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Abstract: This paper presents a new latency reduction method for successive-cancellation (SC)
decoding of polar codes that performs a frozen-bit checking on the rate-other (R-other) nodes
of the Fast Simplified SC (Fast-SSC) pruning tree. The proposed method integrates the Fast-SSC
algorithm and the Improved SSC method (frozen-bit checking of the R-other nodes). We apply a
recognition-based method to search for as many constituent codes as possible in the decoding tree
offline. During decoding, the current node can be decoded directly, if it is a special constituent code;
otherwise, the frozen-bit check is executed. If the frozen-bit check condition is satisfied, the operation
of the R-other node is the same as that of the rate-one node. In this paper, we prove that the frame
error rate (FER) performance of the proposed algorithm is consistent with that of the original SC
algorithm. Simulation results show that the proportion of R-other nodes that satisfy the frozen-bit
check condition increases with the signal-to-noise-ratio (SNR). Importantly, our proposed method
yields a significant reduction in latency compared to those given by existing latency reduction
methods. The proposed method solves the problem of high latency for the Improved-SSC method at
a high code rate and low SNR, simultaneously.

Keywords: polar codes; successive cancellation decoding; latency reduction; constituent code;
frozen-bit check

1. Introduction

Polar codes [1] have been proven to achieve the symmetric capacity of memoryless channels with
a successive-cancellation (SC) decoder. They have low implementation complexity and a very low
error-floor [2]. However, the SC decoding speed is limited by the serial process, resulting in a high
decoding latency. To decode a length-N polar code, the basic SC decoder should require 2(N − 1)
clock cycles [3]. In [4], a simplified SC (SSC) decoder is reported, for which the latency is reduced
by classifying three types of constituent code nodes in the decoding tree. These are rate-zero (R-0),
rate-one (R-1), and rate-other (R-other) nodes, the leaves of which are all frozen bits, all information
bits, and partially frozen and information bits, respectively. The local decoder of an R-1 node uses
threshold detection. Further, an R-0 node is a zero vector at any time. An R-other node retains the
SC decoding rules and contributes the most latency. Two methods to improve the parallelism of
the R-other node have been developed: the recognition-based method [5–8] and the check-based
method [9–11].

The recognition-based method recognizes the constituent codes offline before decoding. The Fast
Simplified SC (Fast-SSC) decoder has been introduced [5] to recognize the two other constituent code
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types (apart from R-0, R-1, and R-other); thus, the repetition (Rep) codes and single parity-check
(SPC) codes can be decoded in parallel with low-complexity algorithms without traversing their
corresponding sub-trees. Both the SSC decoder and Fast-SSC decoder provide significant latency
reduction in comparison with that obtained from the SC decoder, while exhibiting the same
performance as the SC decoder [5]. Further, some software decoders explore the implementation of
the Fast-SSC algorithm [6–8]. However, the decoding latencies of the SSC and Fast-SSC decoders are
constant without the influence of the channel condition.

The check-based method is designed to convert the R-other nodes to the constituent codes online,
when a specific condition or check is satisfied [9–11]. To decrease the latency, resource constrained
maximum-likelihood (ML) decoding on R-other nodes has been proposed [9]. To obtain the Improved
Modified SC(IMSC) Decoder, the frozen-bit check (FC) has been applied to the SSC decoder [10]
(Note that a similar method has been studied in [11]). Assuming that an R-other node follows the R-1
node rule of the SSC decoder, the bit estimates of the current code and its leaf node are decoded directly.
If the bit estimates of all frozen leaf nodes are zero following checking, the FC condition is satisfied.
Then, the bit estimate of the R-other node obtained in the previous step is valid, and there is no need
to traverse the corresponding sub-trees. Otherwise, the R-other node still follows the original SC
decoding rules. With this method, latency and complexity are reduced without loss of error-correction
performance [10]. Note that the percentage of R-other nodes satisfying the FC condition increases with
the signal-to-noise ratio (SNR), which introduces dynamic features in the decoding process. However,
the decoding latency of the high-rate IMSC decoder is extremely high in the low-SNR range.

In this study, we propose a new type of latency reduction method called the Fast-ISSC algorithm,
which performs the FC on the R-other nodes of the Fast-SSC pruning tree. Before decoding,
the decoding tree becomes a Fast-SSC pruning tree through the recognition-based method. During
decoding, the specific constituent codes follow the specific decoding rules. The R-other nodes are
converted to R-1 nodes when the FC condition is satisfied. The Fast-ISSC decoder integrates the
Fast-SSC algorithm and the FC method. The relationships between the various SC decoding latency
reduction methods are shown in Figure 1.

The proposed Fast-ISSC algorithm is the first technique that integrates the stability of the
recognition-based method and the dynamics of the check-based method. The main contribution
of this study is as follows.

(1) This approach realizes the lowest latency compared to the existing methods without
error-correction performance loss.

(2) The approach is highly adaptable to different rates and different channel conditions.
(3) Our method facilitates further study of latency reduction for polar decoding. Future advances in

recognition-based methods and check-based methods can be integrated together to implement a
faster SC decoder.

We begin this paper by reviewing the SSC and Fast-SSC decoding algorithms in Section 2.
We then present our improved decoding algorithm (Fast-ISSC) and analyze its latency and decoding
performance in Section 3. In Section 4, we present simulation results obtained using the proposed
algorithm. Finally, conclusions are presented in Section 5.

Figure 1. Relationships between the various SC decoding latency reduction methods.
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2. Background

A polar code is defined by three parameters, (N, R,A), where the code length N = 2m,
cardinality of information set A is K, and rate R = K/N. The set of the frozen bits indices are
denoted by Ac, and all frozen bits uAc are set to zero. For simplicity, we denote (u1, u2, ..., uN) as uN

1 .
The original SC decoding graph can be converted to a message-passing algorithm executed on

a full binary tree. The SC decoding process is executed sequentially and each leaf node is activated.
The SC decoding tree for an (16,8) polar code (P(16, 8)) is shown in Figure 2a. The R-0 and R-1 nodes
are shown as white and black circles, respectively, and the R-other nodes are represented by squares.
The messages passed to child nodes are log-likelihood ratios (LLRs) denoted αv, while those passed
to parent nodes are bit estimates denoted βv. Messages to a left child node are calculated using the
sum-product update rules [12]:

αvl [i] = 2 tanh−1(tanh(
αv[2i− 1]

2
) tanh(

αv[2i]
2

)), f or i = 1 : 2m−dv−1 (1)

where dv is the depth of the current constituent code.
Messages to a right child node are calculated using the formula

αvr [i] = αv[2i− 1](1− 2βvl [i]) + αv[2i], f or i = 1 : 2m−dv−1 (2)

where βvl is the bit estimate from the left child.

l
 

l
 r
 

r
 

v
 

v
 

dv=0

dv=1

dv=2

dv=3

dv=4

(a) SC

l
 

l
 r
 

r
 

v
 

v
 

dv=0

dv=1

dv=2

dv=3

dv=4

(b) SSC

Figure 2. Decoder trees corresponding to (a) SC and (b) SSC decoding algorithms for P(16, 8).

The locations of some frozen bits indices are special, and these can be utilized to reduce the
decoding latency. This concept was first employed by the SSC decoder to reduce the latency. For a
sub-tree rooted at node v, Iv denotes the set of all leaf nodes indices. A node v is a R-1 (R-0) node if
Iv ⊂ A(Iv ⊂ [N] \ A). A sub-tree corresponding to the R-0 and R-1 nodes can be cut, removing the
need to traverse the sub-tree [4]. The R-other nodes still follow the original SC decoder rule. The SSC
pruned tree is shown in Figure 2b, corresponding to the same code as for Figure 2a. The SSC decoder
reduces the latency and number of calculations for the real value vector αv. As the gains of the latency
reduction are obviously large, many studies have been conducted to improve the SSC decoder [5–11].

The Fast-SSC decoder recognizes the other two constituent codes, namely, the Rep codes, for which
only the last leaf is not a frozen bit, and the SPC codes, for which only the first leaf is a frozen bit [5].
A node v, corresponding to a constituent code of length Nv, receives the soft-message vector αv to the
constituent decoder; the Rep and SPC codes can provide an codeword estimate βv in parallel using
low-complexity algorithms [5]. The output for a Rep code is

βv[i] =

{
0, ∑i αv[i] ≥ 0,

1, otherwise.
(3)
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The output of the SPC code is

βv[i] =

βv[i]⊕ parity, i = arg min
i
|αv[i]|,

βv[i], otherwise.
(4)

The parity of a SPC code is calculated as

parity =
Nv−1⊕
i=0

βv[i], (5)

βv[i] = h(αv[i]) =

{
0, αv[i] ≥ 0,

1, otherwise.
(6)

where h(αv[i]) is the hard-decision function based on αv[i].
The Fast-SSC decoder provides a significant latency reduction compared to the SC decoder.

However, the decoding latency of the Fast-SSC decoder is constant without the influence of the
channel condition.

3. Proposed Method

By taking advantage of the special positions of the frozen bits, the Rep and SPC nodes are
identified from the R-other nodes of the SSC pruned tree. Because the frozen leaf bits have no
particular location, there is no corresponding low-complexity decoding algorithm for the remaining
R-other nodes, which causes additional latency. To further reduce the decoding latency and adapt
to the different rates and different channel conditions, we propose an approach that combines the
stability of the recognition-based method and the dynamics of the check-based method, as described
in this section.

The proposed method is called Fast-ISSC. First, the different constituent codes are identified on
the decoding tree offline. During decoding, the current node can be decoded directly if it is a special
constituent code; otherwise, the FC is performed at the R-other nodes, reducing the decoding latency
of those nodes. Simultaneously, the problem of high latency for the check method in the case of a high
code rate and low SNR can be solved. The overall procedure of the Fast-ISSC decoder is described in
Algorithms 1–4. First, the main function is summarized in Algorithm 1. The receiver calculates an LLRs
vector L = (l1, ..., lN)

T with li = ln(W(yi|1)/W(yi|0)), and feeds it into the Fast-ISSC decoder. Then,
the node state initialization is outlined in Algorithm 2. The FC and βv procedures are summarized in
Algorithms 3 and 4, respectively.

3.1. Detailed Description

Node state initialization: The constituent codes, i.e., the R-0, R-1, Rep, SPC, and R-other nodes,
are identified on the decoding tree, offline. Let F = [ f1, f2, ..., fN ]

T denote the frozen bit vector; if the
i corresponds to a frozen bit index, fi = 1, otherwise fi = 0. The leaf node types correspond to the
values of F. Apart from the leaf node level, recognition of the constituent code is based on the left
and right child node types; the recognition is performed in order, from bottom to top, and left to right.
Recognition using binary tree traversal alters the node flag until identifications are no longer obtained.
The flag of each constituent node is set corresponding to the specialized processing at the root of the
constituent codes. Algorithm 2 summarizes the initialization procedure of the node state in the decode
tree. This step forms a Fast-SSC pruning tree. Figure 3a shows an example of a Fast-SSC pruned tree,
which is transformed from Figure 2b. This tree has significantly fewer nodes to operate on and visit
than that of the SSC decoder. The Rep and SPC nodes are indicated by green stripes and cross-hatched
orange, respectively. In Figure 3a, the SPC and Rep nodes at dv = 3 are equivalent, and the code length
is 2. Recognition of the Rep and SPC nodes with greater code length is based on the case in which the
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Rep node length is 2. Once the decoding tree structure has been established, depth-first tree traversal
decoding begins.

For a code length of N = 2m, the data structure of a binary decoding tree T is first generated.
The nodes of the tree are created using a structure type in C++ programming, and its members include
level, le f t, right, parent, index, length, etc. The tree includes m + 1 node levels, indexed from depth
dv = m to dv = 0. Each level dv contains 2dv nodes, and each node of level dv contains 2m−dv LLRs,
and αv and 2m−dv binary values βv. The details of the Fast-ISSC decoding algorithm are as follows.

Algorithm 1: Fast-ISSC decoder.
Input: Channel LLRs L
Output: Decoded codeword Ĉ

1: Node state initialization( )
2: T0[0].αv = L
3: if Flag == 1 then

4: βv = 0 //R-0 nodes
5: Beta_compute( )
6: else if Flag == 2 then

7: αv is calculated as in Equations (1) or (2)
8: βv = h(αv) //R-1 nodes
9: Beta_compute( )

10: else if Flag == 6 or Flag == 4 then

11: αv is calculated as in Equations (1) or (2)//Rep nodes
12: the decoder output is calculated as in Equation (3)
13: Beta_compute( )
14: else if Flag == 5 then

15: αv is calculated as in Equations (1) or (2) //SPC nodes
16: the decoder output is calculated as in Equations (4)–(6)
17: Beta_compute( )
18: else

19: αv is calculated as in Equations (1) or (2)//R-other nodes
20: Flag_check = 0;
21: FC( )
22: if Flag_check == 1 then

23: βv = β̂v
24: Beta_compute( )
25: else

26: Travel toward the next level of the decode tree
27: end if
28: end if
29: return The decoded codeword Ĉ = T0[0].βv.

dv=0

dv=1

dv=2

dv=3

(a) Performance of FC at R−other node

dv=0

dv=1

dv=2

dv=3

(b) Fast−ISSC pruned tree

Figure 3. Example of Fast-ISSC pruned tree based on FC performance at R-other node for P(16, 8).

Decoding process: The soft information, i.e., αv, of the root node is the decoder input, which is
calculated from the received channel values. The flag of the current node is first judged: if it
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corresponds to one of the R-0, R-1, Rep, or SPC codes, it follows the specialized decoding rule
at the roots of these constituent codes; otherwise, the βv values of the R-other node and its leaf nodes
are obtained via the R-1 node rule. Then, the FC is executed; this procedure is shown in Algorithm 3.
If the βv values of all frozen leaf nodes are zero, the FC condition is satisfied. Then, the local process at
this R-other node can be simplified to that of an R-1 node and the sub-tree surrounded by the grey
box in Figure 3a can be pruned, forming a Fast-ISSC pruned tree. The result is shown in Figure 3b.
Otherwise, the local process still follows the SC decoding rules.

Algorithm 2: Node state initialization.
Input: T, F

1: m = log2 N
2: Tm[j].Flag = 1; // f j == 1
3: Tm[j].Flag = 2; // f j == 0
4: for i = m− 1 down to 0 do

5: K = 2i

6: for j = 0 to K− 1 do

7: l = Ti[j].le f t; r = Ti[j].right
8: if Ti+1[l].Flag == 1 and Ti+1[r].Flag==1 then

9: Ti[j].Flag = 1 //R-0 code
10: else if Ti+1[l].Flag == 2 and Ti+1[r].Flag == 2 then

11: Ti[j].Flag = 2 //R-1 code
12: else if Ti+1[l].Flag == 1 and Ti+1[r].Flag == 2 and K == N/2 then

13: Ti[j].Flag = 4//Rep code, length = 2
14: else if Ti+1[l].Flag == 4 and Ti+1[r].Flag == 2 then

15: Ti[j].Flag = 5 //SPC code, length = 4
16: else if Ti+1[l].Flag == 5 and Ti+1[r].Flag == 2 then

17: Ti[j].Flag = 5 //SPC code, length > 4
18: else if Ti+1[l].Flag == 1 and Ti+1[r].Flag == 4 then

19: Ti[j].Flag = 6 //Rep code, length = 4
20: else if Ti+1[l].Flag == 1 and Ti+1[r].Flag == 6 then

21: Ti[j].Flag = 6 //Rep code, length > 4
22: else

23: Ti[j].Flag = 3 //R-other node
24: end if
25: end for
26: end for

Algorithm 3: Frozen-bit check (FC).
Input: αv, minIv, maxIv, F
Output: Flag_check, β̂v

1: β̂v = h(αv); ˆ̂u = β̂vGm−dv
2: sum = 0
3: for i = minIv to maxIv do

4: if fi == 1 then

5: if ˆ̂ui 6= 0 then

6: sum = sum + 1
7: end if
8: end if
9: end for

10: if sum == 0 then

11: Flag_check = 1
12: end if
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Algorithm 3 summarizes the FC procedure implemented on the R-other nodes. The initialization
value of Flag_check is set to zero, and indicates whether the FC is successful.

Bit estimates: If the current node is a right node, its βv is passed to its parent, where it is combined
with the βv of the brother node and passed through the upper level until the root node is reached.
The process for calculation of βv is given in Algorithm 4. The systematic polar code is adopted in this
paper, as it is well suited to a fast decoder; the root node βv constitutes the decoder output. In the case
of systematic polar codes, in addition to improvement of the bit error rate (BER), it is not necessary to
apply an inverse transformation on βv, unlike in the case of non-systematic polar codes.

Algorithm 4: Beta_compute (Tλ[index]).
1: Data: current node Tλ[index]
2: parent =

⌊
index

2

⌋
3: if index is odd then

4: if i is even then

5: βv[2i− 1] = βvl [i] ⊕ βvr [i]
6: else

7: βv[2i] = βvr [i]
8: end if
9: end if

10: if parent is odd then

11: Beta_Compute (Tλ−1[parent])
12: end if

3.2. Latency Analysis

The number of time steps for polar decoding is referred to as the latency. As in [3], the calculations
of βv and the hard decision h(αv) can be performed instantaneously. For the Fast-SSC decoder
discussed in [5], special hardware modules are required for Rep and SPC code decoding. The Rep
code module mainly includes the adder tree structure and sign function. This adder tree can be
implemented through combinational logical. The compare and select unit is the kernel of the SPC
code. The short SPC code is decoded in one time step and the long SPC code requires 2m−dv /P + c
time steps, where c ≥ 1, because some steps are necessary to correct the most unreliable bit estimate
and pipelining [5].

We can ignore the computational cost of FC in the latency analysis, for the following reasons:
(1) The main FC operation is matrix multiplication β̂vGm−dv , and the generator matrix Gm−dv has a
special structure; thus, it can be implemented using combinational logic; (2) It is generally considered
that, if binary operation is not the main component of the all operation, the computational cost can be
ignored; (3) If the R-other node satisfies the FC, the obtained β̂v can be used as the bit estimate βv of
the current node.

Based on the above analysis, the decoding latency calculation in this paper is consistent with [10],
for the sake of fair comparison of different low latency decoders. Here, the latency was determined
under the constraint that only P processing elements(PEs) of a real value vector αv can be calculated
when evaluating Equations (1) and (2), and P was assumed to be a power of 2.

(1) For an R-0 node, the time step for calculation was ignored.
(2) For an R-1, Rep, SPC, or R-other node, if its length was 2m−dv ≤ P , the time step for calculation

was one; otherwise, it was calculated as 2m−dv /P.
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3.3. Performance Analysis

The Fast-ISSS algorithm includes the parallel process for the constituent code and bit process
for the leaf node, and the parallel process is similar to the multi-bit parallel process with the
Symbol-Decision SC Algorithm [13]. During decoding, the constituent code length of the Fast-ISSS
algorithm with parallel process is not fixed; however, the symbol length with the parallel process of
the Symbol-Decision SC Algorithm is fixed.

For the convenience of analysis, two assumptions are made: (1) A length-N polar code is unevenly
divided into K segments, and the length Mi of each segment can be changed, where i = 0, 1, ..., K− 1,
and Mi is a power of 2 (i.e., Mi can be 1). The bit-decision SC and Fast-ISSS algorithms are used to
decode each segment. Both decoding schedules are the same from a segment to the next segment.
(2) During the local decoding, the process length Mi of the two algorithms is not fixed, and are changed
simultaneously; further, the length Mi for both algorithms is same. In terms of the FER performance,
we have the following.

Proposition 1. If the data sequence is independent and equally likely, for an (N, K) polar code over the given
channel, the FER of the Fast-ISSS algorithm PM+B

(
ûN−1

0 6= uN−1
0

)
and the FER of the bit-decision SC

algorithm PB

(
ûN−1

0 6= uN−1
0

)
satisfy:

PM+B

(
ûN−1

0 6= uN−1
0

)
= PB

(
ûN−1

0 6= uN−1
0

)
(7)

Proof. The FER of a polar code with the bit-decision SC algorithm is given in [14].

PB

(
ûN−1

0 6= uN−1
0

)
= 1−

K−1

∏
i=0

(1− p (Ci)) (8)

For the Fast-ISSS algorithm,

PM+B

(
ûN−1

0 6= uN−1
0

)
= 1−

K−1

∏
i=0

(
1− p

(
C′i
))

(9)

Let p (C0) = PSC

(
ûM0−1

0 6= uM0−1
0

)
and p (C′0) = PFast−ISSS

(
ûM0−1

0 6= uM0−1
0

)
represent the

probability that the first segment is erroneously decoded by the SC and M-bit Fast-ISSS algorithms,

respectively. For i = 1, 2, ..., K − 1, let p (Ci) = PSC

(
ûMi+Mi+1−1

Mi
6= uMi+Mi+1−1

Mi

∣∣∣ûMi−1
0 = uMi−1

0

)
and p

(
C′i
)

= PFast−ISSS

(
ûMi+Mi+1−1

Mi
6= uMi+Mi+1−1

Mi

∣∣∣ûMi−1
0 = uMi−1

0

)
denote the segment error

probabilities of the ith segment by the SC and M-bit Fast-ISSS decoding algorithms, provided that all
previous segments are correctly decoded.

We need to analyze PFast−ISSS

(
ûM0−1

0 6= uM0−1
0

)
of the Fast-ISSS algorithm compared with

PSC

(
ûM0−1

0 6= uM0−1
0

)
of the bit-decision SC decoding on the first segment in possible five cases: (a)

For an R-0 node, it does not affect performance. (b) For an R-1 node, it shows that for any R-1 node
v, the calculated βv of both methods has the same results, and that the decisions at leave nodes with
index i ⊂ Iv made by both methods also agree. These results are proved in [4]. (c) For an REP or SPC
node, because the special positions of the frozen bits, the constituent code performs low complexity
ML decoding in parallel based on hard decision, that is, the performance is no worse than the original
SC decoding [5]. (d) If an R-other node v satisfies the FC, the output of the corresponding node v can
be computed by hard decision, i.e., βv = h(αv), û = βvGm−dv , which is consistent with the node in the
same case as the SSC decoding. This theorem has been proven in [10,11] using mathematical induction.
(e) For an R-other node that does not satisfy the FC, the bit-decision SC decoding is performed at the
leaf node.
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If a constituent code is activated, the Mi corresponds to the number of all leaf nodes of this
constituent code. Due to the control of the Algorithm 2 node state initialization( ), Mi ≥ 21 for the R-0,
R-1, or REP code, and Mi ≥ 22 for the SPC or the R-other node. When an R-other node does not satisfy
the FC and its child node is not a constituent code, and the leaf node of the R-other node is activated,
Mi = 20 corresponds to the bit process. The distribution and number of constituent codes are affected
by the code length and code rate of the polar code. When the polar codes are constructed with the
method in [15], the R-0 code is more likely to be the first segment, and M0 ≥ 21.

Summarizing the above five cases, we can conclude that PFast−ISSS

(
ûM0−1

0 6= uM0−1
0

)
of Fast-ISSS

decoding is no worse than PSC

(
ûM0−1

0 6= uM0−1
0

)
of the bit-decision SC decoding for the first segment.

Therefore, we have

p (C0) = p
(
C′0
)

(10)

For 1 ≤ i < K, the segment error probability P
(

ûMi+Mi+1−1
Mi

6= uMi+Mi+1−1
Mi

∣∣∣ûMi−1
0 = uMi−1

0

)
can

be analyzed in a similar way as for Equation (10); we also have

p (Ci) = p
(
C′i
)

f or 1 ≤ i < K. (11)

According to Equations (10) and (11), we have

PM+B

(
ûN−1

0 6= uN−1
0

)
= PB

(
ûN−1

0 6= uN−1
0

)
(12)

Therefore, the FER of the Fast-ISSS algorithm is not degraded compared to the original
SC algorithm.

4. Simulation Results

In this section, we demonstrate the performance of the proposed method with binary phase shift
keying (BPSK) over the additive white Gaussian noise (AWGN) channel. The Tal-Vardy algorithm [15]
was used to find information setA (optimized at SNR = 0 dB for N = 256, and SNR = 2 dB for N = 1024,
2048, and 4096). The system polar encoding was implemented according to [16].

The identification of constituent codes on the decoding tree was performed offline. To calculate the
ratio of the latency reduction, it was necessary to count the number of codes for each of the constituent
code types. The decoding latency was the joint influence on these constituent codes, and the R-other
node was the main cause of the latency. Table 1 lists the number of different nodes when N = 1024.
It was found that, as the code rate increased, the number of R-1 and SPC nodes of longer lengths
increased, while the number of R-0 and Rep nodes of longer lengths decreased.

C(N, R) was defined as the average percentage of R-other nodes satisfying the FC for a code
of a certain length and rate. Figure 4 shows the average percentage of R-other nodes under the
Fast-ISSC decoder for polar codes (256, 1/2), (1024, 3/4), (2048, 1/4), and (4096, 1/2) that satisfy the
FC, along with the corresponding SNR. It is shown that the FC of the Fast-ISSC decoder remained
valid, the proportion of R-other nodes that satisfied the FC increased with the SNR, and 30% of the
R-other nodes satisfied the FC when the SNR was 3 dB. When the SNR was 4.5 dB, 40% of the R-other
nodes of the polar codes (1024, 3/4) and (256, 1/2) satisfied the FC.

The average ratios of latency reduction compared to the SSC decoder for Fast-SSC, IMSC,
and Fast-ISSC for polar codes (1024, 1/4), (1024, 1/2), and (1024, 3/4) with P = 256 are compared
in Figure 5. Here, L(N, R) denotes the latency reduction of the Fast-ISSC decoder relative to the SSC
decoder for a code of block length N and rate R, i.e., L(N, R) = (LSSC(N,R)−LFast−ISSC(N,R))

LSSC(N,R) . The L(N, R)
for the Fast-SSC and IMSC decoders are defined in a similar manner.
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The latencies of both the Fast-ISSC and IMSC are affected by the channel conditions, both of which
have the dynamics of the FC method, while the Fast-SSC is independent of the channel condition.
The Fast-ISSC achieves the smallest decoding latency compared to the SSC, Fast-SSC, and IMSC
decoder, at different code rates and different SNRs. When the SNR is 5 dB, the proposed Fast-ISSC
decoder decreases the latency by almost 90% compared to the SSC decoder. In addition, the problem
of high latency for the IMSC method at a high code rate and low SNR is solved.

Table 1. Various node types at (1024, R).

R Node
Length

2 4 8 16 32 64 128 256 512

1
4

R-other 0 4 15 15 12 9 6 3 2
R-1 4 3 2 1 0 0 0 0 0
R-0 4 3 3 3 3 2 0 0 0
Rep 0 10 6 3 2 0 0 1 0
SPC 0 10 4 2 1 1 0 0 0

1
2

R-other 0 6 20 20 16 10 6 4 2
R-1 6 5 4 3 2 0 0 0 0
R-0 6 5 4 3 2 0 0 0 0
Rep 0 12 6 3 0 1 1 0 0
SPC 0 12 6 3 0 1 1 0 0

3
4

R-other 0 5 15 15 12 9 6 3 2
R-1 5 4 3 2 0 2 0 0 0
R-0 5 4 4 3 3 0 0 0 0
Rep 0 8 3 1 1 1 0 0 0
SPC 0 9 5 3 2 0 0 1 0

Figure 4. Average percentages of R-other nodes under Fast-ISSC satisfying FC.

To investigate the relationship between the relative gain of the latency and P PEs, the effects
of L(4096, 1/2) using the Fast-ISSC and IMSC for P varying from 16 to 4096 are shown in Figure 6.
The trends of both the Fast-ISSC and IMSC are identical, and the relative gain of the former is greater
than that of the latter at each P value, when the SNR is within the range of 1–2 dB. For SNR ≥ 2.5 dB,
the gap between the two methods is gradually reduced. Further, when the value of P is greater than
256, the improvement in the latency reduction decreases.



Information 2018, 9, 254 11 of 13

Figure 5. Relative latency reduction L(N, R) with P = 256.

Figure 6. L(4096, 1/2) for different process elements.

The polar codes (256, 1/2),(1024, 3/4),(2048, 1/4), and (4096, 1/2) were used for comparison of
the error-correction performance. Figures 7 and 8 show the BERs and frame error rates (FERs) of
four systematic polar codes (SPC) under the Fast-ISSC decoder and the corresponding non-systematic
polar codes (NSPC) under the SC decoder. Although we cannot offer a rigorous proof for the BER,
we conjecture that the BER of the Fast-ISSC decoder is no worse than that of the original SC decoder.
The simulation result in Figure 7 supports this conjecture. Since the SPC is used, the BERs of the
Fast-ISSC decoder are improved, which is consistent with the result in [16]. The FERs of the Fast-ISSC
decoder are the same as those of the SC decoder. These simulation results, in Figure 8, are consistent
with Proposition 1.
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Figure 7. BERs of systematic polar codes under Fast-ISSC decoder and non-systematic polar codes
under SC decoder.

Figure 8. FERs of systematic polar codes under Fast-ISSC decoder and non-systematic polar codes
under SC decoder.

5. Conclusions

We proposed an improved method for reduction of SC decoding latency. In this approach,
the constituent codes were first identified offline on the decoding tree. Further, the frozen-bit check is
conducted at the R-other nodes. It is shown that 30% of the R-other nodes on the pruning tree satisfy
the FC when the SNR is 3 dB. Compared to the Fast-SSC and IMSC decoders, the proposed method
yields the smallest decoding latency without affecting the error-correction performance. Moreover,
the proposed method solves the problem of high latency for the Improved-SSC method at a high code
rate and low SNR simultaneously. In the future, the method proposed in this work can be used for
low-complexity successive cancellation list decoding.
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