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Abstract: Uyghur is an agglutinative and a morphologically rich language; natural language 

processing tasks in Uyghur can be a challenge. Word morphology is important in Uyghur part-of-

speech (POS) tagging. However, POS tagging performance suffers from error propagation of 

morphological analyzers. To address this problem, we propose a few models for POS tagging: 

conditional random fields (CRF), long short-term memory (LSTM), bidirectional LSTM networks 

(BI-LSTM), LSTM networks with a CRF layer, and BI-LSTM networks with a CRF layer. These 

models do not depend on stemming and word disambiguation for Uyghur and combine hand-

crafted features with neural network models. State-of-the-art performance on Uyghur POS tagging 

is achieved on test data sets using the proposed approach: 98.41% accuracy on 15 labels and 95.74% 

accuracy on 64 labels, which are 2.71% and 4% improvements, respectively, over the CRF model 

results. Using engineered features, our model achieves further improvements of 0.2% (15 labels) 

and 0.48% (64 labels). The results indicate that the proposed method could be an effective approach 

for POS tagging in other morphologically rich languages. 

Keywords: Uyghur; part-of-speech tagging; conditional random field; long short-term memory; 

bidirectional long short-term memory 

 

1. Introduction 

Part-of-speech (POS) tagging, which is a fundamental task in natural language understanding, 

has attracted considerable attention from researchers for various languages. In computational 

linguistics, this task involves labeling words in sentences with a unique POS tag according to their 

syntactic function in context. It plays an important role in natural language processing (NLP) and has 

been widely applied to a few high-level NLP tasks such as syntactic analysis, named entity 

recognition, and machine translation [1]. With the creation of social media and the development of 

electronic communication in Xinjiang, China, a large quantity of digital text in Uyghur is produced 

currently. The information extracted from these texts can be used for different NLP tasks such as POS 

tagging for Uyghur. Uyghur is an agglutinative and morphologically rich language. Therefore, this 

is an extremely challenging and interesting task. At present, state-of-the-art POS tagging accuracy is 

approximately 97% for English [2–5], approximately 96% for Chinese [6–9] on news text, and 

approximately 96.85% for Uyghur [10].  

In Uyghur, words can be broadly divided into independent words, function words, and 

exclamatory words. Independent words include verbs and substantive words. Nouns, adjectives, 

numerals, quantifiers, pronouns, adverbs, and mimetic words belong to the class of substantive 
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words [11]. Function words include three kinds of words: conjunctions, prepositions, and particles. 

Uyghur is an agglutinative language, meaning that potentially several affixes (e.g., denoting person, 

number, case, or mood) are frequently attached to one word stem. Independent word affixes are 

divided into two main types: verbal affixes and substantive affixes. There are 150 verbal affixes and 

65 different substantive affixes, which includes 49 noun affixes, 57 numeral affixes, and 55 adjective 

affixes. In theory, the number of various combinations of nominal affixes is 1502. However, according 

to recent statistical analysis [10], only 368 combinations appear in practice. For instance, there are 21 

different affix variants of the word weqe (“accident,” “event,” or “incident”) in the corpus used in this 

paper (as shown in Table 1). 

Table 1. Different variants of weqe (“accident,” “event,” or “incident”). 

Variant Translation Suffixes 

weqesini the accident si, ni 

weqesimu this accident also si, mu 

weqesige on this accident si, ge 

weqesidin from this accident si, din 

weqesi an accident si 

weqede in an accident de 

weqesining of the accident si, ning 

weqelerde in all accidents ler, de 

weqelerdin from all these accidents ler, din 

weqelerni all these accidents ler, ni 

weqelerning of all these accidents ler, ning 

It is necessary to perform morphological analysis of Uyghur words before POS tagging. If POS 

tagging is performed without stemming, different variants of the same word will be identified as 

different words, and a large number of unknown words will appear, instead of different 

morphosyntactic variants (as shown in Table 1). To fully understand this issue, consider the following 

sentence (in Latin script): 

alimjan ulugh alimimiz mehmud qeshqeri tughulghinining 1000-yilliqini xatirilesh ilmiy muhakime 

yighinida söz qildi. 

Translation: Speech delivered by Alimjan at the 1000th anniversary conference of great scholar 

and lexicographer Mahmud al-Kashgari. 

In this example, alim appears twice, as alimjan (“a person name”) and alimimiz (“our scholar,” or 

“our scientist”), and both instances are nouns. If alim, which is the more frequently used form, is the 

only form that appears in the training corpus, POS tagging would identify alimimiz as out of 

vocabulary (OOV). Unfortunately, (i) there is no open source stemming tool, (ii) the development 

cost of such a tool is high because the Uyghur language is a low-resource language and it has 

agglutinative and rich morphological features, and iii) the performance of stemming affects the 

performance of POS tagging.  

To address this problem, we propose embedding words and characters and using syllable 

features in a bidirectional long short-term memory network with a conditional random field layer 

(BI-LSTM-CRF). This method combines handcrafted features with a neural network model and is 

described in Section 3.5. The experimental results are described in Section 4. 

However, when morphological analysis is performed, the number of ambiguous phenomena 

may increase. For example, at means “name”, “horse”, or “shoot” and is either a verb or a noun, atqin 

means “shoot it” and is a verb, and atlar means “horses” and is a noun. After stemming, these words 

become the ambiguous word at, which is quite difficult to distinguish. To our knowledge, there is no 

study that addresses this problem. As mentioned earlier, in the Uyghur language, different word 

classes take different affixes (common affixes are also present), e.g., Uyghur nouns are inflected for 

number (singular and plural), case (nominative, accusative, dative, locative, ablative, genitive, 

similitude, locative-qualitative, limitative, equivalence) [11], and person (first, second, third), and 
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verbs are conjugated for tense: present and past; person; voice: causative and passive; aspect: 

continuous; mood. In addition, these affixes are typically attached to the stem in a relatively fixed 

order, e.g., the general order of attachment for nouns is number, person, and case. For example, the 

word atlirimning means “my horses’” and can split into affixes such as at (stem) + lir (plural) + im (first 

person) + ning (genitive case). Therefore, the affixes and their order in a word may refer to the class 

that the words belong to. It is better to use intra-word information to capture syntactic and semantic 

information on Uyghur POS tagging. We obtain word shape information in our proposed model 

using character embedding, which is described in Section 3.6. 

Several studies on Uyghur POS tagging employ a small POS tag set; however, only a few studies 

consider a large POS tag set that can support high-level NLP tasks with richer information. Moreover, 

most existing Uyghur POS tagging models are linear statistical models, such as hidden Markov 

models (HMMs), maximum entropy models (MEMs), and n-gram models, all of which are limited to 

using only past and future features. 

Our main contributions in this paper are as follows: (i) We apply long short-term memory 

(LSTM) networks, bidirectional LSTM (BI-LSTM) networks, an LSTM network with a conditional 

random field layer (LSTM-CRF), and the BI-LSTM-CRF model to Uyghur POS tagging. We 

experimentally compare the performance of the models on Uyghur POS tagging data sets and show 

that this task can be effectively performed by neural networks and that competitive tagging accuracy 

can be obtained without handcrafted features. Moreover, we show that because the BI-LSTM-CRF 

model considers word- and sentence-level information and can fully use past and future input 

features, it is an effective method of performing the POS tagging task in morphologically rich 

languages. (ii) For the first time, we examine the performance of easily applied engineered features, 

such as syllable- and suffix-based features, with character embedding and word embedding in 

Uyghur POS tagging and further improve the performance. (iii) We demonstrate that our approach 

can achieve state-of-the-art performance on small and large tag sets. 

2. Related Works 

In recent years, several POS tagging approaches have been developed. Collobert et al. [12] 

proposed a learning algorithm that can be applied to POS tagging; their system learns internal 

representations on a large unlabeled training data set instead of exploiting man-made features. Its 

results on common data sets indicate that such an approach performs well. Ptaszynski and 

Momouchi [13] applied a handcrafted dictionary to Ainu POS tagging. Evaluation on a training set 

provided positive results. Zheng, Chen, and Xu [14] explored the feasibility of performing Chinese 

POS tagging using a deep learning method, in which a multilayer neural network [15] is used to 

discover relevant features in input sentences. In addition, dos Santos et al. [2] proposed a 

convolutional neural network that learns the character-level representation of words and then 

associates them with a word-level representation to perform POS tagging. The evaluation of the 

system on the Wall Street Journal and Mac-Morpho corpora obtained accuracies of 97.32% and 

97.47%, respectively. Labeau, Löser, and Allauzen [16] introduced a POS tagging application that can 

infer word representations from a character stream without using any man-made features. Pan, Yan, 

Zhou, Yu, and Guo [17] presented a Khmer automatic POS tagging method based on a cascaded CRF 

model that achieved an accuracy of 95.44% on an open corpus. Abdulkareem and Tiun [18] designed 

and implemented several POS tagging models (such as k-nearest neighbor, naïve Bayes, and decision 

tree models) for Arabic tweets and achieved an accuracy of 87.97%. 

POS tagging for Uyghur has drawn attention in recent years. For instance, Tahir, Tursun, and 

Rozi [19] attempted to label POS automatically by adopting a bigram model based on an HMM 

model. Their tag set was designed for a speech synthesis system; data smoothing and unknown 

words were not considered. Najmidin, Mamat, and Ibrahim [20] presented n-gram-based POS 

tagging for Uyghur texts. The parameters and data smoothing of the n-gram model were analyzed, 

and the efficiencies of bigram and trigram models were compared. Wang, Zu, and Litifu [21] 

investigated functional suffix strings and discussed the feasibility of POS tagging. Their results 

indicate that such a method is useful for Uyghur and other Turkic languages. To capitalize on the 
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context features, Imam, Maimaiti, Ibrayim, and Abdurixit [22] employed perceptron training and 

Viterbi algorithms for POS tagging. Palidan and Fang [10] presented a maximum-entropy-based POS 

tagging model that combines the morphological features for multi-category word POS tagging and 

the data sparsity problem caused by inflection. Their results show that the suffix feature significantly 

improves the form type and unknown word tagging accuracy compared with other feature-based 

tagging models. Our model differs from the above models in that we use a powerful BI-LSTM-CRF 

network, which performs better than conventional statistical models, and that we use word- and 

character-level BLSTMs to collect longer context information and to extract more useful character-

level features for the Uyghur language. 

3. Methods 

3.1. CRF Model 

A CRF [23] is an undirected graphical model that has been successfully applied in several 

sequence labeling tasks including word segmentation, POS tagging, and named entity recognition. 

The CRF model can prevent the limited feature selection in HMMs and MEMs by considering the 

correlations between labels in neighborhoods [4]. Furthermore, it can acquire a global optimum via 

a process of global feature normalization. 

Let an observation sequence that must be labeled be 𝑆 = {𝑠1, 𝑠2, ⋯ , 𝑠𝑛}, where 𝑠𝑖 is the vector of 

the ith word, and let 𝐿 = {𝑙1, 𝑙2, ⋯ , 𝑙𝑛} be a sequence of labels for S, where 𝑙𝑖 is the label of the ith 

word. The linear-chain CRF model can then be written as 

p(𝐿|𝑆;𝑊, 𝑏) =
∏ 𝜓𝑖(𝑙𝑖−1, 𝑙𝑖 , 𝑆)
𝑛
𝑖=1

∑ ∏ 𝜓𝑖(𝑙𝑖−1
, , 𝑙𝑖

, , 𝑆)𝑛
𝑖=1𝑙′∈𝜑(𝑆)

 (1) 

where 𝜓𝑖(𝑙
′, 𝑙, 𝑆) = 𝑒𝑥𝑝(𝑊𝑙′𝑙

𝑇 𝑆𝑖 + 𝑏𝑙′,𝑙) is the potential function corresponding to a label pair (𝑙′, 𝑙), WT 

is the weight vector, b is the bias, and φ(𝑆) denotes the set of possible label sequences for S. 

3.2. LSTM Model 

An LSTM network is a special kind of recurrent neural network that is capable of learning long-

term dependencies and can retrieve rich global information. An LSTM unit uses a series of 

multiplicative gates, such as input, output, and forget gates, and a memory cell to control the 

information flows in and out of the internal states of the network [24]. In addition, it determines the 

information that should be discarded or sent to the next time step. There are several slightly different 

versions of LSTM; here, we present a vanilla LSTM with the structure given in Figure 1. 
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Figure 1. Simple LSTM model. 

For time t, the multiplicative gates and memory are defined as follows: 
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𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ tanh(𝑊𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡)

 (2) 

where σ(∙) is the non-linear sigmoid function and f, i, o, C, and h are the vectors of the forget gate, 

input gate, output gate, memory cell, and hidden state, respectively. These vectors have the same 

size. Moreover, Wf, Wi, Wo, and WC denote the weight matrices and bf, bi, bo, and bC represent the bias 

vectors. 

3.3. Bidirectional LSTM Model 

In sequence labeling tasks, it is beneficial to employ the previous and future input features over 

a given duration. However, the hidden state in a single forward LSTM captures previous features 

only and does not consider the future. Therefore, an elegant solution is BI-LSTM [25], which can be 

regarded as a stack of two LSTM layers. The previous features are extracted by a forward LSTM layer, 

and the future features are captured by a backward LSTM layer. In this way, we can effectively utilize 

the previous and future features; this alleviates the disambiguation problem mentioned in Section 1. 

3.4. LSTM-CRF Model 

For practical applications, the combination of a linear statistical model with a neural network 

has been proposed to prevent the problem that the performance of a neural network is largely 

determined by data. We implemented an LSTM-CRF [4] model consisting of an LSTM network and 

a CRF model. The basic idea is to use the LSTM layer to consider the previous input features and 

obtain sentence level tag information from the CRF layer. Therefore, the output is an optimal tag 

sequence instead of mutually independent tags. 

Formally, 𝑋 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛} represents a generic input sequence, 𝑦 = {𝑦1, 𝑦2, ⋯ , 𝑦𝑛} represents 

the tag sequence for X, and 𝑃𝑛∗𝑘 denotes a probability matrix, where k is the number of tag types. 

The optimal tag sequence can be obtained by maximizing the target function. 

𝑠(𝑋, 𝑦) = ∑𝐴𝑦𝑖,𝑦𝑖+1

𝑛

𝑖=0

+∑𝑃𝑖,𝑦𝑖

𝑛

𝑖=0

 (3) 

where 𝑃𝑖,𝑗 is the probability that the ith word is tagged as the ith tag and A is the state-transition 

matrix, where element 𝐴𝑖,𝑗 is the probability of transferring from the ith tag to the jth tag. 

3.5. BI-LSTM-CRF Model 

Similar to the LSTM-CRF model, the BI-LSTM-CRF model is constructed from a BI-LSTM 

network and a CRF model. The output vectors of BI-LSTM are fed into CRF using the structure given 

in Figure 2. 

PNV

                 

CRF Layer

Bi-LSTM
Encoder

Word 
Embedding

IChinalove
 

Figure 2. BI-LSTM-CRF model. 
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3.6. Features 

3.6.1. Word Embeddings 

In NLP, word embeddings [26], also known as distributed word representations, can capture the 

semantic and syntactic features of a word and reduce the requirement for handcrafted features [2]. 

We use randomly initialized word embeddings with 256 dimensions. 

3.6.2. Character Embeddings 

According to dos Santos et al. [2] and Lample et al. [27], character-level representations can 

extract morphological features from words and are extremely useful, particularly for 

morphologically rich languages. Our proposed method is similar to that of Lample et al. [27]; we 

randomly initialize a character lookup table with every character and feed every character 

embedding of the words from the character lookup table to the bidirectional LSTMs. Then, we 

concatenate the result of forward and backward representations to derive character-level word 

representations, which have 50 dimensions. Finally, we concatenate it with the word-level 

representation from a word lookup table to form the final word embeddings. 

3.6.3. Engineered Features 

We built a candidate feature set of useful features to determine which feature has the strongest 

influence on POS tagging. The candidate feature set consists of 11 features, as described below: 

1. 𝐹𝑤𝑐: The word feature, which represents the word itself. 

2. Fsuffix: The suffix of the word. We collected 153 unique suffixes. 

3. 𝐹𝑠 : The word without its suffix. The performance of the morphological analysis affects the 

accuracy of this stemming feature. However, we discovered that a word without a suffix 

typically corresponds to its stem. Hence, we substituted words without suffixes for stems. 

4. 𝐹𝑠𝑡: The classification of the suffix. The set of suffixes is divided into eight types according to the 

POS type. 

5. 𝐹𝑏𝑡: The first-level POS label. We use this feature only when the tag set consists of 64 tags, and it 

is predicted using a 15-label tagging model with shared parameters. 

In POS tagging, the syllable features of the words are crucial. It is better to extract syllables than 

stems in morphologically rich languages such as Uyghur. More accurate morphological information 

can be obtained through appropriate selection of syllables as features. Uyghur words can be 

composed of multiple syllables, which we express as follows: 

𝑊𝑜𝑟𝑑 = {𝑆𝑦𝑙𝑙𝑎𝑏𝑙𝑒1, 𝑆𝑦𝑙𝑙𝑎𝑏𝑙𝑒2, ⋯ , 𝑆𝑦𝑙𝑙𝑎𝑏𝑙𝑒𝑛} (4) 

where n is the number of syllables in a word. 

For most words, the initial syllables mainly describe the semantic information, which can be 

used to reduce the OOV. The ensuing syllables mainly describe the suffix information, which can be 

used to distinguish different contexts. Given such considerations, we performed a statistical analysis 

of syllables to select the best syllable features. The statistics of the number of syllables per word that 

appear in our corpus are summarized in Table 2. 

According to Table 2, the majority of Uyghur words have a syllable length of seven or less. 

Moreover, the length of the syllables that contain grammatical information is between one and four. 

Therefore, depending on the syllable length of the current token, we extract features with different 

syllable lengths. These syllable features and their formulas are given below. 
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Table 2. Syllable 1 statistics. 

Syllable Length Frequency Token Percentage (%) 

1 2284 2.328 

2 10,591 10.797 

3 28,274 28.824 

4 28,945 29.508 

5 17,371 17.709 

6 7014 7.151 

7 2544 2.594 

8 780 0.795 

9 219 0.223 

10 53 0.054 

11 10 0.010 

12 6 0.006 

13 2 0.002 

14 1 0.001 
1 A rule-based Uyghur syllabification tool (we also have a web service interface) developed by the 

natural language processing group of Xinjiang Laboratory of Multi-Language Information 

Technology is used. The accuracy is over 99%. We can provide it to anyone for research purposes. 

6. 𝐹𝑓2: The first two syllables of a word. This feature can be calculated using the following formula: 

𝐹𝑓2(𝑛) = {
𝑤𝑜𝑟𝑑, 𝑛 ≤ 2

{𝑆𝑦𝑙𝑙𝑎𝑏𝑙𝑒1, 𝑆𝑦𝑙𝑙𝑎𝑏𝑙𝑒2}, 𝑛 > 2
 (5) 

7. 𝐹𝑙𝑎: All syllables except the first one. This feature can be calculated using the following formula: 

𝐹𝑙𝑎(𝑛) = {
𝑤𝑜𝑟𝑑, 𝑛 = 1

{𝑆𝑦𝑙𝑙𝑎𝑏𝑙𝑒2, ⋯ , 𝑆𝑦𝑙𝑙𝑎𝑏𝑙𝑒𝑛}, 𝑛 > 2
 (6) 

8. 𝐹𝑙4: The last one to four syllables in a word. This feature can be calculated using the following 

formula: 

𝐹𝑙4(𝑛) =

{
 
 

 
 

𝑤𝑜𝑟𝑑, 𝑛 = 1
{𝑆𝑦𝑙𝑙𝑎𝑏𝑙𝑒𝑛}, 𝑛 = 2

{𝑆𝑦𝑙𝑙𝑎𝑏𝑙𝑒𝑛−1, 𝑆𝑦𝑙𝑙𝑎𝑏𝑙𝑒𝑛}, 2 < 𝑛 ≤ 4

{𝑆𝑦𝑙𝑙𝑎𝑏𝑙𝑒𝑛−2,⋯ , 𝑆𝑦𝑙𝑙𝑎𝑏𝑙𝑒𝑛}, 4 < 𝑛 ≤ 8

{𝑆𝑦𝑙𝑙𝑎𝑏𝑙𝑒𝑛−3,⋯ , 𝑆𝑦𝑙𝑙𝑎𝑏𝑙𝑒𝑛}, 𝑛 > 8

 (7) 

9. 𝐹𝑙3: The last one to three syllables of a word. This feature can be calculated using the following 

formula: 

𝐹𝑙3(𝑛) = {

𝑤𝑜𝑟𝑑, 𝑛 = 1
{𝑆𝑦𝑙𝑙𝑎𝑏𝑙𝑒𝑛}, 𝑛 = 2

{𝑆𝑦𝑙𝑙𝑎𝑏𝑙𝑒𝑛−1, 𝑆𝑦𝑙𝑙𝑎𝑏𝑙𝑒𝑛}, 2 < 𝑛 ≤ 5

{𝑆𝑦𝑙𝑙𝑎𝑏𝑙𝑒𝑛−2, ⋯ , 𝑆𝑦𝑙𝑙𝑎𝑏𝑙𝑒𝑛}, 𝑛 > 5

 (8) 

10. 𝐹𝑙2: The last one or two syllables of a word. This feature can be calculated using the following 

formula: 

𝐹𝑙2(𝑛) = {

𝑤𝑜𝑟𝑑, 𝑛 = 1
{𝑆𝑦𝑙𝑙𝑎𝑏𝑙𝑒𝑛}, 𝑛 = 2

{𝑆𝑦𝑙𝑙𝑎𝑏𝑙𝑒𝑛−1, 𝑆𝑦𝑙𝑙𝑎𝑏𝑙𝑒𝑛}, 𝑛 > 2
 (9) 

11. 𝐹𝑙1: The last syllable in a word. This feature can be calculated using the following formula: 

𝐹𝑙1(𝑛) = {
𝑤𝑜𝑟𝑑, 𝑛 = 1

{𝑆𝑦𝑙𝑙𝑎𝑏𝑙𝑒𝑛}, 𝑛 ≥ 2
 (10) 
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4. Experiments and Results 

4.1. Data Sets 

At present, there is no widely known uniform specification for Uyghur POS tagging sets; 

however, there have been several attempts to establish a tagging standard. For example, Xinjiang 

Laboratory of Multi-Language Information Technology and Xinjiang Normal University have 

independently created their tagging standards.  

Xinjiang Laboratory of Multi-Language Information Technology created a manually annotated 

Uyghur POS tagging corpus that contains over 1.2 million tokens. Its tag set uses 15 first-level POS 

labels (as shown in Table 3), 71 second-level POS labels, and 51 third-level POS labels. 

Table 3. First-level POS tagging set for Uyghur. 

No. Name Tag No. Name Tag 

1 Noun N 9 Interjection E 

2 Adjective A 10 Verb V 

3 Numeral M 11 Punctuation Y 

4 Quantifier Q 12 Modal Particle T 

5 Adverb D 13 Postposition R 

6 Pronoun P 14 Affix X 

7 Mimetic Word I 15 Latin word LW 

8 Conjunction C    

Here, we use the corpus of Xinjiang Laboratory of Multi-Language Information Technology and 

its first- and second-level POS tag sets for modeling and conducting experiments (only 64 labels are 

used for the second-level POS tag set in this work; all punctuations are classified as one tag). The 

corpus statistics are summarized in Table 4. 

Table 4. Corpora 2 statistics. 

Datasets Sentences Tokens Distinct Tokens 

Training 40,000 743,955 78,477 

Development 9641 180,931 34,451 

Test 10,000 185,158 34,762 
2 This corpus is constructed by the natural language processing group of Xinjiang Laboratory of Multi-

Language Information Technology. It is unpublished; please feel free to contact the author if you want 

to obtain the corpus. 

4.2. Results and Discussion 

This section presents the results of training CRF (http://github.com/zhongkaifu/CRFSharp), 

LSTM, LSTM-CRF, BI-LSTM, and BI-LSTM-CRF with identical feature sets. For CRF training, the 

window size is 5 for 𝐹𝑤𝑐 and 3 for other features; all other parameters maintained at their default 

values. We used stochastic gradient descent with a fixed learning rate of 0.01 and a dropout rate of 

0.5. Therefore, the differences in the results are entirely due to the different models. 

4.2.1. Selection of Engineered Features 

To determine which features are distinctive and more effective in POS tagging, we studied the 

effects of different engineered features on the CRF model. 

Table 5 shows the accuracy of POS tagging for the CRF model with different feature 

combinations. It is quite clear that not all features are valid: a few features have a larger contribution 

to the accuracy than others. For instance, the accuracies achieved using the combinations < 𝐹𝑤𝑐 +

𝐹𝑠 + 𝐹𝑠𝑢𝑓𝑓𝑖𝑥 > and < 𝐹𝑤𝑐 + 𝐹𝑠 + 𝐹𝑠𝑢𝑓𝑓𝑖𝑥 + 𝐹𝑠𝑡 > are not significantly different. Hence, considering the 
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utilization of resources and for increasing the speed of training, not all features are employed in the 

follow-up experiments; the combination < 𝐹𝑤𝑐 + 𝐹𝑠 + 𝐹𝑠𝑢𝑓𝑓𝑖𝑥 + 𝐹𝑓2 + 𝐹𝑙2 > is utilized. 

Table 5. Performance of different engineered features (%). 

Fwc Fs Fsuffix 𝑭𝒔𝒕 𝑭𝒇𝟐 𝑭𝒍𝒂 𝑭𝒍𝟒 𝑭𝒍𝟑 𝑭𝒍𝟐 𝑭𝒍𝟏 𝑭𝒃𝒕 
15 Labels 64 Labels 

Test Dev Test Dev 

√ √          96.91 96.98 93.39 93.44 

√ √ √         97.48 97.51 94.63 94.72 

√ √ √ √        97.51 97.54 94.66 94.74 

√ √ √ √ √       97.97 97.98 95.21 95.31 

√ √ √ √ √ √      98.05 98.03 95.31 95.35 

√ √ √ √ √ √ √     98.16 98.17 95.52 95.56 

√ √ √ √ √ √ √ √    98.20 98.23 95.54 95.62 

√ √ √ √ √ √ √ √ √   98.20 98.24 95.55 95.63 

√ √ √ √ √ √ √ √ √ √  98.23 98.29 95.61 95.66 

√ √ √ √ √ √ √ √ √ √ √ - - 95.53 95.62 

4.2.2. Comparison of Different Models 

To assess the influence of models with respect to word and character features, we trained each 

model with the word and character features from the same data set. In addition, in Section 3.6.3, we 

presented several engineered features that were shown to be effective in Section 4.2.1. We then used 

these features jointly with the word embedding feature; each feature corresponds to a 30-dimensional 

embedding vector. For instance, 𝐹𝑤𝑛 is the word feature, 𝐹𝑖 is the engineered feature, and i is the ith 

engineered feature. The sample can be defined as follows: 

{
𝑠𝑎𝑚𝑝𝑙𝑒 = {𝐹𝑤𝑛⊕𝐹𝑠}

𝐹𝑠 = {𝐹1⊕𝐹2⊕⋯⊕𝐹𝑖}
 (11) 

where ⊕ is the direct connection operation. After the concatenation operation, the sample contains 

word features, e.g., semantic and syntactic information, and additional morphological information. 

We also trained CRF, LSTM-CRF and BI-LSTM-CRF models with engineered features. 

To verify the availability of the proposed method, we compare the results of different models in 

Table 6. 

Table 6 provides the accuracies of the proposed models. It shows that the BI-LSTM-CRF model 

achieves accuracies of 98.41% and 95.74% on the 15- and 64-label test data sets, respectively, which is 

clearly higher than the accuracies of CRF and the other models. The reason for this phenomenon is 

that the CRF model typically requires several features, such as spelling and morphological features, 

to achieve good performance. In contrast, the LSTM based models, i.e., BI-LSTM, LSTM-CRF, and BI-

LSTM-CRF, are more robust and less reliant on non-word features. 

Table 6. Performance of the different models. “Word only” refers to the BI-LSTM-CRF model that 

uses word embeddings only, ”Char only” refers to the BI-LSTM-CRF model that uses character-level 

embeddings only, ”+ Feature” refers to the model that uses the engineered features which discussed 

in Section 4.2.1 (%). 

Model 
15 Labels 64 Labels 

Test Dev Test Dev 

LSTM 97.03 97.06 92.87 93.00 

BI-LSTM 97.87 97.90 93.78 93.86 

CRF 95.72 95.90 91.79 91.88 

LSTM-CRF 98.28 98.29 95.65 95.73 

BI-LSTM-CRF 98.41 98.43 95.74 95.81 

CRF + Feature 98.20 98.21 95.55 95.62 
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LSTM-CRF + Feature 98.58 98.58 96.16 96.19 

BI-LSTM-CRF + Feature 98.61 98.66 96.22 96.28 

BI-LSTM-CRF (Char only) 97.07 97.08 92.94 92.92 

BI-LSTM-CRF (Word only) 97.33 97.42 94.33 94.40 

When additional features are used, BI-LSTM-CRF outperforms CRF and LSTM-CRF and obtains 

the highest accuracy for every data set. For 15 labels, the accuracies of BI-LSTM-CRF are 0.41% and 

0.45% higher than that of CRF, and for 64 labels, the accuracies are 0.67% and 0.66% higher than that 

of CRF. There is no significant difference between LSTM-CRF and BI-LSTM-CRF. System 

performance of all models are further improved after the engineered features are added. The 

improvement for 64 labels is significant, that is, an improvement of 0.48% on the test set that uses the 

BI-LSTM-CRF model. This is because the engineered features effectively reduce data sparseness and 

provide rich morphological information. This phenomenon demonstrates that it is useful to add a 

few handcrafted features to the BI-LSTM-CRF and LSTM-CRF models when the training data set is 

limited and the tag set is extremely large, and it could be more effective for morphologically rich 

languages such as Uyghur to jointly consider syllable- or morpheme-based representations that are 

larger than a character and require rich morphological information. 

4.2.3. Comparison with Different Configurations 

In this experiment, in order to understand the behavior of BI-LSTM-CRF in different conditions, 

we performed an error analysis on the testing set. Specifically, we partition each data set into in-

vocabulary words (IV), out-of-vocabulary words (OOV), multi-category words (MC) and in-

vocabulary-and-single-category words (IVASC). A word is considered IV if it appears in both the 

training and testing (or development) set, and OOV words are the ones do not appear in training set 

but in the testing (or development) set. MC words are the ones that can represent more than one part-

of-speech in whole data set, while IVASC are the IV words that have only one part-of-speech. The 

statistics of the partition on each corpus are shown in Table 7. 

Table 7. Statistics of the partition on each corpus. 

Datasets IV OOV 
15 Labels 64 Labels 

MC IVASC MC IVASC 

All - - 1075 - 4241 - 

Training - - 1062 - 4139 - 

Development 24,161 10,290 776 23,395 3001 21,232 

Test 24,383 20,379 816 23,579 3081 21,389 

Table 8 illustrates the performances of BI-LSTM-CRF models on different subsets of words. The 

results of CRF model are provided as a baseline. 

Table 8. POS results on test data set with BI-LSTM-CRF using different configurations, “Word” refers 

to word embeddings, ”Char” refers to character-level embeddings and “Word-Char” refers to a 

combination of previous two architectures, ”+ Feature” refers to the engineered features which 

discussed in Section 4.2.1 (%). 

Models 
15 Labels 64 Labels 

IV OOV MC IVASC IV OOV MC IVASC 

Baseline 97.07 74.55 91.09 97.77 94.03 56.78 84.64 96.41 

Baseline + Feature 98.82 88.37 92.20 99.60 96.68 77.84 86.52 99.26 

Word 98.93 72.26 90.88 99.88 96.95 53.42 85.37 99.89 

Char 97.52 90.15 89.84 98.42 93.81 79.33 83.50 96.45 

Word-Char 99.01 89.04 91.03 99.94 96.92 77.35 85.23 99.90 

Word-Char + Feature 99.03 92.05 91.02 99.97 97.11 82.32 85.96 99.95 
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We can see in Table 8 that, for both tag set, the Word-Char + Feature model performs best 

followed by Word-Char model. For the OVV words, the accuracy of the Char-based architectures, 

i.e., Char, Word-Char, and Word-Char + Feature, reaches large improvements over the baseline. This 

demonstrates that by adding character-based embeddings, BI-LSTM-CRF model more powerful on 

OOV words. For the IV words, the Char architecture reaches only small improvements over baseline 

on 15 labels, while on 64 labels the Char architecture is worse than the baseline. Interestingly, the 

character-level embeddings seem to have opposite effects on MC words. The Baseline + Feature 

model is competitive to the BI-LSTM-CRF models on MC words. We can also see in the results that 

engineered features largely improve the system performance, especially when dealing with OOV 

words. We think that the features address quite different information and add up well. This result 

suggests that, for the Uyghur POS tagging, the selected engineered features are very effective for both 

CRF and BI-LSTM-CRF models. 

5. Conclusions 

We studied the POS tagging problem as a sequence labeling problem. We applied LSTM 

network-based models to Uyghur POS tagging and reported the state-of-the-art tagging accuracy on 

small and large tag sets. Instead of using engineered features, the proposed method uses word- and 

character-based representations that capture morphological and orthographic information and 

achieves better accuracy than the CRF model, which relies heavily on handcrafted features and 

domain-specific knowledge. Furthermore, carefully selected engineered features were used to further 

improve the results for the CRF and BI-LSTM-CRF models. 
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