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Abstract: With the advent of cloud computing, more and more users begin to outsource
encrypted files to cloud servers to provide convenient access and obtain security guarantees.
Searchable encryption (SE) allows a user to search the encrypted files without leaking information
related to the contents of the files. Searchable symmetric encryption (SSE) is an important branch of SE.
Most of the existing SSE schemes considered single-user settings, which cannot meet the requirements
for data sharing. In this work, we propose a multi-user searchable symmetric encryption scheme
with dynamic updates. This scheme is applicable to the usage scenario where one data owner
encrypts sensitive files and shares them among multiple users, and it allows secure and efficient
searches/updates. We use key distribution and re-encryption to achieve multi-user access while
avoiding a series of issues caused by key sharing. Our scheme is constructed based on the index
structure where a bit matrix is combined with two static hash tables, pseudorandom functions and
hash functions. Our scheme is proven secure in the random oracle model.
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1. Introduction

In recent years, more and more users have chosen to outsource files to cloud servers with the
popularization of mobile devices (e.g., wireless sensors) and the development of cloud computing,
since this can alleviate the local storage pressures and achieve convenient access to data. However,
the cloud server is semi-trusted, and users’ files may contain sensitive information. To ensure personal
privacy and data security, users will encrypt files and outsource the ciphertexts to the cloud server.
This is a problem about how to retrieve the ciphertexts stored on the cloud server.

Searchable encryption (SE) provides the possibility of solving such problems, and it is currently
being considered for cloud computing and wireless sensor networks. In an SE mechanism,
a user (or sensor) first encrypts files with the SE algorithm and then stores the ciphertexts on the cloud
server. For the search, the corresponding search token generated by the user (sensor) is sent to the
cloud server. With the token, the cloud server executes relevant retrieval operations and returns the
matching ciphertexts. The user (sensor) decrypts the ciphertexts to obtain the required files. In the
above process, the files are stored in the encrypted form, which reveals no information about the
contents of the files. Therefore, SE not only ensures data confidentiality, but also utilizes the powerful
computing power of the cloud server. Research on SE mainly include public key encryption with
keyword search (PEKS) and searchable symmetric encryption (SSE), which correspond to public-key
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cryptography and symmetric-key cryptography, respectively. SSE was first proposed in 2000 [1], then
it became one of the important research directions in SE due to its fast computing speeds and small
calculation overheads.

A practical SSE scheme should have desirable properties such as dynamism, high efficiency and
security. The dynamic scheme is a scheme in which one can update the encrypted file collection.
Common dynamic operations include insertion, modification and deletion. In recent years, there have
been many dynamic searchable symmetric encryption (DSSE) schemes [2–9] addressing this issue.
Efficiency is the focus of all SSE schemes, because overhead is one of the decisive factors in judging
whether a scheme is practical or not. There are many factors affecting efficiency, which can be roughly
divided into two types: computational complexity and communication complexity. For computational
complexity, an SSE scheme should provide fast searches and updates. In addition, due to the
rapid development of multi-core processors, a scheme can be parallelizable to improve efficiency.
Non-interactive operations are beneficial to reduce communication complexity. A fully-secure SE
scheme should meet two requirements as follows: the first is that no information about the contents
of the files can be derived from the ciphertexts; the second requirement is that no information be
leaked in the retrieval process. It is difficult for SSE to guarantee the above two points. Since the
first SSE scheme [1] was proposed, the security definitions have been continuously improved [10–13].
Two security models proposed by Curtmola et al. [12] are widely used as the standard security
models for SSE. We use the adaptive model called semantic security (indistinguishability) against
adaptive chosen-keyword attacks (IND-CKA2). In addition, the research on security may involve
multiple aspects such as trust management [14], data deduplication [15], access control [16] and cloud
auditing [17].

Since its introduction, SSE has become more and more important in the cloud environment.
A basic function of the cloud platform is data sharing, which enables multiple users to access the
files shared by the data owner. Existing SSE schemes mostly focus on single-user access, which
means that only one data owner is allowed to access the ciphertexts. Therefore, to solve the problem,
multi-user searchable encryption [12] was proposed, which enables a group of users to search and
decrypt all the encrypted files stored on the cloud. In early relevant studies, researchers wanted to
realize multi-user management and data decryption by sharing the search key and the decrypt key,
respectively. However, the users who leave the group still possess the keys, which can cause serious
damage if they leak the keys. The keys need to be updated and the files need to be re-encrypted each
time the group members change, which brings about significant overheads.

1.1. Related Work

In 2000, Song et al. [1] proposed the first practical SSE scheme, which achieved the target by
sequentially scanning ciphertexts. This scheme is vulnerable to adversaries’ statistical attacks, and its
search complexity is linear in the overall size of files. To increase search efficiency, Goh [10] proposed a
secure index scheme, which introduced the Bloom filter [18] as the index of a file. The Bloom filter is
the binary data structure that can efficiently and quickly determine whether an element belongs to
a collection, but it may draw wrong judgments. With the help of the indexes, the search complexity
is linear in the number of files. In addition, Goh introduced a security definition for his scheme,
namely IND1-CKA. IND1-CKA ensures the security of indexes, so that attackers do not obtain useful
information from the indexes. Unlike the forward index used by Goh, Curtmola et al. [12] proposed a
scheme based on the inverted index. The scheme creates an index for each keyword and thus achieves
the sublinear and optimized search time. However, it is difficult for the inverted indexes to obtain
dynamic updates.

In 2010, van Liesdonk et al. [2] proposed two SSE schemes supporting dynamic updates. Their one
scheme requires interactive searches and updates, which increases the amount of data transfers while
making processing delay larger. The other scheme is non-interactive, but the overhead grows with
update operations. Based on the inverted index, Kamara et al. [3] presented a dynamic scheme, which



Information 2018, 9, 242 3 of 14

achieved optimized search time. However, the scheme will leak information related to search tokens
and does not support parallel processing. Subsequently, Kamara and Papamanthou [4] presented a
dynamic scheme with a red-black tree as the index. This scheme was parallelizable, and the search
complexity was logarithmic in the number of files. However, the scheme has interactive update
operations. Recently, there have been several schemes aiming at improving the security performance
of DSSE. Stefanov et al. [6] presented a DSSE scheme that supported forward privacy, which had small
information leakage. Unlike any of the above schemes, Naveed et al. [7] presented a DSSE scheme
based on blind storage. In the scheme, the server can only store and transmit data and cannot perform
search operations, so it has better security. In order to achieve security against a malicious server, with
the notion of universal composability (UC) [19], Kurosawa and Ohtaki [20] proposed a UC-secure SSE
scheme. Then, Kurosawa and Ohtaki [5] proposed a UC-secure DSSE scheme, and the scheme was
verifiable. On this basis, Kurosawa et al. [8] achieved better efficiency and security.

In 2006, Curtmola et al. [12] first presented multi-user searchable encryption. Their approach
combined broadcast encryption [21] with single-user searchable symmetric encryption. Legitimate
users access data with the shared key. Since the keys are the same, there are many problems in
practical applications. Unlike key sharing, key distribution [22–24] can provide different keys,
which is more suitable for data sharing in multi-user settings. In 2008, Bao et al. [25] designed a
PEKSscheme that supports multi-user access, which avoids the use of the same keys. Their scheme
uses a bilinear map and hash functions to re-encrypt the search tokens, but a bilinear map requires high
overheads. Therefore, Dong et al. [26,27] successively presented two multi-user searchable encryption
schemes based on RSA and Elgamal. Those are two PEKS schemes based on proxy cryptography [28].
Subsequent schemes [29–32] have made further studies on multi-user searchable encryption.

To show the advantages of our scheme, we give the comparisons between our scheme and other
schemes in Tables 1 and 2.

Table 1. Comparison of different dynamic searchable symmetric encryption (DSSE) schemes. Let n be
the maximum number of files, n′ the number of files that contain a search keyword, m the maximum
number of keywords, m′ the number of unique keywords in a file, ι the number of update operations
and p the number of parallel processors, respectively.

Schemes Parallelizable No Interactive Updates Update Time Search Time

van Liesdonk et al. [2] no yes ι ·O(m′) O(n)
Kamara et al. [3] no yes O(m′) O(n′)

Kamara and Papamanthou [4] yes no O(m
p log n) O( n′

p log n)
Stefanov et al. [6] yes no ι ·O(m′

p log n) O( n′
p )

Kurosawa et al. [8] yes no O(m
p log n) O( n

p )

Ours yes yes O(m
p ) O( n

p )

Table 2. Feature comparison of multi-user searchable encryption schemes.

Schemes Type No Key Sharing No Bilinear Operation

Curtmola et al. [12] SSE no yes
Bao et al. [25] PEKS yes no

Dong et al. [26] PEKS yes no
Dong et al. [27] PEKS yes yes

Nair and Rajasree [32] SSE yes no
Ours SSE yes yes

1.2. Our Contributions

In this work, we propose a multi-user searchable symmetric encryption scheme, which also
achieves efficient updates for encrypted files. The scheme aims at the application scenario where a
single data owner encrypts files and shares them among multiple users, and we use key distribution
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rather than key sharing to authorize users. Each authorized user has its own search key and decrypt key.
The search and decrypt operations can be performed, combined with the complementary keys stored
on the cloud server. Our index structure is the combination of a bit matrix and two static hash
tables. Such a structure can support secure and efficient searches/updates. In addition, our scheme is
parallelizable. We make the contributions as follows:

(1) Our scheme avoids key sharing. For the search process, a search token generated by the search
key is processed via re-encryption technology to obtain a new token, which can be used to search
in the encrypted index. For the decryption process, we encrypt the key used for encrypting
data and upload it to the cloud server. When the ciphertexts are decrypted, with re-encryption
technology, the encrypted key is converted into the key that a user can employ.

(2) Our scheme enables efficient searches. To improve efficiency, we use pseudo-random functions
and hash functions instead of a bilinear map, which has low efficiency (a bilinear map is often
used in multi-user searchable encryption schemes). Searching for a keyword takes O(n/p)
parallel time.

(3) Our scheme enables efficient updates. For the update process, the data owner simply sends an
update token to the cloud server. Updating a file takes O(m/p) parallel time.

(4) Our scheme meets the security requirements for query privacy, search unforgeability
and revocability.

The remainder of this paper is structured as follows. We show some notations and define our
system and security requirements in Section 2. Our construction is presented in Section 3. We provide
the relevant security analysis and the performance analysis in Section 4 and Section 5, respectively.
Finally, we give the conclusion in Section 6.

2. Preliminaries

2.1. Notations

A symmetric encryption scheme is a triplet that contains polynomial-time algorithms
(Gen, Enc, Dec). The algorithm Gen(1k) takes a security parameter k and outputs a secret key K;
Enc(K, f ) takes a secret key K and a file f and outputs a ciphertext c; Dec(K, c) takes a secret key K and
a ciphertext c and outputs a file f . Let v be a symmetric encryption scheme and ε be another symmetric
encryption scheme. Note that v and ε are secure (indistinguishable) against chosen-plaintext attacks
(IND-CPA). Table 3 gives some notations used in our scheme.

In our scheme, UL is the authorized user list stored on the cloud server, and the entries of
the list are tuples (ui, asi, dsi), where ui denotes a user identifier and asi and dsi denote the user’s
complementary keys. (aui, dui) belongs to a user ui, where aui and dui denote the user’s search key
and decrypt key, respectively. We use a pseudorandom function P : {0, 1}k × {w1, ..., wm} → Zq,
another pseudorandom function R : {0, 1}k × {0, 1}∗ → {0, 1}k and a collision-resistant hash function
H : G → {0, 1}k. q ∈ {w, fid} is the query operation received by the cloud server, where q = w and
q = fid denote the search query for keyword w and the update query for file fid, respectively. We write
Qt = (q1, ..., qt) to represent a collection of t queries, let Uq = (uq1, ..., uqt) be the set of users who make
a search query q = w, and let Wt = (w1, ..., wt) be the set of queried keywords and Γt = (Υ1, ..., Υt) the
set of t replies.
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Table 3. Notations.

Notations Meaning

{0, 1}k the set of all k-bit binary strings
{0, 1}∗ the set of all finite binary strings
y← S an algorithm S outputs y
|b| the bit length of a string b
|B| the cardinality of a set B

y R←− B the element y is randomly and uniformly selected from a set B
w a unique keyword
fid a file with identifier id
m the maximum number of keywords
n the maximum number of files
δ an index
γ the encrypted index
G a cyclic group of order q
g a generator of G
Zq an additive group (modulo q)

Ω = (w1, ..., wm) the set of all m keywords
F = ( fid1

, ..., fidn ) the set of n files
C = (cid1

, ..., cidn ) the collection of n corresponding ciphertexts

2.2. Architecture

Figure 1 shows the architecture of our scheme. The data owner outsources his/her own files to
the cloud. To assure data security, the files must be stored in the encrypted form. The data owner
authorizes a group of users to access the encrypted files stored on the cloud server, and he/she is
responsible for updating the encrypted files and managing the group. Each user in the group generates
search tokens and decrypts the ciphertexts with his/her own unique search key and decrypt key,
respectively. The cloud server executes the retrieval operations with the search token and returns
the results.

Figure 1. Architecture of multi-user searchable symmetric encryption with dynamic updates.

Definition 1. A multi-user searchable symmetric encryption scheme is a tuple of polynomial-time algorithms
(Gen, AddUser, Enc, KeyEnc, SrchToken, Search, KeyDec, Dec, UpdToken, Update, RevokeUser)
such that:

1. (Params, MK) ← Gen(1k): Given a security parameter k, the data owner generates the master public
parameters Params and a master secret key MK = (a, d, s1, s2, K), where K is the secret key for v.
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2. UL← AddUser(ui, MK): It is run by the data owner to authorize a new user ui. Using a user identifier
ui and a master secret key MK, the data owner produces two key pairs (asi, aui) and (dsi, dui). Then,
(ui, asi, dsi) is sent securely to the cloud server, and (aui, dui, s1) is sent securely to the user ui. The cloud
server updates its authorized user list UL = UL ∪ (ui, asi, dsi).

3. (C, γ) ← Enc(MK, F, δ): Given a master secret key MK, the files F and an index δ, the data owner
generates the ciphertexts C and the encrypted index γ. Then, C and γ are uploaded to the cloud server.

4. K′′ ← KeyEnc(d, K): It is run by the data owner to encrypt the secret key K. It outputs the encrypted
secret key K′′ for the cloud server.

5. Tui(w) ← SrchToken(aui, w): Given the user’s search key aui and a keyword w, a user ui generates a
corresponding search token Tui(w).

6. Cw ← Search(Tui(w), γ): Given a search token Tui(w) and an encrypted index γ, the cloud server returns
the results Cw, which contain the keyword w.

7. K ← KeyDec(dsi, dui, K′′): It is run by the cloud server and a user ui. It takes the user’s decrypt key pair
(dsi, dui) and the encrypted secret key K′′ as input. It outputs the secret key K for the user ui.

8. f j ← Dec(K, cj): Given the secret key K and a ciphertext cj, a user ui gets the file f j.
9. Tf ← UpdToken(MK, β, fid): Given a master secret key MK, the type β and a file fid, the data owner

generates an update token Tf .
10. (C′, γ′) ← Update(Tf , C, γ): Given an update token Tf , the ciphertexts C and an encrypted index γ,

the cloud server generates the new ciphertexts C′ and the new encrypted index γ′.
11. UL ← RevokeUser(ui): Given a user identifier ui, the cloud server updates its authorized user list

UL = UL \ (ui, asi, dsi).

Correctness: A multi-user searchable symmetric encryption scheme is correct if for all security
parameters k, for all parameters Params and keys MK from Gen(1k), for all F, for all tuples (C, γ) from
Enc(MK, F, δ) and for all successive search/update operations on γ, a legitimate user ui always gets
the correct files Fw, which contain the search keyword w.

2.3. Security Requirements

In our scheme, the cloud server is considered to be semi-trusted, which means that it will gather as
much information as possible while complying with the protocol. In addition, we do not consider the
case of user-server collusion. Ideally, a secure scheme should leak no information about the plaintexts
and queries to malicious attackers. However, a practical scheme will inevitably leak the search pattern
and access pattern.

Definition 2. Search pattern P(δ, q, t): Given a search query q = w at time t, the search pattern is a binary
vector of length t with a one at location i if the search at time i ≤ t was for w; and zero otherwise. The search
pattern determines whether the same keyword was searched in the past.

Definition 3. Access pattern ∆(F, δ, w, t): Given a search query q = w at time t, the access pattern is the
identifiers from Fw at time t.

We define the following leakage functions [13] for our scheme.

Definition 4. Leakage functions (`1, `2):

1. `1(F, δ): It takes the files F (containing their identifiers) and the index δ as input. `1 outputs the maximum
number of keywords m, the maximum number of files n, the identifiers id of files and the size of each file
| fid|. Specifically, `1(F, δ) = (m, n, id1, ..., idn, | fid1 |, ..., | fidn |).

2. `2(F, δ, w, t): It takes as input the files F, the index δ and a queried keyword w at time t. `2 outputs
the search pattern P(δ, q, t), the access pattern ∆(F, δ, w, t) and the number of authorized users |UL|.
Specifically, `2(F, δ, w, t) = (P(δ, q, t), ∆(F, δ, w, t), |UL|).
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Definition 5. View of an adversary Vt: Given t queries, the view of an adversary is the transcript of the
interactions. Specifically, Vt = (C, γ, id1, ..., idn, Qt, Uq, Γt, UL).

We first consider the security requirement for query privacy. Apart from the information derived
from the view, the adversary should obtain no extra information. We define query privacy as a
simulation-based game between an adversary and the challenger. The view of an adversary Vt is
from the interactions with the challenger in a real situation, and V∗t is from the interactions with a
simulator in the ideal status. The scheme achieves query privacy if V∗t and Vt are computationally
indistinguishable. Now, we use the notions of dynamic IND-CKA2 [3,4] and give our security definition
for query privacy.

Definition 6. Let MSSEbe a multi-user searchable symmetric encryption scheme as defined in Definition 1.
Consider the following probabilistic experiments, where A is a stateful adversary and S is a stateful simulator:

RealA(k): The challenger generates Params and MK by Gen(1k). Then, A generates (F, δ) and obtains
(C, γ)← Enc(MK, F, δ) from the challenger. A makes a polynomial number of adaptive queries q ∈ {w, fid}.
If q = w, then A obtains a search token Tui(w)← SrchToken(aui, w) from the challenger. If q = fid with the
type β, the challenger generates an update token Tf ← UpdToken(MK, β, fid) for A. Eventually, A returns a
bit b as the output of the experiment.

IdealA,S(k): Given `1(F, δ), S produces (C∗, γ∗) forA. A makes a polynomial number of adaptive queries
q∗ ∈ {w, fid}. For each adaptive query, S is given `2(F, δ, w, t). If q∗ = w, S generates a search token T∗ui(w).
If q∗ = fid with the type β, then S returns an update token T∗f . Eventually, A returns a bit b as the output of
the experiment.

We say that MSSE is (`1, `2)-secure against adaptive dynamic chosen-keyword attacks if for all probabilistic
polynomial-time (PPT) adversaries A, there exists a PPT simulator S such that:

|Pr[RealA(k) = 1]− Pr[IdealA,S(k) = 1]| ≤ neg(k).

Compared with the previous SSE, the multi-user scheme should not only achieve query privacy,
but also meet the security requirements for search unforgeability and revocability.

In the multi-user scheme, each user ui makes search queries by his/her unique search key. We
require that the malicious user AU or the cloud server AS cannot produce a valid search token Tui(w)

on behalf of ui. This property is referred to as search unforgeability. For a user ui, his/her valid
search queries are defined as Qui = {Tui(w)|Tui(w) ← SrchToken(aui, w), w ∈ Ω}. Thus, search
unforgeability is defined as that for each authorized user ui, adversaries cannot produce Tui(w) ∈ Qui
without the search key aui.

For the multi-user application, it is a basic requirement to revoke the access authorities of users
as needed. The revoked user cannot access the encrypted files stored on the cloud, which implies
he/she is incapable of distinguishing the indexes. Therefore, revocability is defined based on index
indistinguishability.

3. Proposed Scheme

3.1. Index Structure

The index δ is an m× n matrix, and I is another m× n matrix. We store the encrypted δ[i, j] in
I[i, j], where δ[i, j] ∈ {0, 1}, I[i, j] ∈ {0, 1} for i = 1, ..., m and j = 1, ..., n. Two static hash tables are
used to uniquely map each keyword-file pair (w, fid) to the indices (i, j) in δ and I. A hash table is
composed of tuples (key, value). The key is a k-bit binary string, and key indicates the location in the
table. The value in the hash table can be accessed in O(1) time. We use a static hash table αw, which has
the tuple (λwx , i), where λwx = H(hϕwx ), ϕwx = Ps1(wx) for keyword wx, i ∈ {1, ..., m}, x ∈ {1, ..., m}.
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The access operations can be represented as i← αw(λwx ). We use another static hash table α f , which
has the tuple (λ fy , j), where λ fy = Rs2(idy) for the identifier idy of file fidy , j ∈ {1, ..., n}, y ∈ {1, ..., n}.
Similarly, the access operations can be represented as j← α f (λ fy). Our encrypted index γ includes the
matrix I and the hash table αw. Figure 2 shows the index structure.

Note that we write I[i, ∗] and I[∗, j] to represent all elements in the i-th row and the j-th column
of the matrix I, respectively. IT denotes the transpose of the matrix I.

Figure 2. The index structure.

3.2. Concrete Scheme

The construction of our scheme is as follows:

• (Params, MK) ← Gen(1k): Given a security parameter k, the data owner generates the
master public parameters Params = (G, g, q, h = ga, P, R, H) and a master secret key MK =

(a ∈ Zq, d ∈ Zq, s1, s2, K), where K = gµ, gµ R←− G.
• UL← AddUser(ui, MK): Given a user identifier ui and a master secret key MK, the data owner

generates two key pairs (asi
R←− Zq, aui = a− asi) and (dsi

R←− Zq, dui · dsi = d). Then, (ui, asi, dsi) is
sent securely to the cloud server, and (aui, dui, s1) is sent securely to the user ui. The cloud server
updates its authorized user list UL = UL ∪ (ui, asi, dsi). The data owner keeps the master secret
key MK.

• (C, γ)← Enc(MK, F, δ): The data owner generates the ciphertexts C and an encrypted index γ

as follows:

(1) Initialize two matrices δ and I; all elements are set to zero. Extract all distinct keywords
(w1, ..., wm′) from the files F = ( fid1 , ..., fidn′

), where m′ ≤ m and n′ ≤ n.

(2) Construct the index δ for x = 1, ..., m′ and y = 1, ..., n′:

(a) ϕwx = Ps1(wx), λwx = H(hϕwx ), i← αw(λwx ), λ fy = Rs2(idy) and j← α f (λ fy).

(b) If wx appears in fidy , set δ[i, j] = 1.

(3) Encrypt the files F for y = 1, ..., n′: cidy ← v.Enc(K, fidy), and set C = C ∪ (cidy , j).

(4) Encrypt the index δ for x = 1, ..., m: ϕwx = Ps1(wx), λwx = H(hϕwx ), i ← αw(λwx ),
I[i, ∗]← ε.Enc(hϕwx , δ[i, ∗]).
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(5) Then, (C, γ) are uploaded to the cloud server, where γ = (I, αw). The data owner keeps
(αw, α f ).

• K′′ ← KeyEnc(d, K): The data owner generates the encrypted secret key K′′ = Kd = gµd. Then, K′′

is sent to the cloud server.
• Tui(w)← SrchToken(aui, w): With a random number r R←− Zq, a user ui produces a search token

Tui(w) = (τ1, τ2), where τ1 = g−rgϕw , τ2 = hrg−auirgaui ϕw , ϕw = Ps1(w) for the given keyword w.
• Cw ← Search(Tui(w), γ): On receiving a search token Tui(w) = (τ1, τ2), the cloud server generates

the results Cw as follows:

(1) If (ui, asi) can be found in authorized user list UL, compute τw = τ
asi
1 · τ2 = hϕw ,

λwx = H(τw), i← αw(λwx ). If not, output Error.

(2) For j = 1, ..., n, compute I′[i, j]← ε.Dec(τw, I[i, j]), if I′[i, j] = 1, set Cw = Cw ∪ cj, where cj
denotes the ciphertext associated with j.

(3) Output Cw. The cloud server returns Cw to the user ui.

• K ← KeyDec(dsi, dui, K′′): Given the encrypted secret key K′′, the cloud server finds the
corresponding (ui, dsi) for a user ui and computes K′ = (K′′)d−1

si = gµdui . For K′, the user ui
uses the decrypt key dui to get K = (K′)d−1

ui = gµ.
• f j ← Dec(K, cj): A user ui gets the file as f j ← v.Dec(K, cj).
• Tf ← UpdToken(MK, β, fid): The data owner generates an update token Tf for a file fid as follows:

(1) Initialize two arrays δ̄[i] and Ī[i] for i = 1, ..., m; all elements are set to zero. Compute
λ fy = Rs2(id), j← α f (λ fy).

(2) If the type β is insertion or modification:

a) Extract all distinct keywords (w1, ..., wβ) from the file fid.

b) For x = 1, ..., β, compute ϕwx = Ps1(wx), λwx = H(hϕwx ), i← αw(λwx ), δ̄[i] = 1.

c) cidy ← v.Enc(K, fid), c = (cidy , j).

d) For x = 1, ..., m, compute ϕwx = Ps1(wx), λwx = H(hϕwx ), i ← αw(λwx ),
Ī[i]← ε.Enc(hϕwx , δ̄[i]).

(3) If the type β is deletion: for x = 1, ..., m, compute ϕwx = Ps1(wx), λwx = H(hϕwx ),
i← αw(λwx ), Ī[i]← ε.Enc(hϕwx , δ̄[i]).

(4) Output Tf = (c, j, Ī). Then, Tf is sent to the cloud server.

• (C′, γ′)← Update(Tf , C, γ): On receiving an update token Tf = (c, j, Ī), the cloud server performs
the update operation as follows:

(1) I[∗, j] = ( Ī)T .

(2) Output the new ciphertexts C′ and the new encrypted index γ′ = (I, αw).

• UL ← RevokeUser(ui): Given a user identifier ui, the cloud server updates its authorized user
list UL = UL \ (ui, asi, dsi).
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3.3. Correctness

Theorem 1. Our scheme as described above is correct.

Proof. Given an encrypted index γ = (I, αw), then I[i, j] ← ε.Enc(hϕw , δ[i, j]) and i ← αw(H(hϕw)),
ϕw = Ps1(w). With the search key aui, a user ui generates a search token Tui(w′) = (τ1, τ2) for a
keyword w′. The cloud server uses the complementary key asi to compute τw′ = τ

asi
1 · τ2 = hϕw′ .

We use a collision-resistant hash function H. If w′ = w, then H(hϕw′ ) = H(hϕw). With i ←
αw(H(hϕw′ )), the cloud server gets the decrypted index I′[i, j]← ε.Dec(hϕw′ , I[i, j]). Thus, the algorithm
Search(Tui(w), γ) generates the correct results Cw′ by properly decrypting row i. Finally, with the
decrypt key pair (dsi, dui), the user ui gets the secret key K to decrypt Cw′ .

4. Security Analysis

4.1. Query Privacy

Theorem 2. Our scheme as described above is (`1, `2)-secure in the random oracle model according to
Definition 6.

Proof. During the interactions with the challenger, an adversaryA generates a view Vt, and a simulator
S can also simulate a view V∗t by using the information that will be allowed to leak. Now, we show
that V∗t is computationally indistinguishable from Vt.

For the real view of A, Vt = (C, γ, id1, ..., idn, Qt, Uq, Γt, UL), S simulates the view V∗t =

(C∗, γ∗, id1, ..., idn, Q∗t , U∗q , Γ∗t , UL∗) in the ideal situation.
For t = 0, given `1(F, δ) = (m, n, id1, ..., idn′ , | fid1 |, ..., | fidn′

|), V∗t = (C∗, γ∗, id1, ..., idn′ , UL∗) is
generated as follows. S simulates the ciphertexts C∗ by using the symmetric encryption v. To generate
the encrypted index γ∗ = (I∗, α∗w), S first constructs the hash table α∗f and the index δ∗, where all
elements of δ∗ are randomly set to zero or one. With m randomly selected keys ϕ∗w, S constructs
the hash table α∗w and encrypts δ∗ for j = 1, ..., n: I∗[α∗w(H(hϕ∗w)), j] ← ε.Enc(hϕ∗w , δ∗[α∗w(H(hϕ∗w)), j]).
To construct the authorized user list UL∗ based on the number of authorized users |UL|, S generates a

random user identifier and the complementary keys a∗si
R←− Zq, d∗si

R←− Zq for each user. The security of
the ciphertexts is based on symmetric encryption, so C∗ is computationally indistinguishable from C.
Symmetric encryption and pseudorandom functions ensure the indistinguishability between γ∗ and γ.
During the construction of the authorized user list, the complementary keys are randomly assigned to
each user, so UL∗ and UL are also computationally indistinguishable.

For t > 0, given `2(F, δ, w, t) = (P(δ, q, t), ∆(F, δ, w, t), |UL|), S simulates the view V∗t =

(C∗, γ∗, id1, ..., idn, Q∗t , U∗q , Γ∗t , UL∗) as follows. Note that all queries in Qt are issued by different
users, and they may make a search query for the same keyword.

• UL∗: The entries of the list are tuples (ui∗, a∗si, d∗si). For i = 1, ..., |UL|, S selects the complementary

keys a∗si
R←− Zq and d∗si

R←− Zq for the user ui∗. Set a∗ = a∗s1 + ... + a∗s|UL|, d∗ = d∗s1 × ... ×
d∗s|UL|. Because the complementary keys are randomly assigned to each user, UL∗ and UL are
computationally indistinguishable.

• C∗ and γ∗: Refer to the case of t = 0. C∗ and C are computationally indistinguishable, and γ∗ is
computationally indistinguishable from γ.

• Q∗t and U∗q : The query operation q∗ ∈ {w, fid} includes the search query q∗ = w and the update
query q∗ = fid. For q∗ = w, S randomly selects a user ui∗ with its search key a∗ui = a∗ − a∗si

and its random number r∗ R←− Zq. With the corresponding key ϕ∗w, S generates a search token
T∗ui(w) = (τ1, τ2), where τ1 = g−r∗gϕ∗w , τ2 = hr∗g−a∗uir

∗
ga∗ui ϕ∗w . The randomly selected key ϕ∗w

and pseudorandom function ϕw = Ps1(w) are computationally indistinguishable, so T∗ui(w) is
computationally indistinguishable from Tui(w). The user ui∗ is randomly selected to generate
T∗ui(w), so U∗q and Uq are also computationally indistinguishable. For q∗ = fid, if the type β
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is insertion or modification, S simulates the ciphertext c∗ by using the symmetric encryption
v. With m randomly selected keys ϕ∗w, S constructs the array δ̄∗[i] for i = 1, ..., m and encrypts
δ̄∗: Ī∗[α∗w(H(hϕ∗w))] ← ε.Enc(hϕ∗w , δ̄∗[α∗w(H(hϕ∗w))]). Then, S generates an update token T∗f =

(c∗, j, Ī∗), where j can be derived from α∗f and fid. Therefore, we can see that T∗f is computationally
indistinguishable from Tf .

• Γ∗t : For q∗ = w, if w appears in ∆(F, δ, w, t), it outputs the corresponding results. Otherwise, A
performs the algorithm Search(T∗ui(w), γ∗) to generate the corresponding results. Therefore, Γ∗t
and Γt are computationally indistinguishable.

In conclusion, V∗t is computationally indistinguishable from Vt. Therefore, for all PPT adversaries
A, the outputs of RealA(k) and of IdealA,S(k) are negligibly close:

|Pr[RealA(k) = 1]− Pr[IdealA,S(k) = 1]| ≤ neg(k).

4.2. Search Unforgeability

Theorem 3. Our scheme as described above achieves search unforgeability.

Proof. For the malicious user AU : Consider the search token Tui(w) = (τ1, τ2), where τ1 = g−rgϕw ,

τ2 = hrg−auirgaui ϕw = hrgaui(ϕw−r), ϕw = Ps1(w), r R←− Zq and all authorized users know (g, h =

ga, s1, P). For a user ui, if AU wants to generate Tui(w) ∈ Qui without the search key aui, then AU has
to compute the discrete logarithm for τ2 = hrg−auirgaui ϕw = hrgaui(ϕw−r). We can consider the equation:
y = gx mod p. Given (y, g, p), it is very hard to obtain x in polynomial time. That means AU cannot
generate Tui(w) ∈ Qui without the search key aui.

For the cloud server AS: AS can make a search query q = w with τw = τ
asi
1 · τ2 = hϕw , and AS

knows (asi, g, h = ga, P). However, without s1, AS would not compute ϕw = Ps1(w). Therefore,
if AS wants to make a search query q = w, AS has to generate a search token Tui(w) = (τ1, τ2), where
τ1 = g−rgϕw , τ2 = hrg−auirgaui ϕw = gasirgaui ϕw . That meansAS needs to compute the discrete logarithm
for τ1 and τ2. Now, there is no proper algorithm to find the discrete logarithm. Hence, AS cannot
generate Tui(w) ∈ Qui without the search key aui and s1.

4.3. Revocability

Theorem 4. Our scheme as described above achieves revocability.

Proof. In the algorithm Enc(MK, F, δ), the index δ is encrypted: I[i, j] ← ε.Enc(hϕw , δ[i, j]), where
i ← αw(H(hϕw)). An authorized user ui does not have the hash table αw, so for keyword w, he/she
cannot find the corresponding position in I without the assistance of the cloud server. Hence, if the
cloud server deletes (ui, asi, dsi) from UL, the revoked user ui is incapable of distinguishing keywords
w1 and w2 in I.

5. Performance Evaluation

Let M be the length of modulus q, L the length of the outputs for the hash function, E a symmetric
encryption operation, e a modular exponentiation, b a bilinear operation, v an inversion operation,
n the maximum number of files, m the maximum number of keywords and p the number of parallel
processors, respectively. We compare our scheme with several multi-user searchable encryption
schemes in Table 4.
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Table 4. Performance comparison of several multi-user searchable encryption schemes.

Schemes Size Time
Public Parameters Secret Key Search Token Encrypt Search

Bao et al. [25] 2M 2M M E + 2e + b b + nE
Dong et al. [26] 5M 2M M E + 4e e + nb
Dong et al. [27] 4M + 2L 2M 2M 2E + 4e e + nv

Ours 4M + 3L 5M 2M 2E + e e + nE

Compared to the schemes in [25,26] that require bilinear operations, which have high overheads,
our scheme has better search efficiency. For the encryption process, our scheme takes less time than [27].
From the above table, the search time of all schemes is asymptotically O(n). However, our scheme is
parallelizable because it involves the operations for independent vector positions. Thus, the search
time for a keyword is O(n/p) parallel time, and the update time for a file is O(m/p) parallel time.

6. Conclusions

Many previous SSE schemes are limited to single-user settings, which cannot meet the needs of
data sharing. For this reason, we presented a multi-user searchable symmetric encryption scheme
that uses key distribution and re-encryption to achieve multi-user access. In our scheme, each user
performs search operations via his/her unique search key, and others are prevented from searching
on behalf of a user. We use a simple and practical index structure, namely the combination of a bit
matrix and two static hash tables. With the index structure, our scheme allows efficient searches and
updates. Specifically, the search time for a keyword is O(n/p) parallel time, and the update time for a
file is O(m/p) parallel time. Our scheme obtains revocation operations. For security, we prove that
our scheme is IND-CKA2-secure.

Our scheme only supports single-keyword search. In our future work, we will consider how to
make our scheme support multi-keyword search, which can achieve expressive search operations in
multi-user settings. In addition, we will consider the verifiability of search results.
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