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Abstract: Due to the limitations of the resolution of the imaging system and the influence of scene 

changes and other factors, sometimes only low-resolution images can be acquired, which cannot 

satisfy the practical application’s requirements. To improve the quality of low-resolution images, a 

novel super-resolution algorithm based on an improved sparse autoencoder is proposed. Firstly, in 

the training set preprocessing stage, the high- and low-resolution image training sets are 

constructed, respectively, by using high-frequency information of the training samples as the 

characterization, and then the zero-phase component analysis whitening technique is utilized to 

decorrelate the formed joint training set to reduce its redundancy. Secondly, a constructed sparse 

regularization term is added to the cost function of the traditional sparse autoencoder to further 

strengthen the sparseness constraint on the hidden layer. Finally, in the dictionary learning stage, 

the improved sparse autoencoder is adopted to achieve unsupervised dictionary learning to 

improve the accuracy and stability of the dictionary. Experimental results validate that the 

proposed algorithm outperforms the existing algorithms both in terms of the subjective visual 

perception and the objective evaluation indices, including the peak signal-to-noise ratio and the 

structural similarity measure. 
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1. Introduction 

In the remote sensing, medical, military, and other fields, the acquisition of high-resolution 

(HR) images is of great significance. Image super-resolution (SR) is a technique that uses signal 

processing approaches to enhance the spatial resolution of the image. Its key is to add some 

additional information into the process of image reconstruction to compensate for the loss of detail 

information due to image degradation, so that it could reconstruct a clear HR image from a 

low-resolution (LR) image [1]. The SR algorithm based on dictionary learning utilizes the 

characteristic that the natural images have a sparse representation under a specific dictionary, and 

applies the dictionary learning method to construct the dictionaries which can represent image 

patches sparsely, and then some additional information can be obtained to improve the quality of 

the reconstructed image [2]. 

The purpose of dictionary learning is to decompose the data matrix into a dictionary matrix and 

a representation matrix, so it is also known as “matrix factorization”. In the late 1990s, dictionary 

learning began to be applied in vision [3] and information retrieval [4]. At present, dictionary 
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learning has been widely used to solve inverse problems in image processing, such as image 

denoising [5], image inpainting [6], color image restoration [7], inverse half toning [8], and even 

medical image reconstruction [9,10]. 

The dictionary learning methods can be divided into two categories, the mathematical 

transformation-based methods and the learning-based methods. The wavelet transform (WT) 

dictionary and the overcomplete discrete cosine transform (DCT) dictionary belong to the 

mathematical transformation-based methods. Dattatray et al. [11] and Dabbaghchian et al. [12] 

learned face image samples by using WT and DCT, respectively, and applied the learned 

mathematical transformation-based dictionary to face recognition. Although the mathematical 

transformation-based dictionary is simple and easy to implement in the case of representing the 

signal sparsely, the expression of the signal is single and without self-adaptability. However, the 

learning-based dictionary has a relatively strong adaptive ability, which can better adapt to different 

image data. The method of optimal directions (MOD) proposed by Engan et al. [13] is the originator 

of the learning-based dictionary, and its dictionary update approach is simple, but its convergence 

speed is very slow. Aharon et al. [14] proposed the K-SVD algorithm, which is the most popular 

dictionary learning method. The algorithm learned the dictionary under the strict sparse condition 

by giving a set of training signals so that each signal has the best representation. Moreover, the 

convergence speed of the K-SVD algorithm is faster than that of the MOD algorithm. Mairal et al. 

[15] proposed an online dictionary learning algorithm that has high training speed and is suitable for 

the processing of special signals, such as video signals and voice signals. With the development of 

machine learning, the models of unsupervised learning, such as neural networks or deep learning, 

provide some new ideas for dictionary learning. In [16], the dictionary learning method was 

proposed by using some models including deep belief networks and a stacked autoencoder. 

We apply a sparse autoencoder (SAE) to the SR algorithm and propose two image SR 

algorithms. The main contributions of this paper are summarized as follows: 

1. A novel training set preprocessing method is proposed. By regarding the high-frequency 

information of the image as the characterization, we construct the HR and LR image training 

sets with different methods, and then apply the zero-phase component analysis (ZCA) 

whitening method to reduce the redundancy of the joint training set to improve the learning 

efficiency of the SAE. 

2. An improved SAE (ISAE) is proposed to boost the accuracy and stability of the dictionary. A 

new sparse regularization term related to the hidden layer is introduced into the cost function 

of the traditional SAE to further strengthen the sparseness constraint on the hidden layer, so 

that the number of hidden units whose average activation is close to zero is as many as possible. 

3. The SR algorithm based on the SAE (SRSAE) and the SR algorithm based on the ISAE (SRISAE) 

are proposed. The SAE is employed to achieve unsupervised dictionary learning, and then by 

applying this unsupervised dictionary learning method to the SR algorithm based on sparse 

representation, the SRSAE can be constructed. By replacing the SAE with the ISAE, the SRISAE 

can be obtained using the same procedure described above. 

The remainder of this paper is organized as follows. Section 2 introduces the related works. 

Section 3 presents the basic theory of the image SR algorithm based on dictionary learning. Section 4 

describes the proposed algorithm, including the training set preprocessing method, the 

unsupervised dictionary learning model based on the ISAE, and the specific overall flow of our 

algorithm. In Section 5, some experimental results are shown to verify the effectiveness of our 

algorithm. Section 6 concludes the paper. 

2. Related Works 

Dictionary learning can achieve better sparse representation and discriminative information 

through the custom design for the dictionary, which can improve the quality of the reconstructed 

image. In recent years, the SR algorithm based on dictionary learning has attracted a large number of 
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scholars’ attention and has become one of the most important research directions of the single-image 

SR algorithm. 

Yang et al. [17] regarded the image library consisting of a large number of HR images as 

training samples, and generated the corresponding LR images training samples by down-sampling 

the HR images. Then, the joint dictionary training algorithm was used to train the HR and LR images 

so that the sparse representation coefficients of the LR image patches were similar to those of the 

corresponding HR image patches. Consequently, the HR image patches could be generated 

approximately through the sparse representation coefficients of LR image patches and the HR 

dictionary. Although the algorithm can obtain sufficient additional information to restore some 

high-frequency detail information, the accuracy and stability of the additional information cannot be 

guaranteed when the training image library cannot provide image patches similar to the image to be 

reconstructed. Zeyde et al. [18] improved Yang’s algorithm [17] through applying the K-SVD 

approach and the pseudo-inverse approach to train the LR dictionary and the HR dictionary, 

respectively. Compared with Yang’s algorithm, this algorithm improves the quality of the 

reconstructed image and reduces image artifacts. To avoid a large number of image training samples 

and obtain more accurate prior knowledge, Jing et al. [19] proposed an SR algorithm based on 

multi-task dictionary learning, which learned a multiple-examples-aided redundant dictionary from 

different classes of samples classified by the K-Means approach to provide a more suitable 

dictionary for the reconstruction of each sample. The algorithm can not only reduce the 

computational complexity caused by the large dictionary, but also has good reconstruction 

performance. In [20], the SR algorithm based on the K-SVD method and semi-coupled dictionary 

learning was proposed to solve the time-consumption problem in dictionary learning. The K-SVD 

algorithm was applied to train the dictionary pair in the semi-coupled dictionary learning model, 

which not only reduces the dictionary learning time, but also improves the quality of the 

reconstructed image. Zhang et al. [21] proposed a single-image SR algorithm based on label 

consistency K-SVD (LC-KSVD). The algorithm introduced a new label consistency constraint called 

“discriminative sparse code error” into the K-SVD objective function, which made the learned 

dictionary possess both good representation and discrimination ability. Accordingly, the 

reconstruction performance and the robustness of this algorithm become better than that of the 

K-SVD algorithm. 

For unsupervised dictionary learning, such as neural networks, Zhang et al. [22] learned a 

feature dictionary from a large number of unlabeled remote sensing images by using the SAE, and 

retrieved the remote sensing images through the learned dictionary and a convolutional neural 

network. The algorithm effectively improves the speed and accuracy of remote sensing image 

retrieval. 

At present, the research on applying dictionary learning based on a neural network model to an 

image SR algorithm is still relatively rare. Inspired by the literature [22], an improved SAE is 

proposed for unsupervised dictionary learning to enhance the accuracy and stability of the 

dictionary, and it is applied to the SR algorithm to improve the quality of the reconstructed images. 

3. Image SR Algorithm Based on Dictionary Learning 

We define NRX  as the HR image, MRY  as the LR image, L  as the down-sampling 

operator, and n  as the additive white noise. Then, the degradation model from the HR image to the 

LR image can be defined as, 

 Y LX n . (1) 

Assuming that there is an overcomplete HR dictionary hD  and an LR dictionary lD , and the 

HR and LR images have the same sparse representation coefficients [2], then the HR image X  can 

be reconstructed by combining HR dictionary hD  with sparse representation coefficients α , 

hX D α . (2) 
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Since the LR image Y  is known, its sparse coefficients α  can be solved by combining LR 

dictionary lD  with the LR image Y . The model of the solution is as follows, 

2

0 2
min . . ls t  α D α Y . (3) 

In general, the optimization of Equation (3) is an NP-hard problem. Supposing that the sparse 

representation coefficients α  are sparse enough, solving the 0l -norm minimization problem can be 

replaced by solving the 1l -norm minimization problem [23]. Then, the Lagrange multiplier is used 

for equivalent conversion to obtain the following sparse coding function, 

2

2 1

1
min

2
l  D α Y α  (4) 

where   is a parameter used to balance the sparsity of the solution and the fidelity of the LR image 

Y . The sparse coefficients α  can be obtained by solving Equation (4), and then the HR image can 

be reconstructed. 

4. Proposed Algorithm 

4.1. Training Set Preprocessing Method 

The sample images used to construct the training sets contain 91 HR images derived from 

literature [2]. Let hP  represent the HR images. Then, the corresponding LR images lP  can be 

obtained by down-sampling these HR images using the degradation model shown as Equation (1), 

and the corresponding middle images mP  of the same size as the HR images can be obtained by 

up-sampling these LR images with Bicubic interpolation. 

Construct the HR training set. To train the characterization of the relationship between the HR 

patches and their corresponding LR patches in the edge and the texture, the HR images are 

subtracted from the middle images to remove their low-frequency information, that is, the 

difference images he  can be obtained via h h m e P P . Then, the HR training set hZ  can be 

obtained by performing feature extraction on the difference images he . 

Construct the LR training set. To extract the local characterization corresponding to their 

high-frequency information, the middle images mP , which are the enlarged images from the LR 

images, are filtered by using r  high-pass filters, that is, { }i m iR P , 1,2, ,i r  (where the 

symbol * indicates a convolution operation). These high-pass filters can be gradient filters or 

Laplacian filters. Then, feature extraction is performed on the filtered images, and the LR training 

set l'Z  can be obtained. Considering that the dimension of l'Z  increases as the middle images 

are filtered with r  high-pass filters, the sparse principal component analysis (SPCA) [24] 

algorithm is employed to reduce the dimension of l'Z  to reduce the computational complexity of 

the dictionary learning. The SPCA algorithm, which is based on the PCA algorithm, introduces a 

new constraint term to find the sparse principal components which can be represented by the linear 

combination of the smallest but most representative variables. In this way, it can not only reduce the 

time of dimensionality reduction, but also obtain more accurate principal components and improve 

the ability of explanation and analysis. After reducing the dimension of l'Z , the LR training set can 

be expressed as lZ . 

In summary, we can obtain the joint training set [ , ]h lZ Z Z  by combining the HR training 

set hZ  with the LR training set lZ . 
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Zero-phase component analysis (ZCA) whitening. Due to the strong correlation that exists 

between adjacent pixels in the image, the ZCA whitening technology [25] is adopted to eliminate the 

redundancy of the joint training set Z . 

Through ZCA whitening, the correlation between the features of each image patch in the 

training set is reduced, and the features of all the image patches have the same variance. We define 

1 2{ , , , }h mZ z z z  as the HR training set, 1 2{ , , , }l m m m n  Z z z z  as the LR training set, and 

1 2 1 2[ , , , , , , , ]m m m m n  Z z z z z z z  as the corresponding joint training set. The main process of 

ZCA whitening is listed as follows. 

Firstly, calculate the eigenvector matrix U  through decomposing the covariance matrix of the 

joint training set Z  by Singular Value Decomposition (SVD). For matrix U , it possesses the 

orthogonality property and satisfies T T 1 UU U U . Secondly, rotate the features according to 
T

rot Z U Z . Thirdly, utilize the PCA whitening approach to process the rotated features so that each 

feature has unit variance, that is, 
, ,PCAwhite i rot i iz z , where i

 is the value of the diagonal 

element of the covariance matrix of rotz . Finally, left multiply the matrix U  with 
,PCAwhite iz  to 

obtain the ZCA whitening features is , 

,i PCAwhite is Uz , (5) 

where 
i s S , the joint training set processed by the ZCA whitening is 

1 2 1 2[ , , , , , , , ]m m m m n  S s s s s s s . In the ZCA whitening stage, the data dimension will be 

maintained and no longer reduced. In addition, since the range of input samples of the SAE must be 

scaled to [0,1] , the training set S  needs to be normalized. 

The proposed training set preprocessing method can not only effectively reduce the 

computational complexity of the SAE to save the training time, but also reduce the correlation 

between the features, which lays the foundation for dictionary learning. The framework of the 

proposed training set preprocessing method is illustrated as Figure 1. 

 

Figure 1. Framework of the proposed training set preprocessing method. HR: high resolution; LR: 

low resolution; ZCA: zero-phase component analysis. 

4.2. Unsupervised Dictionary Learning Model Based on ISAE 

The traditional dictionary matrix can be seen as consisting of multiple atoms, where each 

column of the matrix corresponds to an atom. In [16], an unsupervised dictionary learning method is 

performed using a deep neural network, and the column of the dictionary is treated as the 

connection between the input layer and the presentation layer. Thus, the updated connection 

weights are equivalent to the learned dictionary. The relationship between dictionary learning and 

the neural network representation is shown as Figure 2. In Figure 2, X  stands for the data, D  

represents a basis which also called a ‘dictionary‘ and the columns of D  are called ‘atoms’, and Z  

indicates the representing of X . 
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In this paper, the SAE is employed to achieve unsupervised dictionary learning. The SAE is a 

traditional feedforward neural network including an input layer, a hidden layer, and an output 

layer. In this model, the number of hidden units is greater than that of the input units, and its 

structure is illustrated as Figure 3. The main reasons why we choose the SAE for dictionary learning 

include, on the one hand, that the SAE can automatically learn more sparse and compact data 

characteristics from unlabeled data on the condition that the output is approximately equal to the 

original input. On the other hand, the number of hidden units is equivalent to the dictionary 

dimension, so the SAE with far more hidden units than input units can guarantee that the learned 

dictionary has the overcomplete property. 

 
(a) (b) 

Figure 2. Relationship between dictionary learning and neural network representation. (a) 

Dictionary learning; (b) Neural network representation. 

 

Figure 3. Sparse autoencoder (SAE) structure. 

The SAE consists of an encoder and a decoder. The encoder maps the input vector x  to the 

hidden layer y  in a certain way by means of a nonlinear mapping function, 

1 1 1( ) ( )f   θy x Wx b  (6) 

where [0,1]x , [0,1]y , 1W  is the weight matrix of the input layer to the hidden layer, 1b  is 

the bias vector of the input layer, 1 1 1{ , }θ W b , and ( )   is the activate function. The decoder is 

responsible for mapping the hidden layer y  to the output layer z . The output layer has the same 

number of units as the input layer, and the mapping relationship is as follows, 

2 2 2( ) ( )g   θz y W y b , (7) 



Information 2018, 9, 11  7 of 17 

 

where [0,1]z , 
2W  is the weight matrix of the hidden layer to the output layer, and its value is 

the same as the transpose of 
1W , and 

2b  is the bias vector of the hidden layer, 
2 2 2{ , }θ W b , 

where the parameters can be expressed as 
1 2{ , }θ θ θ  by merging 

1θ  and 
2θ . 

The SAE minimizes the reconstruction error between input and output by adjusting the 

parameter θ . In general, the mean squared error (MSE) is used as its cost function, and a weighted 

attenuation term is added to the cost function to reduce the magnitude of the weights and prevent 

overfitting. Moreover, to ensure that the hidden units are inactive most of the time, the 

regularization term used to constrain the sparsity of the hidden layer is added to the cost function. 

Assuming that its input data is 
1 2 1 2[ , , , , , , , ]m m m m n  S s s s s s s  (where the data from 

1s  to 

ms  belongs to the HR training set, and the data from 
1ms  to 

m ns  belongs to the LR training set), 

and its output data is 
1 2 1 2[ , , , , , , , ]m m m m n  Η h h h h h h , the cost function of the traditional 

SAE can be expressed as, 

 
1 2

MES weight sparse

2 2

1 1 1 1 1

( ) ( ) ( ) ( )

1 1
ˆ( ) KL

2 2

l l lN S S Sm n
l

i i ji j

i l i j j

J J J J

m n


  



    

  

  
        

  

θ θ θ θ

h s W
 (8) 

where m  and n  are the number of samples in the HR and LR training sets, respectively, i s S  is 

the input data, i h H  is the output data, lN  is the number of layers, lS  is the number of units in 

layer l , ˆ
j  is the average activation of the hidden unit j ,   is the expected activation whose 

value is set to close to 0, and   and   are the regularization parameters. In this paper, the 

kullbackleibler (KL) divergence is utilized to penalize ˆ
j  for significant deviation from  , and its 

expression is as follows, 

   ˆ ˆ ˆKL log( ) 1 log(1 1 )j j j            . (9) 

Combined with the SR theory based on dictionary learning and the SAE model, a more accurate 

dictionary can be generated as long as the sparsity of the hidden layer can be further improved. 

Consequently, to ensure that the number of hidden units whose average activation is close to zero is 

as many as possible, the 
1l  norm is adopted to strengthen the sparseness constraint on the hidden 

layer in this paper, and then the cost function of ISAE can be expressed as, 

 
1 2

1 2

MES weight sparse sparse

2 2

1
1 1 1 1 1

( ) ( ) ( ) ( ) ( )

1 1
ˆ( ) KL

2 2

l l lN S S Sm n
l

i i ji j

i l i j j

J J J J J

m n


   



    

   

  
         

  

θ θ θ θ θ

h s W A
, (10) 

where   is a regularization parameter used to adjust the constructed sparse regularization term, 

and A  is the activation matrix of all the hidden units, whose expression is as follows, 

1
1 1 1*

lS
l l l l

j j ji i j

i




   
   

 
A a W a b , (11) 

where 
l

ja  is the activation value of unit j  in layer l , 
1l

ji


W

 is the weight associated with the 

connection between unit i  in layer 1l   and unit j  in layer l , and 1l

j


b  is the bias vector 

associated with unit j  in layer l . 

The selection of the activation function. The Sigmoid function can scale the input data to (0,1) , 

which satisfies the requirement of SAE. In addition, the data of the Sigmoid function is not easy to 
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diverge in the process of transmission, and its derivation is simple to calculate. Hence, we select the 

Sigmoid function as the activation function in the encoding stage, and its corresponding expression 

is as follows: 

( ) 1 (1 exp( ))e t t    . (12) 

Although the Sigmoid function can improve the performance of the SAE to a certain extent, the 

SAE has an inherent drawback that the range of its input data must be scaled to [0,1] . To solve the 

problem of data scaling, in the decoding stage, we use a linear decoder, that is, ( )d t t  ; 

accordingly, the residuals can be calculated more accurately to improve the accuracy of the 

dictionary [26]. 

To minimize the improved cost function, the gradient descent (GD) method [27] is adopted to 

update the weights and the bias vectors, and then the connection weights 
1W  from the input layer 

to the hidden layer can be obtained. According to the relationship between dictionary learning and 

neural network representation shown as Figure 2, the learned dictionary in our algorithm is 

equivalent to the transpose of 
1W , that is, 

1


W . Consequently, the dictionary is expressed as 

1 2 1 2{ , , , , , , , }m m m m n  D w w w w w w , where 
1, 2, ,{ , ,..., }i i i k iw w ww , k  is the dictionary 

dimension, 1,2,...,i m n  , and the HR dictionary and LR dictionary can be written as 

1 2{ , , , }h mD w w w  and 
1 2{ , , , }l m m m n  D w w w , respectively. So, the dictionary pair 

obtained by applying the ISAE can be expressed as ( , )h lD D D . 

4.3. The Overall Flow of the Proposed Algorithm 

The overall flow of the proposed SR algorithm is illustrated as Algorithm 1. 

Algorithm 1: Proposed SR algorithm. 

Input: an LR image Y  to be reconstructed, the HR sample images 
hP  for dictionary learning. 

Step 1: obtain the LR images 
lP  by down-sampling the HR images 

hP , and then obtain the middle 

images 
mP  of the same size as the HR images 

hP  by up-sampling the LR images 
lP  with Bicubic 

interpolation. 

Step 2: obtain the HR and LR joint training set S  through preprocessing the HR images 
hP , the LR 

images lP , and the middle images mP  by applying the proposed training set preprocessing method. 

Step 3: generate the HR dictionary hD  and LR dictionary lD  by utilizing the ISAE to learn the joint 

training set S . 

Step 4: calculate the sparse representation coefficients α  of the LR image Y  to be reconstructed 

under the learned LR dictionary lD  by using the feature-sign search (FSS) algorithm [28]. 

Step 5: reconstruct the HR image X  via 
hX D α . 

Step 6: obtain the final reconstructed HR image 'X  by compensating for X  with the global error 

compensation model based on the weighted guided filter [29]. 

Output: HR image 'X . 

5. Experiments 

To verify the effectiveness of the proposed algorithm, a series of simulation experiments were 

carried out. Those experiments are implemented in MATLAB 2014a software installed on a 64-bit 

Windows Operating System, which runs on an Inter(R) Core(TM) i7-7700K CPU @ 4.20GHz with 16 

G of memory. The performance of the SR algorithms is evaluated subjectively and objectively. In the 

subjective evaluation, details such as the edge and texture of the reconstructed images are analyzed. 

In the objective evaluation, we calculate two indices, the peak signal-to-noise ratio (PSNR) [30] and 

the structural similarity measure (SSIM) [31], based on the reconstructed images and the original 

reference HR images. The higher the PSNR value is, the better the quality of the reconstructed image 
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is and the better the performance of the corresponding SR algorithm is. The closer the SSIM value is 

to 1, the more similar the reconstructed image is to the original image and the better the performance 

of the corresponding SR algorithm is. In our experiments, the maximum PSNR or SSIM is 

highlighted in bold type. The PSNR and the SSIM are calculated as follows, 

2

10 2

(255)
10 log

MN
PSNR


 

I I

 
(13) 

1 2

2 2 2 2

1 2

(2 ) (2 )

( ) ( )

C C
SSIM

C C

  

   

 


   

II II

I II I

 (14) 

where I  is the reconstructed HR image, I  is the original HR image, M  and N  are the rows 

and columns of the HR image, respectively, 
I
 and I

 are the mean of I  and I , respectively, 

2
I

 and 2 I
 are the variance of I  and I , respectively, 

II
 is the co-variance, and 1C  and 2C  

are the constants. 

5.1. Samples and Settings 

In the dictionary learning stage, the training samples used in the experiments are derived from 

the training set in literature [2], and include natural images such as landscapes, people, and 

buildings. Some of the samples are shown in Figure 4. To ensure the objectivity of the experiments, 

the test images used in the experiments are selected from three image sets: Set5 [32], Set14 [33], and 

B100, where B100 includes 100 images selected from BSDS300 [33]. To quantitatively evaluate the 

quality of the reconstructed images, these test images are regarded as the HR reference images, and 

the LR images to be reconstructed are obtained through down-sampling these HR images. The 

sampling factor s  is assigned the value 3. In the training set preprocessing stage, we set 4r  , 

that is, four high-pass filters are used, 1 [ 1,0,1]f   , T

2 1f f , 3 [1,0, 2,0,1]f   , and T

4 3f f . 

In the stage of dictionary learning, the parameters related to the cost function are set as follows: 

0.001  , 6  , 8  , 0.035  . In the process of image reconstruction, the image patch 

size is set to 5 5 . 

 

Figure 4. Some training samples for dictionary learning. 

5.2. Experimental Results 

5.2.1. Analyze the Influence of Different Number of Hidden Units on the Reconstructed Images 

In order to discuss the influence of different numbers of hidden units on the performance of the 

proposed algorithm, the dictionary dimensions are set to 256, 512, 1024, and 2048, respectively. In 

this way, the optimal number of hidden units can be determined. In this experiment, the images in 

Set5 are selected as the test images. 

Figure 5 shows the reconstructed results of Butterfly using the dictionaries with different 

numbers of hidden units from subjective visual perception. To better compare and analyze the 

performance of different SR algorithms, we enlarge the area with more details, which is highlighted 

with a yellow rectangle in the corresponding image. It can be seen from Figure 5 that the 

reconstructed image is still vague and there are obvious jagged effects at the edge when the number 

of hidden units is 256. When the number of hidden units is 512 and 1024, the texture and edge of the 
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reconstructed images is gradually improved, the artifacts are fewer and fewer, and the reconstructed 

images become clearer and clearer. However, when the number reaches 2048, there is no significant 

improvement for the quality of the reconstructed image, but more time is spent on dictionary 

learning. Table 1 lists the PSNR and SSIM values of the reconstructed images using the dictionaries 

with different numbers of hidden units for Set5. From Table 1, we can see that the PSNR and SSIM 

values of the reconstructed images in Set5 gradually increase with the increase of the number of 

hidden units. However, as the number of hidden units increases to 2048, the PSNR and SSIM values 

of the reconstructed images corresponding to most of the images in Set5 decrease. Therefore, 

combining with the results in Figure 5 and Table 1, we set 1024 as the optimal number of hidden 

units, that is, the dictionary dimension is set to 1024. 

    

(a) (b) (c) (d) 

   
(e) (f) (g) 

Figure 5. Reconstructed results of Butterfly using the dictionaries with different numbers of hidden 

units. (a) Butterfly; (b) Reference; (c) Bicubic; (d) Hidden units 256; (e) Hidden units 512; (f) Hidden 

units 1024; (g) Hidden units 2048. 

Table 1. Comparison of the peak signal-to-noise ratio PSNR (dB) and the structural similarity 

measure (SSIM) of the reconstructed images using the dictionaries with different numbers of hidden 

units for Set5 (PSNR/SSIM). 

Images 256 512 1024 2048 

Baby 35.20/0.9425 35.06/0.9411 35.23/0.9426 35.26/0.9428 

Bird 34.52/0.9616 34.68/0.9618 35.36/0.9666 35.14/0.9658 

Butterfly 25.71/0.8947 26.39/0.9077 26.63/0.9179 26.48/0.9174 

Head 33.61/0.8604 33.62/0.8606 33.82/0.8624 33.71/0.8621 

Woman 30.15/0.9344 30.49/0.9370 30.81/0.9421 30.73/0.9417 

Average 31.84/0.9187 32.05/0.9216 32.37/0.9263 32.26/0.9260 

5.2.2. Analyze the Effectiveness of Dictionary Learning Based on SAE or ISAE 

In this experiment, the test images are derived from set5, set14, and BSD100, and the number of 

hidden units is set to 1024. The purpose of this experiment is to verify that it is effective to apply the 

SAE or the ISAE for dictionary learning. Consequently, we compare Bicubic interpolation with the 

proposed SRSAE and SRISAE algorithms. 

Figure 6 shows the reconstructed results of Woman with these three SR algorithms from 

subjective visual perception. We can see that the details of the reconstructed images obtained by the 

SRSAE and SRISAE algorithms are significantly more abundant than the Bicubic algorithm. 

Moreover, compared with the SRSAE algorithm, a lot of artifacts in the reconstructed images 

obtained by SRISAE are reduced; for instance, the woman’s face is clearer. Table 2 lists the average 
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PSNR and SSIM values of these three algorithms for the test image sets Set5, Set14, and BSD100. It 

can be seen from Table 2 that the average PSNR and SSIM values of the SRSAE algorithm are much 

larger than those of the Bicubic algorithm and that the performance of the SRISAE algorithm is better 

than that of the SRSAE algorithm. 

Table 2. Comparison of the average PSNR(dB) and SSIM values of the reconstructed images with the 

three super resolution (SR) algorithms for Set5, Set14, and BSD100 (PSNR/SSIM). SRSAE: SR 

algorithm based on the SAE; SRISAE: SR algorithm based on the ISAE. 

Images Bicubic SRSAE SRISAE 

Set5 30.40/0.8953 32.16/0.9234 32.37/0.9263 

Set4 27.54/0.8107 28.90/0.8487 28.99/0.8503 

BSD100 27.15/0.7775 28.03/0.8169 28.19/0.8180 

     
(a) (b) (c) (d) (e) 

Figure 6. Comparison of the reconstructed images with three SR algorithms for Woman. (a) Woman; 

(b) Reference; (c) Bicubic; (d) SRSAE; (e) SRISAE. 

5.2.3. Analyze the Performance of Different SR Algorithms on Images Sets 

To further verify the performance of the proposed SRISAE algorithm, it is compared with eight 

SR algorithms, including Super Resolution with L1 Regression (L1SR)[2], Single Image Super 

Resolution (SISR) [18], Anchored Neighborhood Regression (ANR), Neighbor Embedding with 

Least Squares (NE + LS), Neighbor Embedding with Non-Negative Least Squares (NE + NNLS), and 

Neighbor Embedding with Locally Linear Embedding (NE + LLE), mentioned in literature [34], 

Adjusted Anchored Neighborhood Regression (A+)(16 atoms) [35], and improved Super Resolution 

based on Sparse representation(ISPSR) [29]. The eight test images are selected from Set5 and Set14 in 

this experiment. 

Figures 7a,b and 8a,b show the two HR test images Lena and Bird and their corresponding detail 

images, respectively. Figures 7c–k and 8c–k, respectively, illustrate the reconstructed results of the 

detail regions of the brim of Lena’s hat and the Bird’s head with different SR algorithms from 

subjective visual perception. It can be seen from Figures 7 and 8 that although the L1SR algorithm 

restores some parts of the details, there are obvious patch effects in its reconstructed images, such as 

the face in Figure 7c and part of the yellow feather in Figure 8c. With the SISR algorithm, the edge 

sharpening effect is obvious, but some artificial details appear in the reconstructed images, such as 

the edge of the hat in Figure 7d. The SR algorithms corresponding to Figures 7e–j and 8e–j achieve 

good reconstructed results, but too many artificial details, such as the brim of Lena’s hat and the 

junction of the bottom of the Bird’s mouth and feather in those reconstructed results, are introduced 

while restoring more details. The proposed SRISAE algorithm is superior to the other eight SR 

algorithms. It restores more details without introducing too many artificial details, and the areas of 

the brim of Lena’s hat in Figure 7k and the junction of the bottom of the Bird’s mouth and feather in 

Figure 8k are closer to the original images. Table 3 shows the PSNR and SSIM values of the 

reconstructed images with different SR algorithms for these test images. It can be seen from Table 3 

that the PSNR and SSIM values of the SRISAE algorithm are generally optimal, which indicates that 

the proposed SRISAE algorithm outperforms the other eight SR algorithms mentioned above. 
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Table 3. Comparison of the PSNR and the SSIM of the reconstructed images with different SR 

algorithms (PSNR/SSIM). 

Images PSNR/SSIM L1SR SISR ANR NE + LS 
NE + 

NNLS 
NE + LLE 

A + (16 

Atoms) 
ISPSR SRISAE 

baby 
PSNR 34.29 35.08 35.13 34.96 34.77 35.06 35.13 35.23 35.23 

SSIM 0.9226 0.9402 0.9415 0.9390 0.9370 0.9401 0.9409  0.9426 0.9426 

bird 
PSNR 34.11 34.57 34.60 34.36 34.26 34.56 34.83 35.25 35.36 

SSIM 0.9530 0.9615 0.9623 0.9602 0.9581 0.9615 0.9629 0.9663 0.9666 

Head 
PSNR 33.17 33.56 33.63 33.53 33.45 33.60 33.65 33.74 33.82 

SSIM 0.8382 0.8572 0.8600 0.8569 0.8554 0.8590 0.8606 0.8616 0.8624 

flowers 
PSNR 28.25 28.43 28.49 28.35 28.21 28.38 28.52 28.74 28.85 

SSIM 0.8636 0.8713 0.8739 0.8697 0.8673 0.8718 0.8745 0.8801 0.8818 

Lena 
PSNR 32.64 33.00 33.08 32.98 32.82 33.01 33.17 33.37 33.53 

SSIM 0.8852 0.9002 0.9022 0.9000 0.8981 0.9010 0.9027 0.9050 0.9055 

monarch 
PSNR 30.71 31.10 31.09 30.94 30.76 30.95 31.31 31.74 31.95 

SSIM 0.9422 0.9510 0.9508 0.9499 0.9478 0.9495 0.9518 0.9558 0.9559 

pepper 
PSNR 33.33 34.07 33.82 33.91 33.56 33.80 34.01 34.28 34.55 

SSIM 0.8851 0.9060 0.9045 0.9046 0.9017 0.9041 0.9052 0.9080 0.9098 

ppt3 
PSNR 24.98 25.23 25.03 25.15 24.81 24.94 25.22 25.62 25.89 

SSIM 0.9025 0.9204 0.9123 0.9193 0.9077 0.9111 0.9147 0.9298 0.9291 

Average 
PSNR 31.44 31.88 31.86 31.77 31.58 31.79 31.98 32.25 32.40 

SSIM 0.8991 0.9299 0.9098 0.9297 0.9011 0.9054 0.9116 0.9187 0.9195 

 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

   
(i) (j) (k) 

Figure 7. Comparison of the reconstructed images with different SR algorithms for Lena. L1SR: Super 

Resolution with L1 Regression; SISR: Single Image Super Resolution; ANR: Anchored 

Neighborhood Regression; NE + LS: Neighbor Embedding with Least Squares; NE + NNLS: 

Neighbor Embedding with Non-Negative Least Square; NE + LLE: Neighbor Embedding with 

Locally Linear Embedding; A + (16 atoms): Adjusted Anchored Neighborhood Regression; ISPSR: 

improved Super Resolution based on Sparse representation; SRISAE: SR algorithm based on the 

ISAE. (a) Lena; (b) Reference; (c) L1SR; (d) SISR; (e) ANR; (f) NE + LS; (g) NE + NNLS; (h) NE + LLE; 

(i) A + (16 atoms); (j) ISPSR; (k) SRISAE. 
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(a) (b)  (c)  (d) 

    
(e) (f) (g)  (h) 

   
(i) (j) (k) 

Figure 8. Comparison of the reconstructed images with different SR algorithms for Bird. (a) Bird; (b) 

Reference; (c) L1SR; (d) SISR; (e) ANR; (f) NE + LS; (g) NE + NNLS; (h) NE + LLE; (i) A + (16 atoms); 

(j) ISPSR; (k) SRISAE. 

To analyze the computing time of these SR algorithms, our experiments are performed on the 

same hardware platform mentioned above, and the computing time of different SR algorithms is 

shown in Table 4. From Table 4, we can see that although the time the proposed SRISAE algorithm 

spent is not the least, it is at the same level as the algorithms including SISR, ANR, NE + LS, NE + 

NNLS, NE + LLE, and A + (16 atoms), and its reconstruction performance is superior to these 

algorithms. It can be seen from Tables 3 and 4 that SRISAE significantly outperforms ISPSR in terms 

of computing time despite its small increase relative to ISPSR in terms of the PSNR and SSIM 

indices. Through a comprehensive analysis, we can see that the proposed SRISAE algorithm not 

only has the best reconstruction performance, but also has good reconstruction efficiency. 

Table 4. Comparison of computing time of different SR algorithms (s). 

Image L1SR SISR ANR NE + LS NE + NNLS NE + LLE A + (16 Atoms) ISPSR SRISAE 

baby 194.41 1.92 0.52 1.72 9.83 2.26 0.43 1309.44 3.28 

bird 63.15 0.60 0.18 0.54 3.04 0.72 0.14 408.16 1.05 

Head 55.42 0.55 0.16 0.50 2.87 0.64 0.13 378.57 1.02 

flowers 141.14 1.40 0.37 1.19 6.78 1.60 0.30 899.02 2.24 

Lena 187.96 1.91 0.51 1.72 9.70 2.27 0.43 1296.17 3.29 

monarch 81.33 2.91 0.78 2.608 15.05 3.43 0.65 1974.27 5.06 

pepper 186.37 1.92 0.53 1.73 9.87 2.25 0.44 1294.75 3.26 

ppt3 222.23 2.30 0.68 2.17 11.91 2.94 0.57 1727.80 4.08 

Average 141.50 1.69 0.47 1.52 8.63 2.01 0.39 1161.02 2.91 

Table 5 lists the average PSNR and SSIM values of the reconstructed images with different SR 

algorithms mentioned above for B100. It can be seen from Table 5 that the average of these two 

evaluation indices of the proposed algorithm are optimal, indicating that the performance of our 

algorithm is better than that of the comparative SR algorithms. 
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Table 5. Comparison of the average of PSNR and SSIM of the reconstructed images with different SR 

algorithms for B100 (PSNR/SSIM). 

B100 PSNR/SSIM L1SR SISR ANR NE + LS NE + NNLS NE + LLE A + (16 Atoms) ISPSR SRISAE 

Average 
PSNR 27.72 27.87 27.89 27.83 27.73 27.85 27.94 28.07 28.19 

SSIM 0.800 0.809 0.812 0.809 0.806 0.811 0.814 0.8176 0.8180 

5.2.4. Analyze the Performance of Different SR Algorithms on Real Medical Images 

This experiment is to test the performance of different SR algorithms on bad quality medical 

images. The training data and the test data are derived from the published data set The Cancer 

Imaging Archive (TCIA) [36] and the test images are real LR medical images which have been 

randomly selected. Figures 9 and 10 illustrate the reconstructed images of two real lung cancer 

images with different SR algorithms. Among them, Figures 9j and 10j are the reconstructed images 

of the proposed SRISAE algorithm. Comparing them with the real LR images to be reconstructed 

shown in Figures 9a and 10a, the reconstructed images of the SRISAE algorithm are clearer and 

many details in the edge, texture, and structure are restored. 

     
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 9. Comparison of the reconstructed images with different SR algorithms for medical image1. (a) 

input; (b) L1SR; (c) SISR; (d) ANR; (e) NE + LS; (f) NE + NNLS; (g) NE + LLE; (h) A + (16 atoms); (i) 

ISPSR; (j) SRISAE. 

     
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 10. Comparison of the reconstructed images with different SR algorithms for medical image2. 

Since there is no HR reference image, some classic no-reference image quality evaluation 

indices are used to evaluate the reconstructed images of different SR algorithms objectively. The 

indices are Variance, Meangradient, Entropy, Brenner, and Energy [37,38], and the higher the value 
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is, the better the reconstructed performance. The maximum values of these indices are highlighted 

in bold type. Table 6 shows the average of these indices of 76 reconstructed medical images, and we 

can see that the proposed SRISAE algorithm is slightly better than the other eight SR algorithms. (a) 

input; (b) L1SR; (c) SISR; (d) ANR; (e) NE + LS; (f) NE + NNLS; (g) NE + LLE; (h) A + (16 atoms); (i) ISPSR; (j) 

SRISAE. 

Table 6. Comparison of the average of no-reference image quality evaluation indices of the 

reconstructed images with different SR algorithms. 

Indices L1SR SISR ANR NE + LS 
NE + 

NNLS 
NE + LLE 

A + (16 

Atoms) 
ISPSR SRISAE 

Variance 2446.8651 2479.3577 2483.4034 2480.6194 2478.4239 2481.2642 2483.7900 2483.0294 2486.2215 

Meangradient 2.8012 3.2414 3.4120 3.2862 3.2877 3.4117 3.4927 3.4435 3.5033 

Entropy 6.4871 6.5141 6.5256 6.5180 6.5170 6.5268 6.5275 6.5231 6.5383 

Brenner 4,596,865 5,243,693 5,568,487 5,273,747 5,292,623 5,457,148 5,776,475 5,863,142 5,914,784 

Energy 4,167,251 4,369,326 4,644,846 4,526,663 4,532,565 4,544,087 4,981,985 4,986,970 5,098,674 

6. Conclusions 

To make the input data more effective and enhance the training efficiency of the SAE, we 

propose a new training set preprocessing method which utilizes different approaches to construct 

HR and LR training sets and employs the ZCA whitening technology to decorrelate the joint training 

set to reduce its redundancy. The SAE is applied to the SR algorithm based on sparse representation, 

and to further enhance the sparsity of the hidden layer, a constructed sparse regularization term is 

added to the cost function of the traditional SAE. Then, a novel unsupervised dictionary learning 

algorithm based on the ISAE is proposed to improve the accuracy and stability of the dictionary. 

Comparisons with several SR algorithms, including L1SR, SISR, ANR, NE + LS, NE + NNLS, NE + 

LLE, A + (16 atoms) and ISPSR are made. Experimental results demonstrate that the proposed 

SRISAE algorithm achieves a significant improvement in terms of both quantitative and qualitative 

measurements. 
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