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Abstract: Many optimization problems can be found in scientific and engineering fields. It is a
challenge for researchers to design efficient algorithms to solve these optimization problems.
The Particle swarm optimization (PSO) algorithm, which is inspired by the social behavior of bird
flocks, is a global stochastic method. However, a monotonic and static learning model, which is
applied for all particles, limits the exploration ability of PSO. To overcome the shortcomings, we
propose an improving particle swarm optimization algorithm based on neighborhood and historical
memory (PSONHM). In the proposed algorithm, every particle takes into account the experience of
its neighbors and its competitors when updating its position. The crossover operation is employed to
enhance the diversity of the population. Furthermore, a historical memory Mw is used to generate new
inertia weight with a parameter adaptation mechanism. To verify the effectiveness of the proposed
algorithm, experiments are conducted with CEC2014 test problems on 30 dimensions. Finally,
two classification problems are employed to investigate the efficiencies of PSONHM in training
Multi-Layer Perceptron (MLP). The experimental results indicate that the proposed PSONHM can
effectively solve the global optimization problems.

Keywords: neighborhood; particle swarm optimization; historical memory; evolutionary algorithms;
classification

1. Introduction

Artificial Neural Networks (ANN) is one of the more significant inventions in the field of soft
computing [1]. There are different types of ANNs in which the Feedforward Neural Network (FNN)
has been widely used. There are two types of FNN: Single-Layer Perceptron (SLP) [2] and Multi-Layer
Perceptron (MLP) [3]. MLP can solve nonlinear problems because it has more than one perceptron.
The ANN training process is an optimization process with the aim of finding a set of weights to
minimize an error measure [4]. Then, some conventional gradient descent algorithms, such as the
Back Propagation (BP) algorithm [5], are used to solve the problem. However, the BP algorithm is
prone to getting trapped in local minima because it is highly dependent on the initial values of weights
and biases.

To search for the optimal weights of the network, various heuristic optimization methods have
been utilized to train FNNs, such as Particle swarm optimization (PSO) [6], Differential evolution
(DE) [7], Genetic algorithms (GAs) [8], Ant colony algorithm [9], etc. These evolutionary algorithms
(EAs) have been recognized to be effective and efficient for tackling the optimization problems.
They have been successfully applied in various scientific and engineering fields, such as optimization,
engineering design, neural network training, scheduling, large-scale, constrained, economic problems,
multi-objective, forecasting, and clustering [10–17]. However, the EAs are often stuck in a local
optimum because of the possible occurrence of premature convergence. It is necessary for the EAs to
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address the issue of exploration–exploitation of the search space. To achieve a proper balance between
exploration and exploitation during the optimization process, many heuristic algorithms that imitate
biological or physical phenomena are proposed. These heuristic algorithms include the derandomized
Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) [18], the Simulated Annealing
(SA) [19,20], Biogeography-Based Optimizer (BBO) [21], Chemical Reaction Optimization (CRO) [22],
Brain Storm Optimization (BSO) [23] and so on. CMA-ES, proposed by Hansen and Ostermeier, adapts
the complete covariance matrix of the normal mutation distribution to solve optimization problems.
SA, proposed by Kirkpatrick et al., mimics the way that metals cool and anneal. In order to solve
the premature convergence, two partial re-initializing solutions strategies are proposed to improve
the population diversity in BSO. Inspired by a correspondence between optimization and chemical
reaction, CRO is proposed by mimicking what happens to molecules in chemical reactions.

PSO, proposed by Kennedy and Eberhart in 1995 [24], is a simple yet powerful optimization
algorithm that imitates the flying and the foraging behavior of birds. The concept of PSO is based
on the movement of particles and their personal and best individual experiences [24]. In classical
PSO, each particle is attracted by its previous best position (pbest) and the global best position (gbest).
That is to say, the particles adjust their speed and position dynamically by sharing information and
experiences of the best particles. Then, the algorithm can converge quickly by using the best solution
information in the evolutionary process. However, the information sharing strategy reduces the
diversity of the particle swarm, because all particles except itself only share the optimal particle
information while ignoring other particles’ information. Therefore, the algorithm is prone to premature
convergence because of losing diversity too rapidly during the evolutionary process. To improve the
performance of PSO, researchers have studied and proposed many improvement strategies based on
classical PSO [25–31]. M. Clerc and J. Kennedy proposed PSO with constriction factor (PSOcf) [26]
by studying a particle’s trajectory as it moves in discrete time. Mendes proposed the fully informed
particle swarm (PSOwFIPS) [32], in which the particle uses information from all its neighbors, rather
than just the best one. J. J. Liang et al. present the comprehensive learning particle swarm optimizer
(CLPSO) utilizing a new learning strategy [33]. T. Krzeszowski et al. propose a modified fuzzy particle
swarm optimization method, in which the Takagi–Sugeno fuzzy system is utilized to change the
parameters [27]. A. Alfi et al. present an improved fuzzy particle swarm optimization (IFPSO) that
uses a fuzzy inertia weight to balance the global and local exploitation abilities [28]. Fuzzy self-turning
PSO (FST-PSO), proposed by M. S. Nobile et al. [34], is a novel self-tuning algorithm that exploits fuzzy
logic (FL) to calculate the control parameters for each particle. Therefore, FST-PSO realizes a complete
settings-free version of PSO.

Obviously, it is impossible to find an algorithm that can solve all the problems. In fact, to develop
a new optimization method that can effectively deal with the exploration–exploitation dilemma in
some problems during the optimization process remains an important and significant research work.

An innovative element of this work is to propose an improved PSO based on neighborhood and
historical memory (PSONHM). Differently from the former PSO, each particle uses the information
about the neighborhood and the competitor to update its velocity and position in PSONHM.
The inferior particle is recorded as the competitor in the proposed algorithm. Moreover, instead
of the same elite (gbest) in the former PSO, multiple elites (good solutions) are employed to guide
the population toward a promising area. Furthermore, to solve premature convergence, a crossover
operator is introduced to make the population disperse. Overall, the main contributions of PSONHM
can be described as follows.

(1) Local neighborhood exploration method is introduced to enhance the local exploration ability.
With the local neighborhood exploration method, each particle updates its velocity and position
with the information of the neighborhood and competitor instead of its own previous information.
The method can effectively increase population diversity.
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(2) The crossover operator is employed to generate new promising particles and explore new areas
of the search space. The multiple elites are employed to guide the evolution of the population
instead of gbest, and thus avoid the local optima.

(3) Successful parameter settings can reduce the likelihood of being misled and make the particles
evolve towards more promising areas. Then, a historical memory Mw, which stores the
parameters from previous generations, is used to generate new inertia weights with a parameter
adaptation mechanism.

(4) The last contribution of PSONHM is to design a PSONHM-based trainer for MLPs. Classic
learning methods, such as Back Propagation (BP), may lead MLPs to local minima rather than the
global minimum. Neighborhood method, crossover operator and historical memory can enhance
the exploitation and exploration capability of PSONHM. Then, it can help PSONHM find the
optimal choice of weights and biases in the ANN and achieve the optimal result.

The remainder of this paper is organized as follows. In Section 2, PSO and its variants are reviewed.
Section 3 presents an improving particle swarm optimization based on neighborhood and historical
memory (PSONHM). Section 4 reports the experimental results compared with eight well-known
EAs on the latest 30 standard benchmark problems listed in the CEC2014 contest. In Section 5, two
classification problems are employed to investigate the efficiencies of PSONHM in training MLP.
Section 6 gives the conclusions and possible future research.

2. Related Work

PSO is a population-based optimization algorithm that uses interaction between particles to find
the optimal solution. In the following, a brief account of basics and improvements of PSO will be given.

2.1. PSO Framework

PSO algorithm, which is inspired by the behaviors of flocks of birds, is a population-based
optimization algorithm. Firstly, a randomly population of NP particles are generated in a D-dimension
search space. Each particle is a potential solution. To restrict the change of velocities and control the
scope of search, Shi and Eberhart introduced an inertia weight in PSO [35], the corresponding velocity
vi,G and the position xi,G are updated as follows:

vi,G+1 = ωGvi,G + c1ri(pbesti,G − xi,G) + c2ri(gbestG − xi,G), (1)

xi,G+1 = xi,G + vi,G+1, (2)

where xi,G = (x1
i,G, x2

i,G, · · · , xD
i,G) is the position of the ith particle at generation G. vi,G = (v1

i,G, v2
i,G, · · · , vD

i,G)

is the velocity of particle i. c1 and c2 are acceleration coefficients. ri = (r1
i , r2

i , · · · , rD
i ) are random

numbers generated in the interval [0, 1]. pbesti,G is the historical best position for ith particle. gbestG
is the best swarm historical position found so far.

The performance of PSO can be greatly improved by adjusting the inertia weight ωG. Shi and
Eberhart [36] designed a linearly decreasing inertia weight, which is computed as follows:

ωG = ωmax −
ωmax −ωmin

MaxGen
G, (3)

where ωmax and ωmin are usually fixed as 0.9 and 0.4. G is the current generation. MaxGen is the
maximum generation.

2.2. Improved PSO Based on Neighborhood

To get a proper trade-off between exploration and exploitation, neighborhood, which is an
important and efficient method, is widely used in evolutionary algorithms. For example, Das et al. [37]
propose two kinds of neighborhood models for DE, namely the local neighborhood model and the
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global mutation model that can facilitate the exploration and the exploitation of the search space.
Omran et al. [38] employ the index-based neighborhood to enhance the DE mutation scheme. The fully
informed PSO, proposed by Mendes [32], uses an index-based neighborhood as the basic structure.
The contribution of each neighbor was weighted by the goodness of its previous best. A PSO with a
neighborhood operator, proposed by Suganthan, gradually increases the local neighborhood size in the
search process [39]. Nasir et al. proposed a dynamic neighborhood learning particle swarm optimizer
(DNLPSO) [40]. In DNLPSO, the exemplar particle is selected from a neighborhood and the learner
particle can learn from the historical information of its neighborhood. The winner’s personal best is
used as the exemplar. Each particle in the swarm is known as learner particle. Ouyang et al. proposed
an improved global-best-guided particle swarm optimization with learning operation (IGPSO) for
solving global optimization problems [41]. In IGPSO, the personal best neighborhood learning strategy
is employed to effectively enhance the communication among the historical best swarm.

3. Proposed Modified Optimization Algorithm PSONHM

In this section, the details of the proposed algorithm are described. First, the motivations of this
paper are given. Then, the neighborhood exploration strategy, the property of stagnation and the
inertia weight assignments based on historical memory are presented. Finally, the pseudo-code of the
proposed algorithm is shown.

3.1. Motivations

In the canonical PSO, a particle depends on its personal best and the global best to establish a
trajectory along the search space. The global best particle guides the swarm to exploit in the search
process. Therefore, similar to other population based algorithms, the algorithm experiences premature
convergence because of poor diversity. In PSO, all the particles are attracted by gbest, so it is possible
that the particles will be easily misguided into unpromising areas. In addition, little attention has been
paid to utilize the competitor information, which is helpful for maintaining diversity. To overcome the
weakness of PSO, we attempt to use the neighborhood model to prevent the population from getting
trapped in local minima. With the neighborhood model, each particle can learn from its neighbors
and competitor. In this manner, the possibility of misguidance by the elite may be decreased. Then,
the crossover operation is introduced to generate new promising particles. Furthermore, it is widely
believed that the inertia weight can significantly influence the performance of PSO. However, there
is not much work devoted to discussing or using history information to design the inertia weight.
We attempt to use historical memory to guide the selection of future inertia weight.

3.2. Neighborhood Exploration Strategy

It is well known that the traditional PSO includes two types of behaviors: cognitive and social.
Generally, gbest, which represents the best position, is used in social behaviors. However, the algorithm
is easy to drop into the local optimum if gbest is not near the global optimum. A main issue in the
application of PSO is to implement effective exploration and exploitation. In general, the task of
exploration is to find the search space where better solutions are existed. On the other hand, the task
of exploitation is to realize a fast convergence to the optimum solution.

Next, we investigate the impact of neighborhood mechanism and archive method, which are used
in traditional PSO. They are PSO, PSOwFIPS [32] and PSO_Archive, respectively. In PSOwFIPS, the
particle uses information from all its neighbors. In PSO_Archive, the inferior particles are added to
the archive at each generation. If the archive size exceeds the population size, then some particles are
randomly removed from the archive. Then, we employ as a case study benchmark problem f 4 and f 17

selected from CEC2014 contest benchmark problems. f 4 is a simple multimodal problem, while f 17 is a
hybrid problem. Each problem is executed for 30 runs. The maximal number of function evaluations
(FES) for all of the compared algorithms is set to D × 10,000 with D = 30. To evaluate the performance
of each algorithm, the minimum value of the solution error measure, which is defined as f (x) − f (x*) is
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recorded, where f (x) is the best fitness value found by an algorithm in a run, and f (x*) is the real global
optimization value of a tested problem.

Figure 1 shows that the neighborhood information can effectively enhance PSO performance
because the informed individuals can find better solutions with a higher probability. Hence, we come
up with the idea that the neighborhood and the competitor should be utilized when stagnation is
happening to PSO.
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Figure 1. The mean function error values versus the number of FES on test problems. (a) f 4; (b) f 17.

Various neighborhood topologies have been proposed in [26], such as star, wheel, circular, pyramid
and 4-clusters. In the proposed algorithm, the ring topology is used because it has better performance
compared to other neighborhood topologies. The population is assumed to be organized on a ring
topology in connection with their indices. For example, the neighbors of xi,G are xi+1,G and xi−1,G.
The ring topology used in PSONHM is illustrated in Figure 2.
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Figure 2. Ring topology of H-neighborhood in PSONHM.

In traditional PSO, all the particles are attracted by gbest and the swarm has the tendency to
fast converge to the current globally best position. Then, the algorithm may stagnate in the local
optimum area because of the rapid convergence. The competitive particles, which may contain
some useful information, may be closer to the global minimum. Hence, the difference vector
between the personal best position and the competitive particle can be seen as a good direction
for exploration. To lessen the influence of gbest on the whole population, multiple elites, similar to
the better individuals xp

best,g used in DE/current-to-pbest [42], are selected to replace gbest and instruct
updating. In addition, the information of all the neighbors is taken into consideration. The difference
vector between the multiple elites and the neighbors can be seen as a good direction for exploitation.
Consequently, each particle receives information from its neighbors and competitor, which can
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increase the probabilities of generating successful solutions and decreases the probability of premature
convergence. The neighborhood exploration strategy is designed as follows:

vi,G+1 = ωGvi,G + c1ri(pbesti,G − x̃i,G) + c2ri(x
p
best,G −mean(xn(j,i),G)), (4)

where x̃i,G is the competitor of pbesti,G. pbesti,G denotes the best previously visited position of the ith
particle. At G generation, the objective values of ith particle is compared with pbesti,G, The winner is
denoted as pbesti,G+1, while the loser, namely the competitor, is denoted as x̃i,G+1. xn(j,i),G denotes the
jth neighbor of the particle i at generation G. Each particle has H neighbors. gbestG, which is used in
Label (1) may result in fast convergence. However, it may also cause premature convergence due to
the reduced population diversity. Therefore, xp

best,G, which is randomly chosen as one of the top 100p%
particles in the current population, is used instead of gbestG. mean(•) denotes the arithmetic mean
value function.

After neighborhood exploration, a binomial crossover operation is employed to enhance the
diversity of the population. vi,G+1 = (v1

i,G+1, v2
i,G+1, · · · , vD

i,G+1) is updated as follows:

vj
i,G+1 =

{
vj

i,G+1 i f rand ≤ CR

vj
i,G otherwise

j = 1, 2, · · · , D. (5)

The crossover factor CR is calculated as follows:

CR = ln(c1)(1 +
rand

2
), (6)

where D is the dimension. rand denotes a uniformly selected random number from [0, 1]. ln(·) denotes
natural logarithm function. c1 is the acceleration coefficient.

3.3. Property of Stagnation

It is called stagnation when the algorithm cannot find any better solutions. The property of
stagnation can be shown in PSONHM by the ti,G at generation G, which is evaluated to estimate
whether the algorithm cannot generate any successful solutions. The ti,G is updated as follows:

ti,G+1 =

{
0 i f f (xi,G) ≤ f (xi,G−1)

ti,G + 1 otherwise
i = 1, 2, · · · , NP, (7)

where f (*) is the objective function. NP is the population size.
The initial values ti,1 are set to zero. It indicates that the algorithm cannot generate any successful

solutions for the ith particle if ti,G increases continually. In this moment, it is thought that stagnation
happens to the algorithm. In PSONHM, the neighborhood exploration strategy is employed to increase
the probabilities of generating successful solutions when ti,G exceeds a fixed threshold value, namely, T.

3.4. Inertia Weight Assignments Based on Historical Memory

The inertia weight is helpful to balance the local and global search during the evolutionary
process [35]. Instead of solely depending on a linearly decreasing inertia weight, the historical memory
Mw, which stores a set of inertia weight values that performed well in the past, is used to generate
new inertia weight with a parameter adaptation mechanism. PSONHM keeps a historical memory
with k entries for inertia weight w. At first, the value of historical memory Mw with k entries at the first
generation is all initialized as follows. c0 is set to 0.5. The index q ∈ [1, k] determines the inertia weight
wq that is to update in the memory:

Mw,q,G = sin
(

1 + Norm(
c0

NP× k
,

c0

NP
)

)
− c0

MaxFES
(G = 1), (8)
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where Norm(•) is Gaussian distribution.
In each generation, the inertia weight wr used by each particle is generated with a random index

r within the range [1, k]. The wr used by successful particle is recorded in Sw. At the end of the
generation, the memory is updated as follows:

Mw,q,G+1 =

 sin
(

1 + Norm( c0
NP×k , c0

NP )
)
− c0

MaxFES G−meanw(Sw) Sw 6= ∅

sin
(

1 + Norm( c0
NP×k , c0

NP )
)
− c0

MaxFES G otherwise
. (9)

At first, q is initialized to 1. When a new inertia weight w is inserted into the memory, q is
increased. If q > k, q is reset to 1. If the population fails to generate a promising particle, which is
better than the parent, the memory is not updated. Otherwise, the qth inertia weight in the memory is
updated. c0 is set to 0.5. MaxFES is the maximum number of fitness evaluations. The weighted Lehmer
mean meanw (Sw) is computed as follows, which is proposed in [43]:

meanw(Sw) =
∑
|Sw |
i=1 ωkS2

w

∑
|Sw |
i=1 ωkSw

, (10)

wk =
∆ fk

∑
|Sw |
i=1 ∆ fk

, (11)

where ∆fk = |f (xk,G) − f (xk,G-1)| is the amount of fitness improvement, which is used to influence the
parameter adaptation.

The pseudo-code of PSONHM is illustrated in Algorithm 1. NP is the population size. H, which
is the number of neighbors, is set to 5. k is the number of inertia weight values in the memory and is
set to 5. T, which is the stagnation tolerance value, is set to 3. CR is the crossover factor.

Algorithm 1. PSONHM Algorithm.

1: Initialize D(number of dimensions), NP, H, k, T, c0, c1 and c2
2: Initialize population randomly
3: Initialize position xi, velocity vi, personal best position pbesti, competitor of pbesti and global best
position gbest of the NP particles (i = 1, 2, . . . , NP)
4: Initialize Mw,q according to Equation (8)
5: Index counter q = 1
6: while the termination criteria are not met do
7: Sw = ϕ

8: for i = 1 to NP do
9: r = Select from [1, k] randomly
10: w = Mw,r

11: if ti > = T
12: Compute velocity vi with neighborhood strategy according to Equation (4)
13: Update velocity vi by crossover operation according to Equations (5) and (6)
14: else
15: Compute velocity vi according to Equation (1)
16: end if
17: Update position xi according to Equation (2)
18: Calculate objective function value f (xi)
19: Calculate ti for next generation according to Equation (7)
20: end for
21: Update pbesti, gbest, and the competitor of pbesti (i = 1, 2, . . . , NP)
22: Update Mw,q based on Sw according to Equation (9)
23: q = q + 1
24: if q > k, q is set to 1
25: end while
Output: the particle with the smallest objective function value in the population.
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4. Experiments and Discussion

In this section, CEC2014 contest benchmark problems, which are widely adopted in numerical
optimizaiton methods, are used to verify the performance of the PSONHM algorithm. The general
experimental setting is explained in Section 4.1. The experimental results and comparison with other
algorithms are explained in Section 4.2.

4.1. General Experimental Setting

(1) Test Problems and Dimension Setting: To verify the performance of PSONHM, CEC2014 [44]
contest benchmark problems are used. According to their diverse characteristics, these test problems
can be divided into four kinds of optimization problems [44]:

• unimodal problems f 1–f 3,
• simple multimodal problems f 4–f 16,
• hybrid problems f 17–f 22, and
• composite problems f 23–f 30.

The search space is [−100, 100]D for the optimization problems. D denotes the dimension and is
set to 30 in this paper.

(2) Experimental Platform and Termination Criterion: All the experiments are run on a PC with a
Celeron 3.40 GHz CPU (City, US State abbrev. if applicable, Country) and 4 GB memory. Each problem
is executed for 30 runs with the maximal number of function evaluations (FES) D × 10,000.

(3) Performance Metrics: The metrics, such as Fmean (mean value), SD (standard deviation), Max
(maximum value) and Min (minimum value) of the solution error measure [45], are used to appraise
the performance of each algorithm. The solution error measure is defined as f (x) − f (x*). f (x) is the best
fitness value and f (x*) is the real global optimization value. The error will be recorded as 0 when the
value f (x) − f (x*) is less than 10−8. In view of statistics, the Wilcoxon signed-rank test [46] at the 5%
significance level is used to compare PSONHM with other compared algorithms. “≈”, “+” and “−”
are applied to express the performance of PSONHM is similar to, worse than, and better than that of
the compared algorithm, respectively.

(4) Control parameters: PSONHM is compared with PSO, PSOcf, TLBO (Teaching-Learning-Based
Optimization) [47], Jaya [48], GSA (Gravitational Search Algorithm) [49], BBO, CoDE (Differential
evolution with composite trial vector generation strategies and control parameters) [46] and FPSO
(Fuzzy Adaptive Particle Swarm Optimization) [50]. Default parameters settings for these algorithms
are given in Table 1.

For most intelligent algorithms, the size of the population plays a significant role in controlling
the convergence rate. Small population sizes may result in faster convergence, but increases the risk of
premature convergence. On the contrary, large population sizes tend to explore widely, but reduce the
rate of convergence. There are many studies on the population size of the optimization algorithms.
Different population size of the same algorithm may result in different performance. Therefore, without
loss of generality, the settings used for the competing algorithms are selected on the basis of the original
papers. For PSONHM, we make experiments to study the influence of different population size N.
The experimental results show that both smaller population size and larger population size are not the
best choice for PSONHM. Therefore, the population size of PSONHM is recommended to set as the
value 100, which is based on the result of the experiments.
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Table 1. Default parameters settings.

Algorithm Parameter Value

PSO

Population size (N) 40
Cognitive constant (C1) 1.49445

Social Constant (C2) 1.49445
Inertia constant (ω) 0.9 to 0.4
Population size (N) 100

PSOcf
Cognitive constant (C1) 1.49445

Social Constant (C2) 1.49445
Inertia constant (ω) 0.729

TLBO Population size (N) 100

FPSO
Population size (N) 80

Cognitive constant (C1) 2
Social Constant (C2) 2

Jaya Population size (N) 100

GSA
Population size (N) 50

Gravitational constant (G0) 1
α 20

BBO
Population size (N) 50

Mutation Probability 0.08
Number of elites each generation 8

CoDE
Population size (N) 100
Mutation factor (F) [1.0 1.0 0.8]

Crossover factor (CR) [0.1 0.9 0.2]

PSONHM

Population size (N) 100
Cognitive constant (C1) 1.49445

Social Constant (C2) 1.49445
Memory size 5

p 0.05

4.2. Comparison with Nine Optimization Algorithms on 30 Dimensions

The statistical results, in terms of Fmean, SD, Max and Min obtained in 30 independent runs by
each algorithm, are reported in Table 2.

Table 2. Experimental results of PSO, PSOcf, TLBO, Jaya, GSA, BBO, CoDE, FPSO and PSONHM on f 1–f 3.

F PSO PSOcf TLBO Jaya GSA BBO CoDE FPSO PSONHM

f 1

Fmean 8.34 × 106 6.44 × 107 4.79 × 105 7.05 × 107 1.32 × 107 1.89 × 107 2.38 × 104 1.14 × 107 4.47 × 105

SD 8.22 × 106 7.75 × 107 3.95 × 105 2.00 × 107 1.78 × 106 1.33 × 107 1.85 × 104 1.14 × 107 2.90 × 105

Max 2.77 × 107 3.02 × 108 1.58 × 106 1.05 × 108 1.79 × 107 5.44 × 107 8.61 × 104 6.40 × 107 9.92 × 105

Min 8.93 × 104 3.89 × 105 5.71 × 104 3.58 × 107 1.02 × 107 1.71 × 106 4840 1.97 × 106 8.93 × 104

Compare/rank −/4 −/8 ≈/2 −/9 −/6 −/7 +/1 −/5 \/2

f 2

Fmean 0.172 6.55 × 109 22.2 7.05 × 109 3.40 × 109 4.26 × 106 4.88 0.183 9.01 × 10−4

SD 0.529 5.33 × 109 15.6 9.74 × 108 1.86 × 1010 1.64 × 106 2.10 0.664 1.35 × 10−3

Max 2.56 1.95 × 1010 49.1 9.51 × 109 1.02 × 1011 1.01 × 107 11.1 3.56 5.98 × 10−3

Min 2.78 × 10−6 6.41 × 10−3 4.73 × 10−3 5.31 × 109 2.16 × 103 1.59 × 106 2.48 4.16 × 106 5.70 × 10−8

Compare/rank −/2 −/8 −/5 −/9 −/7 −/6 −/4 −/3 \/1

f 3

Fmean 6.04 2.44 × 103 568 7.20 × 104 8.29 × 104 1.03 × 104 1.63 × 10−4 16.21 0.370
SD 10.1 3.97 × 103 358 1.42 × 104 1.52 × 103 7.91 × 103 9.08 × 10−5 21.79 0.329

Max 38.7 1.42 × 104 1720 1.03 × 105 8.52 × 104 3.01 × 104 4.15 × 10−4 89.75 0.968
Min 3.67 × 10−3 8.23 × 10−2 39.8 4.78 × 104 7.93 × 104 1.66 × 103 5.56 × 10−5 5.80 × 10−2 7.75 × 10−3

Compare/rank −/3 −/4 −/3 −/6 −/7 −/5 +/1 −/4 \/2

−/≈/+ 3/0/0 3/0/0 2/1/0 3/0/0 3/0/0 3/0/0 1/0/2 3/0/0 \
Avg-rank 3.00 6.67 3.33 8.00 6.67 6.00 2.00 4.00 1.67

(1) Unimodal problems f1–f3

From the statistical results of Table 2, we can see that PSONHM performs well on f 1–f 3 for
30 dimensions. For f 1–f 3, PSONHM works better than PSO, PSOcf, TLBO, Jaya, GSA, BBO, CoDE
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and FPSO on 3, 3, 2, 3, 3, 3, 1, 3 test problems, respectively. The overall ranking sequences for the
test problems are PSONHM, CoDE, PSO, TLBO, FPSO, BBO, PSOcf (GSA) and Jaya in a descending
direction. The average rank of PSOcf is the same as that of GSA. For unimodal problems f 1–f 3,
the results indicate that the inertia weight, which is updated adaptively, is helpful for PSONHM to
find the area where the potential optimal solution existed and converge to the optimal solution quickly.

(2) Simple multimodal problems f 4–f 16

Considering the simple multimodal problems f 4–f 16 in Table 3, PSONHM outperforms other
algorithms on f 5, f 6, f 7, f 9, f 12, f 13 and f 15. CoDE performs well on f 4. BBO performs well on f 8, f 10, f 11

and f 16. TLBO performs well on and f 14. PSONHM performs better PSO, PSOcf, TLBO, Jaya, GSA,
BBO, CoDE and FPSO on 12, 12, 11, 13, 13, 6, 11 and 12 test problems, respectively. The overall ranking
sequences for the test problems are PSONHM, BBO, PSO, CoDE (FPSO), TLBO, PSOcf, Jaya and GSA in
a descending direction. The average rank of CoDE is the same as that of FPSO. The results indicate that
PSONHM generally offered better performance in most of the simple multimodal problems, though
it worked slightly worse on several problems. Due to the neighborhood mechanism, the population
makes full use of the information from its neighbors and the competitor, and guides the evolution
process successfully toward more promising solutions.

Table 3. Experimental results of PSO, PSOcf, TLBO, Jaya, GSA, BBO, CoDE, FPSO and PSONHM on f 4–f 16.

F PSO PSOcf TLBO Jaya GSA BBO CoDE FPSO PSONHM

f 4

fmean 167 332 54.9 443 1800 119 19.5 157 107
SD 26.2 238 41.2 88.9 6040 30.1 22.3 60.7 31.6

Max 238 920 137 744 2.53 × 104 180 70.3 270 145
Min 124 68.5 1.56 × 10−2 330 166 72.3 1.46 9.01 31.8

Compare/rank −/6 −/7 +/2 −/8 −/9 ≈/3 +/1 −/5 \/3

f 5

fmean 20.7 20.2 20.9 20.9 20.9 20.1 20.6 20.8 20
SD 0.149 0.25 7.02 × 10−2 4.75 × 10−2 4.29 × 10−2 4.17 × 10−2 4.13 × 10−2 6.40 × 10−2 0.204

Max 20.9 20.8 21 21 21 20.2 20.6 20.9 20.8
Min 20.4 20 20.6 20.8 20.8 20.1 20.5 20.7 20

Compare/rank −/5 −/3 −/8 −/7 −/9 −/2 −/4 −/6 \/1

f 6

fmean 13.1 17.8 11.5 35.1 34.5 14 20.4 14.7 9.19
SD 2.78 4.52 2.62 1.80 4.90 1.78 2.88 3.64 20.1

Max 20 28.1 16.1 38.1 41.2 17.2 25.4 22.7 11.4
Min 7.78 8.58 5.77 30.6 22.5 10.5 9.50 7.53 3.63

Compare/rank −/3 −/6 −/2 −/9 −/8 −/4 −/7 −/5 \/1

f 7

fmean 1.48 × 10−2 79.7 1.34 × 10−2 21 159 1.03 6.77 × 10−5 1.06 × 10−2 0
SD 1.36 × 10−2 43.9 1.99 × 10−2 4.81 261 1.93 × 10−2 5.44 × 10−5 1.19 × 10−2 0

Max 6.64 × 10−2 205 7.57 × 10−2 31.8 1050 1.07 3.05 × 10−4 4.40 × 10−2 0
Min 0 24.3 0 13.7 11.6 0.981 1.22 × 10−5 0 0

Compare/rank −/5 −/8 −/4 −/7 −/9 −/6 −/2 −/3 \/1

f 8

fmean 29.4 75.5 58.5 224 179 0.609 18.5 38.2 15
SD 7.01 23.1 11.7 12.8 52.8 0.244 1.93 13.6 3.15

Max 44.7 131 81.5 254 448 1.39 22.2 80.5 18.9
Min 16.9 31 39.7 204 140 0.204 13.8 15.9 5.96

Compare/rank −/4 −/7 −/6 −/9 −/8 +/1 −/3 −/5 \/2

f 9

fmean 77.1 123 61.3 262 214 51.1 139 82.9 50.5
SD 14.4 36.1 14.9 13.9 65.9 10.3 9.41 23.4 7.97

Max 101 216 96.5 291 445 70.3 154 139 59.6
Min 46.7 59.6 38.8 223 166 32.8 112 41.7 32.8

Compare/rank −/4 −/6 −/3 −/9 −/8 ≈/1 −/7 −/5 \/1

f 10

fmean 886 2370 1200 5630 4050 3.43 762 1.05 × 103 522
SD 328 679 526 379 287 1.24 129 382 146

Max 1600 3650 2400 6220 4400 7.10 991 1.61 × 103 708
Min 265 1330 6.87 4800 3290 1.13 535 279 139

Compare/rank −/4 −/7 −/6 −/9 −/8 +/1 −/3 −/5 \/2

f 11

fmean 2890 3440 6490 6880 4390 1810 4800 3.30 × 103 2250
SD 661 760 352 367 140 250 208 1.05 × 103 304

Max 4300 4850 7150 7480 4620 2420 5230 6.85 × 103 2630
Min 1440 1740 5510 5990 4050 1180 4290 1.89 × 103 1370
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Table 3. Cont.

F PSO PSOcf TLBO Jaya GSA BBO CoDE FPSO PSONHM

Compare/rank −/3 −/5 −/8 −/9 −/6 +/1 −/7 −/4 \/2

f 12

fmean 0.59 0.253 2.46 2.41 2.82 0.214 1.02 0.8201 0.198

SD 0.268 9.85 ×
10−2 0.241 0.331 0.352 5.40 × 10−2 0.110 0.633 4.75 × 10−2

Max 1.67 0.468 2.98 2.98 3.37 0.334 1.23 2.56 0.251
Min 0.273 0.103 2.07 1.66 1.98 0.127 0.794 0.139 6.94 × 10−2

Compare/rank −/4 ≈/1 −/8 −/7 −/9 ≈/1 −/6 −/5 \/1

f 13

fmean 0.395 1.53 0.418 1.59 8.81 0.513 0.464 0.4214 0.339
SD 0.103 1.09 9.97 × 10−2 0.323 0.938 0.103 6.44 × 10−2 0.105 8.47 × 10−2

Max 0.594 4.33 0.619 2.48 10.2 0.691 0.546 0.701 0.555
Min 0.186 0.556 0.262 0.982 6.74 0.264 0.325 0.277 0.197

Compare/rank −/2 −/7 −/3 −/8 −/9 −/6 −/5 −/4 \/1

f 14

fmean 0.308 22.1 0.275 9.61 139 0.402 0.284 0.313 0.361
SD 0.124 16.5 5.30 × 10−2 1.83 115 0.177 3.46 × 10−2 0.127 0.181

Max 0.842 77.1 0.391 13.1 403 0.982 0.363 0.820 0.714
Min 0.189 0.89 0.151 4.96 15.7 0.23 0.201 0.180 0.199

Compare/rank ≈/1 −/8 ≈/1 −/7 −/9 −/6 ≈/1 ≈/1 \/1

f 15

fmean 7.43 4290 9.28 56.5 43.6 14.1 13.4 7.34 5.84
SD 2.43 1.04 × 104 3.73 49.1 14.5 3.01 0.865 2.34 2.01

Max 15.4 4.23 × 104 17.2 278 94.5 21.6 15.1 10.81 10.9
Min 4.16 3.64 3.14 34.2 26.3 10.2 11.9 2.62 2.95

Compare/rank −/3 −/9 −/4 −/8 −/7 −/6 −/5 −/2 \/1

f 16

fmean 10.9 11.1 11.8 12.9 13.7 9.72 11.6 11.67 10.7
SD 0.599 0.62 0.311 0.173 0.238 0.681 0.230 0.515 0.619

Max 12 12.5 12.5 13.3 14.1 11.3 11.9 12.42 11.9
Min 9.69 9.55 11.2 12.6 13.2 8.81 11.1 10.08 9.81

Compare/rank −/3 −/4 −/7 −/8 −/9 ≈/1 −/5 −/6 \/1

−/≈/+ 12/1/0 12/1/0 11/1/1 13/0/0 13/0/0 6/4/3 11/1/1 12/1/0 \
Avg-rank 3.62 6.00 4.77 8.08 8.31 3.00 4.31 4.31 1.38

(3) Hybrid problems f 17–f 22

The results in Table 4 show that PSONHM performs better than other compared algorithms
except CoDE. The overall ranking sequences for the test problems are CoDE, PSONHM, TLBO, PSO,
FPSO, BBO, PSOcf, GSA and Jaya in a descending direction. Because of the crossover operation,
which is utilized to enhance the potential diversity of the population, PSONHM can avoid premature
convergence with a higher probability and show better performance than most compared algorithms
on these hybrid problems.

Table 4. Experimental results of PSO, PSOcf, TLBO, Jaya, GSA, BBO, CoDE, FPSO and PSONHM on f 17–f 22.

F PSO PSOcf TLBO Jaya GSA BBO CoDE FPSO PSONHM

f 17

Fmean 7.41 × 105 1.17 × 106 2.10 × 105 4.41 × 106 1.65 × 106 1.64 × 106 1.47 × 103 7.88 × 105 1.07 × 105

SD 7.71 × 105 1.46 × 106 1.66 × 105 1.62 × 106 1.60 × 105 1.02 × 106 235 9.02 × 105 8.24 × 104

Max 3.05 × 106 5.69 × 106 7.79 × 105 8.20 × 106 1.94 × 106 5.10 × 106 1.87 × 103 4.51 × 106 2.93 × 105

Min 1.92 × 104 3.45 × 104 4.36 × 104 8.17 × 105 1.26 × 106 3.24 × 105 831 7.62 × 104 4010

Compare/rank −/4 −/6 −/3 −/9 −/8 −/7 +/1 −/5 \/2

f 18

Fmean 5.77 × 103 5.09 × 107 2480 2.66 × 107 286 3010 49.1 2.81 × 105 1310
SD 6.10 × 103 1.39 × 108 4530 4.32 × 107 65 2570 6.05 1.42 × 106 1020

Max 2.75 × 104 5.03 × 108 2.25 × 104 1.71 × 108 556 1.13 × 104 60.3 7.80 × 106 3020
Min 251 437 77.8 5.03 × 106 230 289 36.2 248 136

Compare/rank −/6 −/9 −/4 −/8 +/2 −/5 +/1 −/7 \/3

f 19

Fmean 15.1 25.9 12 37.1 217 29.7 7.15 15.6 6.88
SD 20.4 28 11 23.8 138 33.1 0.689 21.3 0.922

Max 76.9 140 69.4 120 753 115 8.43 87.9 7.99
Min 4.52 8.53 4.78 23 43.3 6.97 5.86 4.38 4.82

Compare/rank −/4 −/6 −/3 −/8 −/9 −/7 −/2 −/5 \/1

f 20

Fmean 368 1740 814 1.05 × 104 2.31 × 105 8020 30.4 537 257
SD 229 1800 388 3.62 × 103 4.48 × 104 6190 4.04 311 57.9

Max 1330 7440 2020 2.06 × 104 3.21 × 105 2.80 × 104 39.2 1.46 × 103 340
Min 890 223 381 3.58 × 103 1.30 × 105 648 24.6 189 152

Compare/rank −/3 −/6 −/5 −/8 −/9 −/7 +/1 −/4 \/2

f 21

Fmean 6.60 × 104 4.41 × 105 6.78 × 104 9.02 × 105 9.77 × 105 7.51 × 105 772 1.44 × 105 2.20 × 104

SD 7.53 × 104 5.04 × 105 3.98 × 104 3.83 × 105 2.02 × 105 6.24 × 105 112 1.53 × 105 1.08 × 104

Max 3.38 × 105 1.91 × 106 1.60 × 105 1.54 × 106 1.55 × 106 2.50 × 106 982 6.74 × 105 4.13 × 104

Min 1720 1.12 × 104 1.92 × 104 3.95 × 105 6.47 × 105 3.05 × 104 583 4.66 × 103 6200
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Table 4. Cont.

F PSO PSOcf TLBO Jaya GSA BBO CoDE FPSO PSONHM

Compare/rank −/3 −/6 −/4 −/8 −/9 −/7 +/1 −/5 \/2

f 22

Fmean 310 600 239 628 922 478 271 347 232
SD 136 218 106 113 161 200 153 173 82.4

Max 620 1060 415 822 1270 896 627 777 330
Min 22.5 204 40.2 349 736 35.2 25.8 20.8 411

Compare/rank −/4 −/7 ≈/1 −/8 −/9 −/6 −/3 −/5 \/1

−/≈/+ 6/0/0 6/0/0 5/1/0 6/0/0 5/0/1 6/0/0 2/0/4 6/0/0 \
Avg-rank 4.00 6.67 3.33 8.17 7.67 6.50 1.50 5.17 1.83

(4) Composite problems f 23–f 30

The composite problems are very complex and time-consuming because they combine multiple
test problems into a complex landscape. Thus, it is difficult for optimization algorithms to achieve
better solutions. Table 5 shows that the overall ranking sequences for the test problems are GSA,
PSONHM, CoDE (TLBO), BBO, PSO, FPSO, Jaya and PSOcf in a descending direction. The average
rank of CoDE is the same as that of TLBO. The results indicate that the neighborhood mechanism can
not effectively solve the composite problems.

Table 5. Experimental results of PSO, PSOcf, TLBO, Jaya, GSA, BBO, CoDE, FPSO and PSONHM on f 23–f 30.

F PSO PSOcf TLBO Jaya GSA BBO CoDE FPSO PSONHM

f 23

Fmean 315 353 315 349 246 316 315 315 315
SD 0.214 22 1.71 6.11 13.7 0.854 7.14 × 10−7 0.203 0.195

Max 316 416 315 364 269 318 315 316 316
Min 315 325 315 338 220 315 315 315 315

Compare/rank ≈/3 −/9 +/2 −/8 +/1 −/7 ≈/3 −/6 \/3

f 24

Fmean 235 257 200 252 207 233 249 236 230
SD 8.15 25.8 1.55 × 10−3 12.5 0.327 4.61 16.8 6.41 5.60

Max 250 331 200 266 208 246 297 247 243
Min 224 226 200 212 207 228 225 223 224

Compare/rank −/5 −/9 +/1 −/8 +/2 −/4 −/7 −/6 \/3

f 25

Fmean 210 214 200 220 201 207 202 212 210
SD 3.02 9.42 0.621 4.91 4.30 × 10−2 1.58 0.139 4.15 2.55

Max 218 241 203 229 201 210 203 221 216
Min 206 204 200 210 200 205 202 206 206

Compare/rank −/6 −/8 +/1 −/9 +/2 +/4 +/3 −/7 \/5

f 26

Fmean 128 115 107 101 171 100 100 103 100
SD 55.9 33.7 25.2 0.411 37.7 0.114 0.529 18.3 0.411

Max 332 200 200 103 200 100 100 200 100
Min 100 100 100 100 108 100 100 100 100

Compare/rank −/8 −/7 −/6 −/4 −/9 −/2 −/3 −/5 \/1

f 27

Fmean 636 798 512 1130 210 570 400 622 427
SD 148 236 138 87.4 1.31 124 2.24 159 38.8

Max 932 1090 844 1210 213 722 401 853 523
Min 401 432 401 722 206 405 400 401 401

Compare/rank −/7 −/8 −/4 −/9 +/1 −/5 ≈/2 −/6 \/2

f 28

Fmean 1234 1570 1080 1208 213 977 1035 1.42 × 103 985
SD 378 324 175 205 3.11 160 126 448 42.9

Max 2400 2330 1700 1960 221 1630 1225 2.46 × 103 1040
Min 906 1130 887 1050 208 803 890 918 897

Compare/rank −/7 −/9 −/5 −/6 +/1 ≈/2 −/4 −/8 \/2

f 29

Fmean 2.14 × 106 6.22 × 106 1.44 × 106 2.12 × 106 244 1830 564 1.29 × 106 1140
SD 6.71 × 106 5.50 × 106 3.28 × 106 3.56 × 106 8.55 504 206 4.91 × 106 136

Max 2.56 × 107 1.71 × 107 9.16 × 106 1.02 × 107 258 2850 733 1.96 × 107 1290
Min 1010 5.15 × 104 1130 6.24 × 104 229 1150 261 779 828

Compare/rank −/8 −/9 −/6 −/7 +/1 −/4 +/2 −/5 \/3

f 30

Fmean 4660 9.51 × 104 3870 1.72 × 104 251 6170 1.11 × 103 9.50 × 103 3040
SD 2260 7.58 × 104 2870 1.46 × 104 7.86 2670 179 9.06 × 103 836

Max 1.06 × 104 2.35 × 105 1.37 × 104 6.91 × 104 266 1.17 × 104 1.45 × 103 4.42 × 104 4090
Min 966 1860 994 7420 235 2090 772 1.20 × 103 1440

Compare/rank −/5 −/9 ≈/3 −/8 +/1 −/6 +/2 −/7 \/3

−/≈/+ 7/1/0 8/0/0 4/1/3 8/0/0 1/0/7 6/1/1 3/2/3 8/0/0 \
Avg-rank 6.13 8.50 3.50 7.38 2.25 4.25 3.25 6.25 2.75
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All in all, PSONHM performs better than the compared algorithms when considering f 1–f 30 on
30 dimensions. Table 6 indicates PSONHM is competitive on CEC2014 test problems. PSONHM
outperforms other algorithms on f 2, f 5, f 6, f 7, f 9, f 12, f 13, f 15, f 19, f 22 and f 26. CoDE performs well on
f 1, f 3, f 4, f 17, f 18, f 20 and f 21. BBO performs well on f 8, f 10, f 11 and f 16. TLBO performs well on and f 14,
f 24 and f 25. GSA outperforms other algorithms on f 23, f 27, f 28, f 29 and f 30. The total ranking orders on
30 test problems are PSONHM, CoDE, TLBO, PSO, BBO, FPSO, GSA, PSOcf and Jaya in a descending
direction. Figure 3 shows the convergence curves for sixteen of the 30-dimensional CEC2014 benchmark
problems. The curves illustrate mean errors (in logarithmic scale) in 30 independent simulations of
PSO, PSOcf, TLBO, Jaya, GSA, BBO, CoDE, FPSO and PSONHM. As mentioned above, the curves
indicate that, in most problems, PSONHM either achieves a fast convergence or behaves similarly to it.
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Figure 3. Evolution of the mean function error values derived from PSO, PSOcf, TLBO, Jaya, GSA, BBO,
CoDE, FPSO and PSONHM versus the number of FES on sixteen test problems with D = 30. (a) f 2; (b)
f 3; (c) f 5; (d) f 6; (e) f 7; (f) f 9; (g) f 12; (h) f 13; (i) f 15; (j) f 17; (k) f 19; (l) f 20; (m) f 21; (n) f 22; (o) f 26; (p) f 27.

Table 6. Comparison of PSONHM with PSO, PSOcf, TLBO, Jaya, GSA, BBO, CoDE and FPSO on the
CEC2014 benchmarks (D = 30 dimensions).

D PSO PSOcf TLBO Jaya GSA BBO CoDE FPSO PSONHM

30
−/≈/+ 28/2/0 29/1/0 22/4/4 30/0/0 22/0/8 21/4/5 17/3/10 29/1/0 \
Avg-rank 4.30 6.87 4.00 7.90 6.40 4.33 3.23 4.97 1.87

The experiment results reveal that PSONHM can work well for most test problems because of
the use of neighborhood mechanism and the adaptive inertia weight assignments based on historical
memory. With the interaction of the best particles, the neighborhood particles and the competitors,
the neighborhood exploration mechanism is designed to guide the search better in the next generation.
It is helpful for PSONHM to explore and find the area where the potential optimal solution is existed.
The risk of premature convergence is decreased as much as possible. After neighborhood exploration,
PSONHM utilizes the crossover operation to enhance the potential diversity of the population.
The convergence rate of algorithm is obviously improved because of learning from previous experience.
In addition, the inertia weight is adaptively adjusted based on the historical memory, where the better
inertia weight preserved in each generation. Then, the probability of finding better solutions is greater
and this is helpful for improving the performance of the proposed algorithm. Thus, the exploration and
exploitation are done during the optimization process. Accordingly, PSONHM can not only improve
the convergence rate of algorithm but can also decrease the risk of premature convergence as much
as possible.
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5. PSONHM for Training an MLP

In this section, the proposed PSONHM algorithm is applied to solve two classification problems
by training an MLP. The basic structure of the proposed scheme is depicted in Figure 4.
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5.1. Multi-Layer Perceptron

In this section, the proposed algorithm is used for training MLPs. There are three layers in MLP:
input layer, hidden layer and output layer. Figure 5 shows a multi-layer perceptron for neural network
architecture. These layers are interconnected by links called weights. The outputs of hidden nodes
(Sj, j = 1, . . . , H) are calculated by an activation function, which is defined as follows:

Sj =
1

(1 + exp(−
(
∑n

i=1(WijXi)− θj
)
))

, (12)

where n is the number of the input nodes, Wij is the connection weight from the ith node in the input
layer to the jth node in the hidden layer. Xi shows the ith input node. θj denotes the threshold.
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After calculating the outputs of hidden nodes, the final outputs (Ok, k = 1, . . . , m) are calculated
by applying a sigmoid function:

Ok =
1

(1 + exp(−
(

∑H
j=1(WjkSj)− θk

)
))

, (13)

where θk denotes the threshold of the kth output node. Wjk is the connection weight from the jth node
in the hidden layer to the kth node in the output layer.

The aim of training MLPs is to find a set of weights with the smallest error measure. The objective
function is the mean sum of squared errors (MSE) over all training patterns, which is shown as follows:

MSE = ∑Q
i=1

∑k
j=1
(
dij − oij

)2

Q
, (14)
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where Q is the number of training data set, K is the number of output units, dij is desired output and oij
is actual output of the ith input node.

Finally, the objective function uses MSE to evaluate the fitness of the individuals in each
optimization algorithm. The fitness of the ith training sample is calculated by:

Fitness (Xi) = MSE (Xi). (15)

5.2. Classification Problems

In this section, PSONHM is evaluated on the classification datasets Iris and Balloon, and
the two datasets are obtained from the University of California at Irvine (UCI) Machine Learning
Repository [51]. The metrics, such as MSEmean (mean value), MSEstd (standard deviation), MSEmax

(maximum value) MSEmin (minimum value) of MSE, and Classification rate are used to appraise the
performance of each algorithm.

To provide a fair comparison, all algorithms were terminated when a maximum number of fitness
evaluations (MaxFES = 50,000) were reached. The mean trained MLP with 10 runs is chosen and
used to classify the test set. The performance of the different algorithms for Iris problem and Balloon
problem is presented in Tables 7 and 8.

5.2.1. Iris Flower Classification

The Iris flower classification is a three-class problem with 150 samples. Each sample consists of
four features, namely sepal length, sepal width, petal length, and petal width. Iris flower classification
was solved using MLPs with four inputs, nine hidden nodes and three output nodes. The experimental
results are shown in Table 7 and Figure 6.

The MSE results show that PSONHM manages to solve the Iris flower classification with high
accuracy compared PSO, PSOcf, TLBO, Jaya, GSA, BBO, CoDE and FPSO. The overall ranking
sequences for MSEmean are PSONHM, TLBO, PSO, BBO, CoDE, PSOcf, FPSO, Jaya and GSA in a
descending direction. The overall ranking sequences for classification rate are PSONHM, TLBO,
PSOcf, PSO, FPSO, BBO, Jaya, CoDE and GSA in a descending direction. The classification rate is
93.40% for PSONHM, more than all the other algorithms. Figure 6 shows the convergence curves
of nine algorithms. It can be seen that the convergence rate of PSONHM is much faster than all
other algorithms.
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Table 7. Experimental results for the Iris dataset.

Algorithm MSEmean MSEstd MSEmax MSEmin Classification Rate (%)

PSO 2.67 × 10−2 1.92 × 10−3 2.26 × 10−2 2.97 × 10−2 84.80
PSOcf 5.32 × 10−2 1.00 × 10−1 1.60 × 10−2 3.40 × 10−1 86.20
TLBO 2.01 × 10−2 5.07 × 10−3 1.45 × 10−2 3.14 × 10−2 90.80
Jaya 6.31 × 10−2 1.36 × 10−2 4.95 × 10−2 9.21 × 10−2 80.93
GSA 1.60 × 10−1 2.45 × 10−2 0.127 1.99 × 10−1 0.00
BBO 3.26 × 10−2 4.63 × 10−3 2.63 × 10−2 3.90 × 10−2 83.00

CoDE 4.41 × 10−2 5.82 × 10−3 5.37 × 10−2 3.48 × 10−2 67.06
FPSO 5.75 × 10−2 9.97 × 10−2 3.41 × 10−1 2.46 × 10−2 84.73

PSONHM 1.49 × 10−2 3.80 × 10−3 7.11 × 10−3 2.12 × 10−2 93.40

5.2.2. Balloon Classification

The Balloon dataset has 16 samples that are divided into two classes: inflated or not. All samples
have four attributes such as color, size, act, and age. This dataset is solved by employing MLP with
four input nodes, nine hidden nodes, and one output node. The experimental results are shown in
Table 8 and Figure 7.

The MSE results show that the classification rate is 100% for all the algorithms except GSA.
The classification rate of GSA is 49.50%. As shown in Table 8, the overall ranking sequences for
MSEmean are PSONHM, TLBO, PSOcf, BBO, FPSO, PSO, Jaya, CoDE and GSA in a descending direction.
PSONHM achieves the minimum error on the balloon classification problem. In addition, it can be
seen that the convergence of PSONHM is faster than other compared algorithms.

Table 8. Experimental results for the Balloon dataset.

Algorithm MSEmean MSEstd MSEmax MSEmin Classification Rate (%)

PSO 8.34 × 10−12 2.56 × 10−11 5.67 × 10−20 8.14 × 10−11 100
PSOcf 7.07 × 10−19 1.03 × 10−18 2.94 × 10−25 3.06 × 10−18 100
TLBO 5.02 × 10−20 1.58 × 10−19 4.49 × 10−31 5.01 × 10−19 100
Jaya 1.43 × 10−11 2.48 × 10−11 3.10 × 10−15 8.11 × 10−11 100
GSA 1.41 × 10−2 3.20 × 10−2 4.85 × 10−5 1.04 × 10−1 49.50
BBO 2.99 × 10−15 6.51 × 10−15 1.02 × 10−20 2.02 × 10−14 100

CoDE 6.98 × 10−11 7.39 × 10−11 2.35 × 10−10 7.84 × 10−14 100
FPSO 1.45 × 10−13 1.88 × 10−13 5.46 × 10−13 4.32 × 10−16 100

PSONHM 9.27 × 10−26 1.72 × 10−25 1.05 × 10−33 4.47 × 10−25 100
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6. Conclusions

PSO shows better performance in exploitation but worse performance in exploration. It is difficult
for the particles to jump out of the local optimal region because all the particles are attracted by the
same global best particle, which limits the exploration ability of PSO. In this paper, we proposed an
improving particle swarm optimization algorithm based on neighborhood and historical memory
(PSONHM). In the proposed algorithm, the experience of its neighbors and its competitors is considered
to decrease the risk of premature convergence as much as possible. Furthermore, the several best
particles are selected instead of gbest to guide the swarm towards a new better space in the search
process. Finally, the parameter adaptation mechanism is designed to generate new inertia weight.
By comparing the experimental results with those from other algorithms on CEC2014 test problems
and two benchmark datasets (Iris and Balloon), it can be concluded that the PSONHM algorithm
significantly improves the performance of the original PSO algorithm.

In the future, the efficiency of PSONHM in training other types of ANN is worthy of study
(e.g., Radia basis function networks, Kohonen networks, etc.). In addition, employing PSONHM to
design an evolutionary neural network method is worth investigating. Finally, PSONHM will be
expected to solve the multi-objective optimization problems and constrained optimization problems.
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