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Abstract: This paper proposes algorithms for optimization of the Remote Core Locking (RCL)
synchronization method in multithreaded programs. We propose an algorithm for the initialization of
RCL-locks and an algorithm for thread affinity optimization. The algorithms consider the structures
of hierarchical computer systems and non-uniform memory access (NUMA) in order to minimize
the execution time of multithreaded programs with RCL. The experimental results on multi-core
computer systems show the reduction of execution time for programs with RCL.
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1. Introduction

Currently available computer systems (CS) [1] are of large scale and include multiple architectures.
These systems are composed of shared memory multi-core compute nodes (SMP, NUMA systems)
equipped with universal processors, as well as specialized accelerators (graphics processors, massively
parallel multi-core processors). The number of processor cores exceeds 102–103. Effective execution of
parallel programs on these systems is a significant challenge. System software must consider the large
scale, multiple architectures and hierarchical structure.

Parallel programs for multi-core CS with shared memory are multithreaded, in most cases. Software
tools must ensure linear speedup with a large amount of parallel threads. Thread synchronization while
accessing shared data structures is one of the most significant problems in multithreaded programming.
The existing approaches for thread synchronization include locks, lock-free algorithms and concurrent
data structures [2], and software transactional memory [3].

The main drawback of lock-free algorithms and concurrent data structures, despite of their good
scalability, is the limited application scope and severe complexity related to the parallel programs
development [2,4,5]. Furthermore, the development of lock-free algorithms and data structures
includes the problems, connected with the memory release (ABA problem) [6,7], poor performance
and restricted nature of atomic operations. Moreover, the throughput of lock-free concurrent data
structures is often similar to their corresponding lock-based data structures.

Software transactional memory nowadays has a variety of issues, connected with large overheads
for execution of transactions and multiple aborts of transactions. Moreover, the existing transactional
memory implementations restrict the operations set inside the transactional section. Consequently,
transactional memory does not ensure sufficient performance of multithreaded programs, and is, for
now, not commonly applied in real applications.

The conventional approach of using lock-based critical sections for synchronization in multithreaded
programs is still the most widespread in software development. Locks are simple to use (compared with
lock-free algorithms and data structures) and, in most cases, ensure acceptable performance. Furthermore,
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most existing multithreaded programs utilize a lock-based approach. Thereby, development of scalable
algorithms and software tools for lock-based synchronization is urgent, today.

Lock scalability depends on access contention of threads accessing shared memory areas and the
locality of references. Access contention arises when multiple threads simultaneously access a critical
section, protected by one synchronization primitive. In terms of hardware, this leads to a huge load
being applied to the data bus, as well as cache memory inefficiency. The cache memory locality is
meaningful when a thread inside a critical section accesses the shared data previously used on another
processor core. This case leads to cache misses, and a significant increase in the time required for
critical section execution.

The main approaches for scalable lock implementations are CAS spinlocks [8], MCS-locks [9], Flat
combining [10], CC-Synch [11], DSM-Synch [11], Oyama lock [12].

For the analysis of existing approaches, we have to consider the critical section’s execution time.
The time t for a critical section execution comprises the time t1 for the execution of a critical section’s
instructions and the time t2 for the transfer of lock ownership. In the existing lock algorithms, the time
required for the transfer of lock ownership is determined by global flag access (CAS spinlocks), context
switches and awakening of the thread executing the critical section (PThread mutex, MCS-locks, etc.),
or global lock capture (Flat Combining). The time for execution of the critical section’s instructions
depends substantially on the time t3 of global variables access. Most existing locking algorithms do
not localize access to shared memory areas.

Existing research includes methods for localization access to cache memory [10,13–15]. The
works [14,15] are devoted to the development of concurrent data structures (linked lists and hash
tables) on the basis of critical section execution on dedicated processor cores. The paper [13] proposes
a universal hardware solution, which includes the set of processor instructions for transferring the
ownership to a dedicated processor core. Flat Combining [10] refers to software approaches. Flat
Combining realizes execution of critical sections by server threads (all threads become server by turns).
However, the transfer of lock server ownership between threads being executed on different processor
cores leads to a performance decrease, even at insignificant access contention. In addition to this, all
these algorithms do not support thread locking inside critical sections, including active waiting and
operation system core locking.

Ownership transfer involves the overheads due to context switches, global variable cache loading
from RAM, and activation of the thread executing the critical section. Critical section execution
time depends heavily on the reference localization of global variables. Common mutual exclusion
algorithms assume frequent context switches, which leads to the exclusion of shared variables from
cache memory.

This paper considers the Remote Core Locking (RCL) method [16,17], which assumes the execution
of critical sections by dedicated processor cores. RCL minimizes the execution time of existing
programs, thanks to critical path reduction. This technique assumes the replacement of high-load
critical sections in existing multithreading applications with remote functions, which call for its
execution on dedicated processor cores. In this case, all of the critical sections protected by one lock
are executed by a server thread running on the dedicated processor core. In this way, all critical
sections are executed on that particular thread, and the overheads for the transfer of lock ownership
are negligible. RCL also reduces critical sections’ instruction execution time. The minimization is
achieved by localization of data accessed within a critical section in the cache memory of RCL-server’s
core. Localization minimizes cache misses. Each working thread (client-thread) uses dedicated
cache-line, which is used for critical section data storage and active waiting. This schema reduces
access contention.

The current implementation of RCL has several drawbacks. Firstly, there is no memory affinity
in NUMA systems. Computer systems with non-uniform memory access (NUMA) (Figure 1) are
currently widespread. These systems are compositions of multi-core processors, each of which relates
directly to the local segment of the global memory. A processor (subset of processors) with their local
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memory constitutes a NUMA-node. Interconnection between processors and local memory addresses
is performed through busses (AMD HyperTransport, Intel Quick Path Interconnect). The address
to local memory is performed directly, the address to remote NUMA-nodes is more costly, because
it requires the use of an interprocessor bus. In multithreaded programs, the latency of RCL-server
addresses to the shared memory areas is essential for the execution time of a program. Memory
allocation on NUMA-nodes, which are not local the RCL-server, leads to severe overheads when
RCL-server accesses the variables allocated on the remote NUMA-nodes.
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RCL also has no mechanism for automatic selection of processor cores for the server thread and
the working threads while considering the hierarchical structure of the computer system and existing
affinities. Processor affinity greatly affects the overheads caused by localization of access to global
variables. Therefore, user threads should be executed on the processors cores, located “closer” to the
processor core of the RCL-server. In existing RCL implementation, users have to manually choose
the affinity for all threads. In so doing, they should consider existing affinity of the RCL-server and
working threads. Thus, the development of tools for the automation of this procedure constitute
a current problem.

This work proposes an algorithm for RCL-lock initialization that recognizes memory affinity to
NUMA-nodes and RCL-server affinity to processor cores, as well as an algorithm for the sub-optimal
affinity of working threads to processor cores. These algorithms take into account the hierarchical
structure of multi-core CS and non-uniform memory access in NUMA-systems in order to minimize
the execution time of critical sections.

2. Multi-Core Hierarchical Computer System Model

Let there be multi-core CS with shared memory, including N processor cores: p = {1, 2, . . . , N}.
The computer system has a hierarchical structure, which can be described as a tree, comprising L
levels (Figure 2). Each level of the system is represented by individual types of structural element in
the CS (NUMA-nodes, processor cores and multilevel cache-memory). We introduce the following
notation: clk—the number of processor cores possessed by children of an element k ∈ {1, 2, . . . , nl} of
level l ∈ {1, 2, . . . , L}; r = p(l, k) – the first direct parent element r ∈ {1, 2, . . . , nl−1} for an element k,
located on the level l; m—the number of NUMA-nodes of the multi-core CS; j = m(i)—the number
j ∈ {1, 2, . . . , m} of NUMA-nodes containing a processor core i; qi—the set of processor cores belonging
to the NUMA-node i.



Information 2018, 9, 21 4 of 12Information 2018, 9, 21 4 of 12 

 

 

Figure 2. An example of the hierarchical structure of a multi-core CS, N = 8, L = 5, m = 2, c23 = 2, p(3; 4) 

= 2, m = 2, m(3) = 1. 

3. RCL Optimization Algorithms 

For memory affinity optimization and RCL-server processor affinity optimization we propose 

the algorithm RCLLockInitNUMA for the initialization of RCL-locks (Algorithm 1). The algorithm 

takes into account non-uniform memory access, and is performed during the initialization of the 

RCL-lock. 

Algorithm 1. RCLLockInitNUMA. 

1: /* Compute the number of free cores on CS and nodes. */ 

2: node_usage[1, …, m] = 0 

3: nb_free_cores = 0 

4: for i = 1 to N do 

5:     if ISRCLSERVER(i) then 

6:         node_usage[m(i)] = node_usage[m(i)] + 1 

7:     else 

8:         nb_free_cores = nb_free_cores + 1 

9:     end if 

10: end for 

11: /* Try to set memory affinity to the NUMA-node. */ 

12: nb_busy_nodes = 0 

13: for i = 0 to m do 

14:     if node usage[i] > 0 then 

15:         nb busy nodes = nb busy nodes + 1 

16:         node = i 

17:     end if 

18: end for 

19: if nb_busy_nodes = 1 then 

20:     SETMEMBIND(node) 

21: end if 

22: /* Set the affinity of RCL-server. */ 

23: if nb_free_cores = 1 then 

24:     core = GETNEXTCORERR() 

25: else 

26:     n = GETMOSTBUSYNODE(node_usage) 

27:     for i = 1 to qn do 

28:         if not ISRCLSERVER(i) then 

29:             core = i 

30:             break 

31:         end if 
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3. RCL Optimization Algorithms

For memory affinity optimization and RCL-server processor affinity optimization we propose the
algorithm RCLLockInitNUMA for the initialization of RCL-locks (Algorithm 1). The algorithm takes
into account non-uniform memory access, and is performed during the initialization of the RCL-lock.

Algorithm 1. RCLLockInitNUMA.

1: /* Compute the number of free cores on CS and nodes. */
2: node_usage[1, . . . , m] = 0
3: nb_free_cores = 0
4: for i = 1 to N do
5: if ISRCLSERVER(i) then
6: node_usage[m(i)] = node_usage[m(i)] + 1
7: else
8: nb_free_cores = nb_free_cores + 1
9: end if
10:end for
11:/* Try to set memory affinity to the NUMA-node. */
12:nb_busy_nodes = 0
13:for i = 0 to m do
14: if node usage[i] > 0 then
15: nb busy nodes = nb busy nodes + 1
16: node = i
17: end if
18:end for
19: if nb_busy_nodes = 1 then
20: SETMEMBIND(node)
21:end if
22:/* Set the affinity of RCL-server. */
23: if nb_free_cores = 1 then
24: core = GETNEXTCORERR()
25:else
26: n = GETMOSTBUSYNODE(node_usage)
27: for i = 1 to qn do
28: if not ISRCLSERVER(i) then
29: core = i
30: break
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31: end if
32: end for
33:end if
34: RCLLOCKINITDEFAULT(core)

In the first stage of the algorithm (lines 2–10), we compute the number of processor cores which are
not busy by RCL-server and the number of free processor cores on each of NUMA-nodes. Subsequently
(lines 12–18), we compute the summary number of NUMA-nodes with the RCL-servers running on it.
If there is only one such NUMA-node, we set the memory affinity to this node (lines 19–21).

The second stage of the algorithm (lines 23–34) includes a search for sub-optimal processor cores,
and the binding of the RCL-server to it. If there is only one processor core in the system which is not
busy by RCL-server, we set the affinity of the RCL-server to the first next (occupied) processor core
(lines 23–24). One core is always kept free, on which to run working threads. If there is more than
one free processor core in the system, we search for the least busy NUMA-node (line 26), and set the
affinity of the RCL-server to the first free core in this node (lines 27–32). The algorithm concludes with
a call of the default function of the RCL-lock initialization with obtained processor affinity (line 34).

For the optimization of working thread affinity, we propose the heuristic algorithm
RCLHierarchicalAffinity (Algorithm 2). The algorithm takes into account the hierarchical structure
of multi-core CS in order to minimize the execution time of multithreaded programs with RCL. This
algorithm is executed each time a parallel thread is created.

Algorithm 2. RCLHierarchicalAffinity.

1: if ISREGULARTHREAD(thr_attr) then
2: core_usage[1, . . . , N] = 0
3: for i = 1 to N do
4: if ISRCLSERVER(i) then
5: nthr_per_core = 0
6: l = L
7: k = i
8: core = 0
9: /* Search for the nearest processor core. */
10: do
11: /* Find the first covering parent element. */
12: do
13: clk_prev = clk
14: k = p(l; k)
15: l = l − 1
16: while clk = clk_prev or l = 1
17: /* When the root is reached, increase the minimal count
18: of threads per one core. */
19: if l = 1 then
20: nthr_per_core = nthr_per_core + 1
21: obj = i
22: else
23: /* Find the first least busy processor core. */
24: for j = 1 to clk do
25: if core_usage[j] ≤ nthr_per_core then
26: core = j
27: break
28: end if
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29: end for
30: end if
31: while core = 0
32: SETAFFINITY(core, thr_attr)
33: core_usage[core] = core_usage[core] + 1
34: return
35: end if
36: end for
37:end if

In the first stage of the algorithm (line 1), we check whether the thread is an RCL-server. For
each common (working) threads, we search for all of the RCL-servers (lines 3–4) being executed in
the system. When the first processor core with an RCL-server is found, this core becomes the current
element (lines 6–7), and for this element we search for the nearest free processor core for the affinity of
the created thread (lines 4–35). At the beginning of the algorithm, we consider that a processor core
with no affined threads is a free core (line 5).

In the first stage of the core search, we find the first covering element of hierarchical structure.
The covering element contains the current element and some any other processor cores except current
element (lines 12–16). When the uppermost element of the hierarchical structure is reached, we
increment the minimal number of threads per core (the free core is now the core with a greater number
of threads running on it) (lines 19–21). When the covering element is found, we search for the first free
processor core in it (lines 24–29), and set the affinity of the created thread to it (line 32), whereby, for
this core, the number of threads executed on it is increased (line 33). After the affinity of the thread is
set, the algorithm is finished (line 34).

We implemented RCLLockInitNUMA and RCLHierarchicalAffinity algorithms in a library that
utilizes the RCL method. We expect that the use of a modified RCL library will reduce the time required
for critical section execution and critical section throughput for existing multithreaded programs that
use RCL.

The algorithms utilize non-uniform memory access and the hierarchical structure of the system
(caching overheads) and access contention, so the effect of using the algorithms depends on the type of
the system (NUMA or SMP) on which the multithreaded programs are executed, the structure of the
system (number of hierarchical levels, existence of shared caches), the number of working threads,
existing affinities of the threads (RCL-server thread, working threads and a thread which allocates
memory), and the patterns of access to the memory of data structures. Thus, the efficiency of the
algorithms has to be evaluated based on these factors.

4. Experimental Results

For the evaluation of the algorithms, it is necessary to use shared memory systems with uniform
and non-uniform memory access (NUMA and SMP). While RCLLockInitNUMA is focused on NUMA
systems, RCLHierarchicalAffinity can be used with both system types. Benchmarks should consider
different access patterns to the memory of the data structures. The evaluation should be done for
different numbers of working threads (taking into account the number of processor cores in the system).

The experiments were conducted on the multi-core nodes of the computer clusters Oak and Jet
in the multicluster computer system of at the Center of Parallel Computational Technologies at the
Siberian State University of Telecommunications and Information Sciences. The node of the Oak
cluster (a NUMA system) includes two quad-core Intel Xeon E5620 processors (2.4 GHz, with sizes of
cache-memory of 32 KiB, 256 KiB, and 12 MiB for levels 1, 2 and 3, respectively) and 24 GiB of RAM
(Figure 3a). The ratio of rate of access to local and remote NUMA-nodes is 21 to 10. The node of the Jet
cluster (a SMP system) is equipped with a quad-core Intel Xeon E5420processor (2.5 GHz, with sizes of
cache-memory of 32 KiB and 12 MiB for levels 1 and 2, respectively) and 8 GiB of RAM (Figure 3b).
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The operating systems GNU/Linux CentOS 6 (Oak) and Fedora 21 (Jet) are installed on the
computing nodes. The compiler GCC 5.3.0 was used.

Using the described systems, we aim to study how non-uniform memory access (Oak node)
affects the efficiency of the algorithms. Additionally, we will determine how efficiency is affected by
the shared cache (L3 in the Oak node and L2 in the Jet node). We expect the algorithms will be more
efficient in the NUMA system with the deeper hierarchy.

We developed a benchmark for the evaluation of the algorithms. The benchmark performs
iterative access to elements of integer arrays of length b = 5 × 108 elements inside the critical section,
organized with the RCL. The number of operations is n = 108/p. As a pattern of operations in the
critical section, we used an increment of the integer variable by 1 (this operation is executed at each
iteration). We used three memory access patterns:

• sequential access: on each new iteration, choose the element that follows the previous one;
• strided access (interval-based access): on each new iteration, choose the element for which the

index exceeds the previous one by s = 20;
• random access: on each iteration, randomly choose the element of the array.

It is well known that these access patterns are the most common in multithreaded programs. We
plan to study how the memory access pattern affects the efficiency of the proposed algorithms; and
according to the results of the experiments, we will provide recommendations for multithreading
programming practice.

The number p of parallel threads was varied between 2 and 7 (7—number of processor cores
on the computer nodes which are not busy by RCL-server) in the first experiment, and between 2
and 100 in the second one. Here, we aim to evaluate the efficiency of the algorithm depending on
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the number of working threads (and how this number relates to the number of processor cores).
We expect the efficiency of RCLLockInitNUMA does not depend on the number of threads, while
RCLHierarchicalAffinity will be more effective when all the threads (including RCL-server) are bound
to the processor cores of one NUMA node.

The throughput b = n/t of the critical section was used as an indicator of efficiency (here, n is the
number of operations, and t is the time of benchmark execution). Note that throughput is the most
common efficiency indicator in studies on synchronization techniques.

We compared the efficiency of the algorithms for the initialization of RCL-lock; RCLLockInitDefault
(current RCL-lock initialization function) and RCLLockInitNUMA. Additionally, we compared the
affinity of the threads obtained by the algorithms RCLHierarchicalAffinity with other arbitrary affinities.

In the experiments for the evaluation of RCL-lock initialization algorithms, we used the thread
affinity depicted in Figure 4. Additionally, we conducted the experiment without fixing the affinity
of the working threads in order to study how fixed affinity affects the efficiency of the algorithms for
lock initialization.
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Figure 4. Thread affinity to the processor cores in the experiments, p = 2, . . . , 7.

Figure 5 depicts the dependence of the critical section’s throughput b on the number p of working
threads. We can see that the algorithm RCLLockInitNUMA minimizes the throughput of the critical
section for random access and strided access to the elements of the test array by 10–20%. We can
explain this by the fact that, in these access patterns, data is not cached in the local cache of processor
core on which RCL-server is running. Therefore RCL-server addresses the RAM directly, whereby the
access rate depends on the data location in the local or remote NUMA-node. The effect is perceptible
when the number of threads is near to the number of processor cores (Figure 5a,b) and exceeds it
(Figure 5c), and does not change significantly when the number of threads changes. The fixed affinity
of threads to processor cores (Figure 5a) does not significantly affect the results.

Figures 6 and 7 represent the experimental results obtained for different affinities for the
benchmark. Here, the number p of working threads does not exceed the number of cores,
because the affinity makes sense only in those conditions. The results show that the algorithm
RCLHierarchicalAffinity significantly increases critical section throughput. The effect of the algorithms
depends on the number of threads (up to 2.4 times at p = 2, up to 2.2 times at p = 3, up to 1.3 times
at p = 4, up to 1.2 times at p = 5) and on the access pattern (up to 1.5 times for random access, up to
2.4 times for sequential access and up to 2.1 times for strided access). In the case of a small number
of cores, RCL-server and working threads do not share cache memory or the memory of one NUMA
node; therefore, the overheads due to cache misses or memory access via NUMA bus are significant.
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As we expected, the efficiency of the RCLHierarchicalAffinity decreased when the number of threads
was greater than the number of processor cores on the NUMA node. This is due to the large overheads
when the RCL-server uses the NUMA bus to access memory that was previously accessed on a thread
which has been affined to another NUMA-node.
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Critical section throughput for benchmark execution on the node of the Jet cluster (Figure 7)
insignificantly varies for different thread affinities. This is explained by the lack of a shared (for
processor cores of one processor) cache, and uniform access to memory (SMP-system).

5. Conclusions

Algorithms for optimization of the execution of multithreaded programs based on Remote Core
Locking (RCL) were developed. We proposed the algorithm RCLLockInitNUMA for initialization of
RCL-lock while taking into account the non-uniform memory access in multi-core NUMA-systems,
and the algorithm RCLHierarchicalAffinity for sub-optimal thread affinity in hierarchical multi-core
computer systems.

The algorithm RCLLockInitNUMA increases the throughput of the critical sections of
multithreaded programs with random access and strided access to the elements of arrays on a NUMA
systems by an average of 10–20%. Optimization is achieved by means of the minimization of the
number of addresses to remote memory NUMA-segments. The algorithm RCLHierarchicalAffinity
increases the throughput of the critical section by up to 1.2–2.4 times for all access templates on NUMA
computer systems. The algorithms realize the affinity while taking into account all of the hierarchical
levels of multi-core computer systems.

The developed algorithms are realized as a library and can be used to minimize existing
multithreaded programs based on RCL.
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