is given
the semi-functional index. Moreover, the first k trapdoors are semi-functional and the rest are
normal. In Game0, the trapdoors sent to A are normal, but the index is semi-functional. In Gameq,
both trapdoor and index are in the semi-functional form.

4. GameFinalk : Letting the keyword set W = {w1, w2, . . . , wn} be one of the challenge keyword sets,
we construct an n-degree polynomial f (x) mentioned above. Compared with Gameq, the index in
this game is a semi-functional encryption of a challenge vector that its first k elements are random
and the rest of the elements are {ak, ak+1, . . . , an}, where k ∈ [0, n].

Obviously, GameFinal0 is a game in which the index is a semi-functional encryption of a normal
keyword set, while GameFinaln is a game in which the index is a semi-functional encryption of a random
keyword set. The essence of the security proof is applying the following lemmas to verify that these
games are indistinguishable.

Lemma 1. If there is a probabilistic polynomial time algorithm A such that AdvA
GameReal

− AdvA
GameRestricted

= ε,
then a PPT algorithm B with advantage ≥ ε

3 in breaking GSD Assumption can be created.

Lemma 2. If there is a PPT algorithm A such that AdvA
GameRestricted

− AdvA
Game0

= ε, then a PPT algorithm B
with advantage ε in breaking a GSD Assumption can be created.

Lemma 3. For each k ∈ [0, q], if there is a PPT algorithm A such that AdvA
Gamek−1

− AdvA
Gamek

= ε, then a
PPT algorithm B with advantage ε in breaking the GSD Assumption can be created.

Lemma 4. For each k ∈ [0, n], suppose that there exists a PPT algorithm A such that AdvA
GameFinalk−1

−

AdvA
GameFinalk

= ε. Then, a PPT algorithm B with advantage ε in breaking GSD Assumption can be created.

Considering the length of the article and the coherence of the article structure, the proofs of
Lemmas 1–4 are given in Appendix A.

Information 2018, 9, 272 11 of 21

Theorem 1. PEDK-2 scheme is secure if Assumptions 1, 2, 3, and 4 hold.

Proof. If Assumptions 1, 2, 3, and 4 hold, GameReal is indistinguishable from GameFinaln based on the
previous lemmas that have been proved. In GameFinaln , β value is information-theoretically concealed
from the attacker. According to this, we argue that the attacker fails to obtain any advantage in
breaking PEDK-2 scheme.

5. Performance Evaluation

5.1. Theoretical Analysis

According to Table 1, there are two previous PEDK schemes needed to be compared. One can be
regarded as a combination of the conversion approach described in Section 1 and the most efficient
IPE scheme given in [22] (For simplicity, we denote this scheme with PEDK-0.). The other PECDK is
introduced in [5]. In the rest of this subsection, we will compare the proposed schemes (PEDK-1 and
PEDK-2) with PEDK-0 and PECDK.

Let |Te| and |T4e| be the time cost for a pairing operation [33] on G and G4, and |TG| and |T4G| be
the time cost for the power operation on G and G4, where G and G4 are a group of a prime order and a
composite group of an order N4 = p1 p2 p3 p4, respectively. For evaluating the time complexity, we only
take these two operations into account since the time cost of these two operations is much more than
that of other operations like group add operation. The theoretical analysis of time complexity is shown
in Table 2.

Table 2. Comparison with the previous schemes in time complexity.

PEDK-0 PECDK PEDK-1 PEDK-2

Key Generation O((n + 1)m)|TG|+ |Te| O(N2
D)|TG| O(n2)|TG|+ |Te| O(n)|T4G|+ |T4e|

Index Building O((n + 1)m)|TG| O(ND)|TG| O(n2)|TG| O(n)|T4G|
Trapdoor Generation O((n + 1)m)|TG| O(ND)|TG| O(n2 ·m)|TG| O(n ·m)|T4G|

Testing O((n + 1)m)|Te| O(ND)|TG| O(n2)|Te| O(n)|T4e|

We denote the size of an element of G and G4 by |G| and |G4|, and that of GT and G4T by |GT |
and |G4T | respectively. The comparison result of space complexity is shown in Table 3.

Table 3. Comparison with the previous schemes in space complexity.

PEDK-0 PECDK PEDK-1 PEDK-2

PK size O((n + 1)m)|G|+ |GT | O(N2
D)|G| O(n2)|G|+ |GT | O(n)|G4|+ |G4T |

SK size O((n + 1)m)|G| O(N2
D)|G| O(n2)|G| O(n)|G4|

Trapdoor size O((n + 1)m)|G| O(ND)|G| (4n + 2)|G| (n + 1)|G4|
Index size O((n + 1)m)|G|+ |GT | O(ND)|G| (4n + 2)|G|+ |GT | (n + 1)|G4|+ |G4T |

According to the Tables 2 and 3, it is easy to find that the efficiency of the proposed schemes is
better than PEDK-0. Note that ND is a large integer and seen as the number of keywords in a dictionary,
and ND is much bigger than n in general. Therefore, we argue that the proposed schemes has better
performance on time and space complexity than PECDK one.

5.2. Experimental Results

In our experiments, we build a group of artificial keyword sets with a different number of
keywords in each set (i.e., n = 5; 10; 15; 20; 25), where each keyword set can be seen as an index of a
document. In each keyword set, we denote each keyword as a unique integer in the range [0, 5000],
where 5000 can be regarded as the number of different words in artificial keyword sets. We encrypted
each keyword set with PEDK-1 and PEDK-2, respectively, and stored these encrypted indices on

Information 2018, 9, 272 12 of 21

our machine. After this, we randomly performed some queries over the stored indices. In addition,
we use the IPE scheme introduced in [22] to quantify the efficiency of PEDK-0 and PECDK. We applied
the Java Pairing Based Cryptography library (JPBC) [35] to realize our schemes. The experimental
environment is under 8 GB memory and Intel(R) Core(TM) i7-3520M@2.90GHz CPU (Xinyang, Henan
province, China). Moreover, our construction is based on the Type A pairing whose base field size is
512-bit. The security level is identical to 1024-bit DLOG [35].

A. Performance of PEDK-0 and PECDK.

According to the analysis in Section 1, we know that the main method for constructing PEDK-0 is
converting the index and query keywords into a predicate and attribute vector, respectively. By using
predicate and attribute vectors, we can apply an IPE scheme to build a PEDK-0 scheme. Note that
the length of predicate and attribute vectors is linear with O((n + 1)m). Even if m = 5 and n = 5,
the length of vector is 65. In addition, the PECDK scheme [5] is also based on the IPE scheme, where the
the length of predicate and attribute vectors is linear with O(ND). For the sake of simplicity, we test
the performance of the IPE scheme [22] under N = {5, 10, 15, . . . , 50}, where N denotes the dimension
of the predicate and attribute vectors, and then inferred that the efficiency of PEDK-0 and PECDK
needed to be improved.

From Figure 2a, we find that the time cost of key generation, index building and trapdoor
generation is linear with O(N2), and that of testing is linear with O(N). From Figure 2b, the space
cost of indices and trapdoors is linear with O(N), and that of keys is linear with O(N). Even if N
is very small, the time and space consumptions cannot be ignored. When n and m are very large,
N will become very large (Note that N is linear with O((n + 1)m)), which makes PEDK-0 ineffective.
Moreover, the vocabulary size (ND) is commonly linear with O(106) [36]. Considering that N = ND in
this case, we think the efficiency of PECDK is relatively low.

10 20 30 40 50

0
50
0

10
00

15
00

a

of dimensions

tim
e

co
ns

um
pt

io
n
(1
03
m
s)

setup
index building
trapdoor generation
testing

10 20 30 40 50

0
50
0

10
00

15
00

20
00

b

of dimensions

sp
ac

e
co

ns
um

pt
io

n
(k
b)

keys size
indices size
trapdoors size

Figure 2. Impact of N on the time cost of key generation, index construction, trapdoor generation and
testing in PEDK-0 and PECDK (a); and impact of N on the storage cost of the size of keys, indices and
trapdoors in PEDK-0 and PECDK (b). (D = 100, N = {5, 10, 15, 20, 25}).

Information 2018, 9, 272 13 of 21

B. Performance Comparison between PEDK-1 and PEDK-2

B.1: Time Overhead. Impact of the keyword size (n). For a query with five keywords, Figure 3

shows that:

(1) Figure 3a–c show that the execution time of key generation, index building and trapdoor
generation is linear with O(n2) in PEDK-1, while O(n) in PEDK-2. Since the PEDK-1 scheme is
based on the dual pairing vector space DPVS, the PEDK-2 has a better performance in the key
generation, index building and trapdoor generation phase; and

(2) Figure 3d indicate that the running time of testing in PEDK-1 and PEDK-2 is linear with O(n),
and the time cost in PEDK-2 is nearly four times more than that in PEDK-1 since the pairing
operations in a composite group are more time-consuming than that in a prime one.

5 10 15 20 25

0
5

10
20

30

a

of keywords

tim
e

co
st

 o
f k

ey
 g

en
er

at
io

n
(1
03
m
s)

Scheme Name
PEDK-1
PEDK-2

5 10 15 20 25

10
0

20
0

30
0

40
0

b

of keywords

tim
e

co
st

 o
f i

nd
ex

 b
ui

ld
in

g
(1
03
m
s)

5 10 15 20 25

10
0

20
0

30
0

40
0

c

of keywords

tim
e

co
st

 o
f t

ra
pd

oo
r g

en
er

at
io

n
(1
03
m
s)

5 10 15 20 25

0
10
00

20
00

30
00

d

of keywords

tim
e

co
st

 o
f t

es
t (
10

3 m
s)

Figure 3. Impact of n on the time cost of key generation (a), index construction (b), trapdoor generation
(c) and testing (d) in PEDK-1 and PEDK-2. (D = 100, m = 5, n = {5, 10, 15, 20, 25}).

Impact of the keyword size (m). According to the analysis in Section 5.1, we know that m only
affects algorithms of trapdoor generation and testing. For an index with 25 keywords (n = 25), Figure 4
shows that the time consumption in trapdoor generation and testing are linear with O(m). Specifically,
the execution time of trapdoor generation in the PEDK-2 scheme is less than that in the PEDK-1 scheme,
while the time cost for testing in the PEDK-2 scheme is more than that in the PEDK-1 scheme.

Information 2018, 9, 272 14 of 21

5 10 15 20 25

0
50
00

10
00
0

15
00
0

20
00
0

a

of keywords

tim
e

co
st

 o
f t

ra
pd

oo
r g

en
er

at
io

n
(1
03
m
s)

Scheme Name
PEDK-1
PEDK-2

5 10 15 20 25

0
50
00

10
00
0

15
00
0

20
00
0

b

of keywords

tim
e

co
st

 o
f t

es
tin

g
(1
03
m
s)

Figure 4. Impact of m on the time cost of trapdoor generation (a) and testing (b) in PEDK-1 and PEDK-2.
(D = 100, n = 25, m = {5, 10, 15, 20, 25}).

B.2: Storage Overhead.
As shown in Figure 5, we can argue that:

(1) Figure 5a–c show the impact of n on the storage size of keys (pk and sk), indices and trapdoors.
Figure 5a verifies that the storage size of keys is linear with O(n2) in PEDK-1, while O(n) in
PEDK-2. Given a fixed parameter m, Figure 5b,c show that the storage size of indices and
trapdoors is linear with O(n), and PEDK-2 needs less space overhead than PEDK-1 since PEDK-2
needs less group elements in the index and trapdoor.

(2) Because the parameter m only affects the phases of trapdoor and test, we only present Figure 5d
to show the impact of m on the storage size of trapdoors. Given a fixed parameter n, both the
trapdoor size in PEDK-1 and that in PEDK-2 are linear with O(m). Due to owning less elements
in the trapdoor, the space consumption in PEDK-2 is still less than that in PEDK-1.

Information 2018, 9, 272 15 of 21

5 10 15 20 25

0
10
0

20
0

30
0

40
0

50
0

a

of keywords

st
or

ag
e

co
st

 o
f p

k
an

d
sk

 (k
b)

Scheme Name
PEDK-1
PEDK-2

5 10 15 20 25

15
0

25
0

35
0

45
0

b

of keywords

st
or

ag
e

co
st

 o
f i

nd
ic

es
 (k
b)

5 10 15 20 25

50
0

10
00

15
00

20
00

c

of keywords

st
or

ag
e

co
st

 o
f t

ra
pd

oo
rs

 fo
r n

 (k
b)

5 10 15 20 25

2
4

6
8

10
d

of keywords

st
or

ag
e

co
st

 o
f t

ra
pd

oo
rs

 fo
r m

 (m
b)

Figure 5. Impact of n on the storage cost of keys (a), indices (b) and trapdoors (c) in PEDK-1 and
PEDK-2 (D = 100, m = 5, n = {5, 10, 15, 20, 25}); impact of m on the storage cost of trapdoors (d) in
PEDK-1 and PEDK-2 (D = 100, n = 5, m = {5, 10, 15, 20, 25}).

6. Conclusions

In this paper, we proposed a new approach that can convert the operation of disjunctive
keyword search into inner product operations among vectors. Based on this approach, we give
two concrete schemes which are better than previous schemes and proven to be secure under an
adaptive security model.

To justify the efficiency of the proposed schemes, we present detailed theoretical analysis
and experimental results. These results show that: (1) compared with previous PEDK schemes,
the proposed two schemes are more efficient; (2) the first proposed scheme based on the IPE has better
performance in testing phase; and (3) the second one achieves better time and space complexities
on key generation, index building and trapdoor generation by taking advantage of the composite
order bilinear groups. Moreover, because each document has its own encrypted index, we can easily
accelerate the search process by utilizing the technique of parallel computation. The search process is

Information 2018, 9, 272 16 of 21

preformed by the cloud server, which has strong computing power. Considering this actual situation
and the experimental result, we argue that our scheme is more practical in the cloud platform.

In conclusion, our proposed schemes are beneficial for applications with computation and memory
limitations. The future work is to create efficient encryption schemes supporting more complex query
condition, e.g., simple boolean keyword search like q1 ∨ q2 ∧ q3.

Author Contributions: Conceptualization, Y.Z. and Y.L.; Methodology, Y.Z. and Y.L.; Software, Y.Z. and Y.W.;
Validation, Y.Z., Y.L. and Y.W.; Formal Analysis, Y.Z. and Y.L.; Investigation, Y.Z. and Y.L.; Resources, Y.Z. and Y.L.;
Data Curation, Y.Z. and Y.W.; Writing—Original Draft Preparation, Y.Z.; Writing—Review and Editing, Y.Z., Y.L.
and Y.W.; Visualization, Y.Z.; Supervision, Y.Z.; Project Administration, Y.Z.; Funding Acquisition, Y.Z. and Y.L.

Funding: This research was funded by the National Natural Science Foundation of China under Grant
No. 61402393, 61601396, and Nanhu Scholars Program for Young Scholars of XYNU.

Acknowledgments: The authors gratefully acknowledge the National Natural Science Foundation of China under
Grant No. 61402393, 61601396, and Nanhu Scholars Program for Young Scholars of XYNU.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

PECK Public key encryption with conjunctive keyword search
PEDK Public key encryption with disjunctive keyword search
PECDK Public key encryption with conjunctive and disjunctive keyword search
IPE Inner product encryption
SE Searchable encryption
SSE Searchable symmetric key encryption
SPE Searchable public key encryption
PK Public key
SK Secret key
DPVS Dual pairing vector space
XYNU Xinyang normal university

Appendix A

Proof of Lemma 1.

Proof. Given D = (N = p1 p2 p3 p4, G, GT , ê, g1 ∈ Gp1 , g3 ∈ Gp3 , g4 ∈ Gp4), B simulate GameReal with A.
With probability ε, A can generate a keyword w and {a0, a1, . . . , an} such that ∑n

i=0 ai H1(w)imodN 6= 0
and ∑n

i=0 ai H1(w)imodp2 = 0. By computing a = gcd(∑n
i=0 ai H1(w)i, N), B uses w and {a0, a1, . . . , an}

to generate a non-trivial factor of N . Let b = N
a . Considering that p2 divides a and N = ab = p1 p2 p3 p4,

we focus on three cases:

• Case 1: p1 divides b,
• Case 2: p1 can not divide b and p4 can divide b,
• Case 3: a = p1 p2 p4 and b = p3.

The probability of at least one of these cases occurring is larger than ε
3 . In case 1, given D and

T where T ∈ Gp1 or T ∈ Gp1 p2 , B computes Tb. If Tb is the identity element of GT , then T ∈ Gp1 .
Otherwise, T ∈ Gp1 p2 . Therefore, B can break the GSD assumption.

Case 2 is the same as Case 1 except that T ∈ Gp4 or T ∈ Gp2 p4 . B computes Tb. If Tb is the identity
element of GT , then T ∈ Gp4 . Otherwise, T ∈ Gp2 p4 .

In case 3, given D = (N = p1 p2 p3 p4, G, GT , ê, D1D2 ∈ Gp1 p2 , B2B3 ∈ Gp2 p3 , g1 ∈ Gp1, g3 ∈
Gp3, g4 ∈ Gp4) and T where T ∈ Gp1 p3 or T ∈ Gp1 p2 p3 , B computes ê(T, (B2B3)

b). If ê(T, (B2B3)
b) is the

identity element of GT , then T ∈ Gp1 p3 . Otherwise, T ∈ Gp1 p2 p3 .

Information 2018, 9, 272 17 of 21

Proof of Lemma 2.

Proof. Given D = (N = p1 p2 p3 p4, G, GT , ê, g1 ∈ Gp1, g3 ∈ Gp3, g4 ∈ Gp4), and T where T ∈ Gp1

or T ∈ Gp1 p2 , B can simulate Game0 or GameReal with A. To generate the public key, B chooses
the function H1 and random exponents a, c, u, ai, bi, αi and βi ∈ ZN for each i ∈ [0, n] and sets
A1

βi A4i = g1
aβi g4

bi , A1
αi B4i = g1

aαi g4
ai and U1U4 = gu

1 gc
4 for each i ∈ [0, n]. Obviously, U1 = gu

1 .
B sends public key {N, H1, U1U4, A1

βi A4i, A1
αi B4i, g4} to A. When A asks B for a key of a keyword set

Q = {q1, q2, . . . , qm} where m ≤ n, B chooses random exponents rj, k j0, k j1, . . . , k jn, k j ∈ ZN and two

random vector bases B = (
−→
b1 , . . . ,

−→
bm)T , B∗ = (

−→
b1
∗, . . . ,

−→
bm
∗)T . Suppose that

−→
bt = {bt1, bt2, . . . , btm}

and
−→
bt
∗ = {b∗t1, b∗t2, . . . , b∗tm} where t ∈ [1, m], Kji = g

u
r1b1j H1(q1)

i+r2b2j H1(q2)
i+...+rmbmj H1(qm)i

βi
1 g

kji
3 and Kj =

g1
a ∑n

i=0
αi(r1b1j H1(q1)

i+r2b2j H1(q2)
i+...+rmbmj H1(qm)i)

βi g
kj
3 can be obtained, where i ∈ [0, n], j ∈ [1, m].

After that, A sends B two challenge keyword sets, W(0) = {w(0)
1 , w(0)

2 , . . . , w(0)
n } and W(1) =

{w(1)
1 , w(1)

2 , . . . , w(1)
n }. B randomly chooses β ∈ {0, 1} and computes a n-degree polynomial f (x)

mentioned above. Given C40, C41, . . ., C4n and C4 ∈ Gp4 randomly, B generates the index as follows:

C1i = Ta(βix
(β)
i +αi)C4i and C2 = TuC4 where i ∈ [0, n].

If T ∈ Gp1 p2 , suppose that T = gs
1gs′

2 , then this is a semi-functional index with zci = s′a(βix
(β)
i + αi)

and zc = s′u. Since a, u, αi, βi are chosen randomly modulo N, we can find that the value of zci and zc

module p2 is unrelated with the value of a, u, αi, βi module p1 where i ∈ [0, n]. The index is normal
if T ∈ Gp1 . Therefore, if A can distinguish the GameRestricted from Game0 with advantage ε, then the
advantage of B using the output of A to break Assumption 1 is ε.

Proof of Lemma 3.

Proof. Given D = (N = p1 p2 p3 p4, G, GT , ê, g1 ∈ Gp1, g3 ∈ Gp3, g4 ∈ Gp4, D1D2 ∈ Gp1 p2 , B2B3 ∈
Gp2 p3) and T where T ∈ Gp1 p3 or T ∈ Gp1 p2 p3 , B can simulate Gamek−1 or Gamek with
A. Choosing random exponents a, u, c, ai, bi, αi and βi ∈ ZN for each i ∈ [0, n], B sets
A1

βi A4i = g1
aβi g4

bi , A1
αi B4i = g1

aαi g4
ai and U1U4 = gu

1 gc
4 for each i ∈ [0, n], and sends

pk = {N, H1, A1
βi A4i, A1

αi B4i, g4, U1U4} to A. Any time A asks the l-th trapdoor for a keyword
set Q(l) = (q(l)1 , q(l)2 , . . . , q(l)m), where m ≤ n, B generates the normal trapdoor or the semi-function
trapdoor for the keyword set Q(l).

For l < k, B creates a semi-function trapdoor. Choosing random exponents r(l)j , z(l)j , t(l)ji ∈ ZN

and two random vector bases B(l) = (
−→
b(l)1 , . . . ,

−→
b(l)m)T and B(l)∗ = (

−→
b(l)1
∗, . . . ,

−→
b(l)m
∗)T , where i ∈ [0, n], j ∈

[1, m], suppose that
−→
b(l)t = {b(l)t1 , b(l)t2 , . . . , b(l)tm} and

−→
b(l)t
∗ = {b(l)t1

∗
, b(l)t2

∗
, . . . , b(l)tm

∗
}, B computes:

Kji = g1
u

r(l)1 b(l)1j H1(q
(l)
1)i+r(l)2 b(l)2j H1(q

(l)
2)i+...+r(l)m b(l)mj H1(q

(l)
m)i

βi (B2B3)
t(l)ji and

Kj = g1
a ∑n

i=0

αi(r
(l)
1 b(l)1j H1(q

(l)
1)i+r(l)2 b(l)2j H1(q

(l)
2)i+...+r(l)m b(l)mj H1(q

(l)
m)i)

βi (B2B3)
z(l)j .

It is identical to the semi-functional trapdoor with g
ξzkj
2 = B2

z(l)j and g
ξzkji
2 = B2

t(l)ji .

For l > k, B generates a normal trapdoor. Randomly selecting exponents r(l)j , z(l)j and t(l)ji ∈ ZN and

two random vector bases B(l) = (
−→
b(l)1 , . . . ,

−→
b(l)m)T , B(l)∗ = (

−→
b(l)1
∗, . . . ,

−→
b(l)m
∗)T , where i ∈ [0, n], j ∈ [1, m],

suppose that
−→
b(l)t = {b(l)t1 , b(l)t2 , . . . , b(l)tm} and

−→
b(l)t
∗ = {b(l)t1

∗
, b(l)t2

∗
, . . . , b(l)tm

∗
}, B sets:

Kji = g1
u

r(l)1 b(l)1j H1(q
(l)
1)i+r(l)2 b(l)2j H1(q

(l)
2)i+...+r(l)m b(l)mj H1(q

(l)
m)i

βi (g3)
t(l)ji ,

Information 2018, 9, 272 18 of 21

Kj = g1
a ∑n

i=0

αi(r
(l)
1 b(l)1j H1(q

(l)
1)i+r(l)2 b(l)2j H1(q

(l)
2)i+...+r(l)m b(l)mj H1(q

(l)
m)i)

βi (g3)
z(l)j .

To create the k-th requested trapdoor, B chooses random exponents r(k)j , z(k)j and t(k)ji ∈ ZN and

two random vector bases B(k) = (
−→
b(k)1 , . . . ,

−→
b(k)m)T , B(k)∗ = (

−→
b(k)1
∗, . . . ,

−→
b(k)m
∗)T , where i ∈ [0, n], j ∈ [1, m].

Suppose that
−→
b(k)t = {b(k)t1 , b(k)t2 , . . . , b(k)tm } and

−→
b(k)t
∗ = {b(k)t1

∗
, b(k)t2

∗
, . . . , b(k)tm

∗
}, B sets:

Kji = Tu
r(k)1 b(k)1j H1(q

(k)
1)i+r(k)2 b(k)2j H1(q

(k)
2)i+...+r(k)m b(k)mj H1(q

(k)
m)i

βi (g3)
t(k)ji ,

Kj = Ta ∑n
i=0

αi(r
(k)
1 b(k)1j H1(q

(k)
1)i+r(k)2 b(k)2j H1(q

(k)
2)i+...+r(k)m b(k)mj H1(q

(k)
m)i)

βi (g3)
z(k)j .

Obviously, it can be found that:

zkji = u
r(k)1 b(k)1j H1(q

(k)
1)i+r(k)2 b(k)2j H1(q

(k)
2)i+...+r(k)m b(k)mj H1(q

(k)
m)i

βi
,

zkj = a ∑n
i=0

αi(r
(k)
1 b(k)1j H1(q

(k)
1)i+r(k)2 b(k)2j H1(q

(k)
2)i+...+r(k)m b(k)mj H1(q

(k)
m)i)

βi
.

After the trapdoor request phase, A sends B two challenge keyword sets, W(0) =

{w(0)
1 , w(0)

2 , . . . , w(0)
n } and W(1) = {w(1)

1 , w(1)
2 , . . . , w(1)

n }. B randomly chooses a β ∈ {0, 1} and
generates the semi-functional index. B computes a n-degree polynomial f (x) mentioned above.
Given C40, C41, . . ., C4n and C4 ∈ Gp4 randomly, B generates the index as follows:

C1i = (D1D2)
a(βia

(β)
i +αi)C4i and C2 = (D1D2)

uC4,

where i ∈ [0, n].
Note that this sets zc = u and zci = a(βix

(β)
i + αi). Since a, u, αi, βi are chosen randomly modulo

N, we can find that the value of zci and zc module p2 is unrelated with the value of a, u, αi, βi module
p1, where i ∈ [0, n].

Let M′j = ∑n
i=0 zcizkji − zczkj = au(∑n

i=0 r(k)1 b(k)1j a(β)
i H1(q

(k)
1)i + ∑n

i=0 r(k)2 b(k)2j a(β)
i H1(q

(k)
2)i + . . . +

∑n
i=0 r(k)m b(k)mj a(β)

i H1(q
(k)
m)i). If it exists y ∈ [1, m] such that ∑n

i=0 a(β)
i H1(q

(k)
y)i = 0modp2, there is

∏m
j=1 M′j

b(k)yj

∗

= 0modp2. It means that, if ∑n
i=0 a(β)

i H1(q
(k)
y)i = 0modp2, then A has queried an invalid

key according to the additional modular restriction. Therefore, according to the GameRestricted, as long
as it does not exist j ∈ [1, m] such that ∑n

i=0 a(β)
i H1(q

(k)
j)i = 0modp2, we can find that zkj, zc, zkji and zci

are randomly distributed to A for each i ∈ [0, n], j ∈ [1, m].
In addition, we observe that, if B tries to verify whether the k-th trapdoor is semi-functional by

generating a semi-functional index of a keyword set W(k) = {w(k)
1 , w(k)

2 , . . . , w(k)
n } such that W(k) ∩

Q(k) 6= ∅, then B can find that the test algorithm can still work whether the k-th key is semi-functional

or not due to ∏m
j=1 M′j

b(k)yj

∗

= 0modp2, if Q(k)
j ∈W(k).

Therefore, we argue that, if T ∈ Gp1 p3 , then B has simulated Gamek−1 properly. If T ∈ Gp1 p2 p3 ,
then B has simulated Gamek properly . Thus, we can find that, if A can distinguish the Gamek−1 from
Gamek with advantage ε, then the advantage of B using the output of A to break Assumption 1 is ε.

Proof of Lemma 4.

Proof. Given D = (N = p1 p2 p3 p4, G, GT , ê, g2 ∈ Gp2 , g3 ∈ Gp3 , g4 ∈ Gp4 , A1 A4 ∈ Gp1 p4 , E1E2 ∈
Gp1 p2) and T where T ∈ Gp2 p4 or T ∈ Gp1 p2 p4 , B can simulate GameFinalk−1

or GameFinalk with
A. B chooses the function H1 and random exponents c, u, α, ai, bi, αi, βi ∈ ZN for i ∈ [0, n],
and generates A1

βi A4i = (A1 A4)
βi gai

4 , A1
αi B4i = (A1 A4)

αi gbi
4 , U1U4 = (A1 A4)

ugc
4. This implicitly

sets U1 = Au
1 . Then, B sends public key {N, H1, U1U4, A1

βi A4i, A1
αi B4i, g4} to A. Whenever A asks

B for a key of a keyword set Q = {q1, q2, . . . , qm} where m ≤ n, B chooses random exponents rj,

Information 2018, 9, 272 19 of 21

k j0, k j1, . . . , k jn, k j, wj0, wj1, . . . , wjn, wj ∈ ZN and two random vector bases B = (
−→
b1 , . . . ,

−→
bm)T , B∗ =

(
−→
b1
∗, . . . ,

−→
bm
∗)T . Suppose that

−→
bt = {bt1, bt2, . . . , btm},

−→
bt
∗ = {b∗t1, b∗t2, . . . , b∗tm}, where t ∈ [1, m],

B creates the semi-functional trapdoor as follows:

Kji = (E1E2)
u

r1b1j H1(q1)
i+r2b2j H1(q2)

i+...+rmbmj H1(qm)i

βi g
wji
2 g

kji
3 ,

Kj = (E1E2)
a ∑n

i=0
αi(r1b1j H1(q1)

i+r2b2j H1(q2)
i+...+rmbmj H1(qm)i)

βi g
wj
2 g

kj
3 ,

where i ∈ [0, n], j ∈ [1, m].
At some point, A sends B two challenge keyword sets, W(0) = {w(0)

1 , w(0)
2 , . . . , w(0)

n } and W(1) =

{w(1)
1 , w(1)

2 , . . . , w(1)
n }. B randomly chooses β ∈ {0, 1} and computes a n-degree polynomial f (x)

mentioned above. Given C40, C41, . . ., C4n and C4 ∈ Gp4 randomly and random elements xi, yi, r2, s ∈
ZN where i ∈ [0, n], B generates the index as follows:

For each i < k:

C1i = (A1 A4)
xi gyi

2 C4i = Axi
1 C(i)

24 ,

where C(i)
24 = gyi

2 C4i A
xi
4 .

For each i > k:

C1i = (A1
βi A4i)

sa(β)
i × (A1

αi B4i)
s × gyi

2 C4i = A
s(βia

(β)
i +αi)

1 C(i)
24 ,

where C(i)
24 = gyi

2 A
sa(β)

i
4i Bs

4iC4i.
For i = k:

C1k = (A1
βk A4k)

sa(β)
k × (A1

αk B4k)
s × gyk

2 C4i × T = A
s(βka(β)

k +αk)

1 C(k)
24 T,

where C(k)
24 = gyk

2 A
sa(β)

k
4k Bs

4kC4k.
For all i:

C2 = (U1U4)
s × gr2

2 C4 = Us
1R24,

where R24 = gr2
2 C4Us

4.
Since A1 A4 is chosen randomly in G1 and αi, βi, yi, u, s are chosen randomly in ZN , we can find that

the value of zci and zc module p2 is unrelated with the value of s, u, αi, βi module p1, where i ∈ [0, n].
If T ∈ Gp2 p4 , there is a properly distributed semi-functional index with a challenge keyword set

that its first k− 1 elements are random while the rest elements are normal. In this case, B has properly
simulated GameFinalk−1

. If T ∈ Gp1 p2 p4 , there is a properly distributed semi-functional index with a
challenge keyword set that its first k elements are random and the rest elements are normal. In this
case, B has simulated GameFinalk properly.

Therefore, we can find that, if A can distinguish the GameFinalk−1
from GameFinalk with advantage

ε, then the advantage of B using the output of A to break Assumption 1 is ε.

References

1. Park, D.J.; Kim, K.; Lee, P.J. Public Key Encryption with Conjunctive Field Keyword Search. In Proceedings
of the 5th International Workshop, WISA 2004, Jeju Island, Korea, 23–25 August 2004; Lecture Notes in
Computer Science; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3325, pp. 73–86.

2. Hwang, Y.H.; Lee, P.J. Public Key Encryption with Conjunctive Keyword Search and Its Extension to a
Multi-user System. In Proceedings of the First International Conference, Tokyo, Japan, 2–4 July 2007; Lecture
Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4575, pp. 2–22.

3. Boneh, D.; Waters, B. Conjunctive, Subset, and Range Queries on Encrypted Data. In Proceedings of the 4th
Theory of Cryptography Conference, TCC 2007, Amsterdam, The Netherlands, 21–24 February 2007; Lecture
Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4392, pp. 535–554.

Information 2018, 9, 272 20 of 21

4. Katz, J.; Sahai, A.; Waters, B. Predicate encryption supporting disjunctions, polynomial equations, and inner
products. J. Cryptol. 2013, 26, 191–224. [CrossRef]

5. Zhang, Y.; Lu, S. POSTER: Efficient Method for Disjunctive and Conjunctive Keyword Search over Encrypted
Data. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security,
Scottsdale, AZ, USA, 3–7 November 2014; pp. 1535–1537.

6. Song, D.; Wagner, D.; Perrig, A. Practical Techniques for Searching on Encrypted Data. In Proceedings
of the IEEE Symposium on Research in Security and Privacy 2000, Berkeley, CA, USA, 14–17 May 2000;
IEEE Computer Society Press: Los Alamitos, CA, USA, 2000; pp. 44–55.

7. Goh, E.J. Secure indexes. IACR Cryptol. ePrint Arch. 2003, 2003, 216.
8. Li, J.; Lin, X.; Zhang, Y.; Han, J. KSF-OABE: Outsourced attribute-based encryption with keyword search

function for cloud storage. IEEE Trans. Ser. Comput. 2017, 10, 715–725. [CrossRef]
9. Li, J.; Shi, Y.; Zhang, Y. Searchable Ciphertext-Policy Attribute-Based Encryption with Revocation in Cloud

Storage. Int. J. Commun. Syst. 2017, 30, e2942. [CrossRef]
10. Cash, D.; Jarecki, S.; Jutla, C.; Krawczyk, H.; Roşu, M.C.; Steiner, M. Highly-Scalable Searchable

Symmetric Encryption with Support for Boolean Queries. In Proceedings of the 33rd Annual Cryptology
Conference, Santa Barbara, CA, USA, 18–22 August 2013; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2013; pp. 353–373.

11. Cash, D.; Jaeger, J.; Jarecki, S.; Jutla, C.S.; Krawczyk, H.; Rosu, M.C.; Steiner, M. Dynamic Searchable
Encryption in Very-Large Databases: Data Structures and Implementation. Netw. Distrib. Syst. Secur. Symp.
2014, 14, 23–26.

12. Boldyreva, A.; Chenette, N.; Lee, Y.; O’neill, A. Order-Preserving Symmetric Encryption. In Proceedings of
the 28th Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Cologne, Germany, 26–30 April 2009; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2009; pp. 224–241.

13. Zerr, S.; Olmedilla, D.; Nejdl, W.; Siberski, W. Zerber+R:top-k retrieval from a confidential index.
In Proceedings of the 12th International Conference on Extending Database Technology: Advances in
Database Technology, Saint Petersburg, Russia, 24–26 March 2009; pp. 439–449.

14. Wang, C.; Cao, N.; Ren, K.; Lou, W. Enabling Secure and Efficient Ranked Keyword Search over Outsourced
Cloud Data. IEEE Trans. Parallel Distrib. Syst. 2012, 23, 1467–1479. [CrossRef]

15. Fu, Z.; Sun, X.; Liu, Q.; Zhou, L.; Shu, J. Achieving Efficient Cloud Search Services: Multi-Keyword Ranked
Search over Encrypted Cloud Data Supporting Parallel Computing. IEICE Trans. Commun. 2015, 98, 190–200.
[CrossRef]

16. Xia, Z.; Wang, X.; Sun, X.; Wang, Q. A Secure and Dynamic Multi-Keyword Ranked Search Scheme over
Encrypted Cloud Data. IEEE Trans. Parallel Distrib. Syst. 2016, 27, 340–352. [CrossRef]

17. Boneh, D.; Di Crescenzo, G.; Ostrovsky, R.; Persiano, G. Public Key Encryption with Keyword Search.
In Proceedings of the International Conference on the Theory and Applications of Cryptographic Techniques,
Interlaken, Switzerland, 2–6 May 2004; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2004; Volume 3027, pp. 506–522.

18. Dan, B.; Franklin, M. Identity-Based Encryption from the Weil Pairing. In Society for Industrial and Applied
Mathematics; Springer: Berlin/Heidelberg, Germany, 2001.

19. Abdalla, M.; Bellare, M.; Catalano, D.; Kiltz, E.; Kohno, T.; Lange, T.; Malone-Lee, J.; Neven, G.;
Paillier, P.; Shi, H. Searchable Encryption Revisited: Consistency Properties, Relation to Anonymous IBE, and
Extensions. In Proceedings of the 25th Annual International Cryptology Conference, Santa Barbara, CA, USA,
14–18 August 2005; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2005;
Volume 3621, pp. 205–222.

20. Li, J.; Yao, W.; Zhang, Y.; Qian, H.; Han, J. Flexible and fine-grained attribute-based data storage in cloud
computing. IEEE Trans. Ser. Comput. 2017, 10, 785–796. [CrossRef]

http://dx.doi.org/10.1007/s00145-012-9119-4
http://dx.doi.org/10.1109/TSC.2016.2542813
http://dx.doi.org/10.1002/dac.2942
http://dx.doi.org/10.1109/TPDS.2011.282
http://dx.doi.org/10.1587/transcom.E98.B.190
http://dx.doi.org/10.1109/TPDS.2015.2401003
http://dx.doi.org/10.1109/TSC.2016.2520932

Information 2018, 9, 272 21 of 21

21. Lewko, A.; Okamoto, T.; Sahai, A.; Takashima, K.; Waters, B. Fully secure functional encryption:
Attribute-based encryption and (hierarchical) inner product encryption. In Proceedings of the 29th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, French Riviera,
France, 30 May–3 June 2010; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany,
2010; Volume 6110, pp. 62–91.

22. Okamoto, T.; Takashima, K. Achieving short ciphertexts or short secret-keys for adaptively secure general
inner-product encryption. Des. Codes Cryptogr. 2015, 77, 138–159. [CrossRef]

23. Zhang, B.; Zhang, F. An efficient public key encryption with conjunctive-subset keyword search. J. Netw.
Comput. Appl. 2011, 34, 262–267. [CrossRef]

24. Song, C.; Liu, X.; Yan, Y. Efficient Public Key Encryption with Field-Free Conjunctive Keywords Search.
In Proceedings of the 6th International Conference, INTRUST 2014, Beijing, China, 16–17 December 2014;
Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2014; pp. 394–406.

25. Wang, B.; Hou, Y.; Li, M.; Wang, H.; Li, H. Scalable multidimensional range search over encrypted cloud
data with tree-based index. In Proceedings of the ACM Symposium on Information, Computer and
Communications Security, Kyoto, Japan, 4–6 June 2014; pp. 111–122.

26. Ding, M.; Gao, F.; Jin, Z.; Zhang, H. An efficient Public Key Encryption with Conjunctive Keyword Search
scheme based on pairings. In Proceedings of the 2012 3rd IEEE International Conference on Network
Infrastructure and Digital Content, Beijing, China, 21–23 September 2013; pp. 526–530.

27. Hwang, M.S.; Hsu, S.T.; Lee, C.C. A New Public Key Encryption with Conjunctive Field Keyword Search
Scheme. Inf. Technol. Control. 2014, 43, 277–288. [CrossRef]

28. Miao, Y.; Ma, J.; Liu, X.; Zhang, J.; Liu, Z. VKSE-MO: Verifiable keyword search over encrypted data in
multi-owner settings. Inf. Sci. 2017, 60, 122105. [CrossRef]

29. Xu, P.; Wu, Q.; Wang, W.; Susilo, W.; Domingo-Ferrer, J.; Jin, H. Generating Searchable Public-Key Ciphertexts
With Hidden Structures for Fast Keyword Search. IEEE Trans. Inf. Forensics Secur. 2017, 10, 1993–2006.

30. Xu, P.; He, S.; Wang, W.; Susilo, W.; Jin, H. Lightweight Searchable Public-key Encryption for Cloud-assisted
Wireless Sensor Networks. IEEE Trans. Ind. Inform. 2017, 14, 3712–3723. [CrossRef]

31. Zhu, H.; Mei, Z.; Wu, B.; Li, H.; Cui, Z. Fuzzy Keyword Search and Access Control over Ciphertexts in Cloud
Computing. In Proceedings of the 22nd Australasian Conference, ACISP 2017, Auckland, New Zealand,
3–5 July 2017; Lecture Notes in Computer Science; Springer: Cham, Germany, 2017; pp. 248–265.

32. Boneh, D.; Goh, E.; Nissim, K. Evaluating 2-dnf formulas on ciphertexts. In Proceedings of the Second
Theory of Cryptography Conference, TCC 2005, Cambridge, MA, USA, 10–12 February 2005; Lecture Notes
in Computer Science; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3378, pp. 325–342.

33. Bellare, M.; Waters, B.; Yilek, S. Identity-based encryption secure against selective opening attack.
In Proceedings of the 8th Theory of Cryptography Conference, TCC 2011, Providence, RI, USA,
28–30 March 2011; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2011.

34. Waters, B. Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions.
In Proceedings of the 29th Annual International Cryptology Conference, Santa Barbara, CA, USA,
16–20 August 2009; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2009;
Volume 5677, pp. 619–636.

35. Caro, A.D. The Java Pairing Based Cryptography Library (JPBC). 2013. pp. 2–24. Available online: http:
//gas.dia.unisa.it/projects/jpbc/ (accessed on 4 December 2013).

36. Yang, Z.; Yang, D.; Dyer, C.; He, X.; Smola, A.; Hovy, E. Hierarchical Attention Networks for Document
Classification. In Proceedings of the 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, San Diego, CA, USA, 12–17 June 2017;
pp. 1480–1489.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10623-015-0131-1
http://dx.doi.org/10.1016/j.jnca.2010.07.007
http://dx.doi.org/10.5755/j01.itc.43.3.6429
http://dx.doi.org/10.1007/s11432-016-0540-x
http://dx.doi.org/10.1109/TII.2017.2784395
http://gas. dia. unisa. it/projects/jpbc/
http://gas. dia. unisa. it/projects/jpbc/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Model of PEDK
	Security Definition of PEDK
	Composite Order Bilinear Groups and Complexity Assumption

	Proposed PEDK Schemes
	Conversion Method
	PEDK-1
	PEDK-2

	Security Analysis
	Security of PEDK-1
	Security of PEDK-2

	Performance Evaluation
	Theoretical Analysis
	Experimental Results

	Conclusions
	
	References

