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Abstract: In Magnetic Resonance (MR) brain image analysis, segmentation is commonly used for
detecting, measuring and analyzing the main anatomical structures of the brain and eventually
identifying pathological regions. Brain image segmentation is of fundamental importance since it
helps clinicians and researchers to concentrate on specific regions of the brain in order to analyze them.
However, segmentation of brain images is a difficult task due to high similarities and correlations
of intensity among different regions of the brain image. Among various methods proposed in
the literature, clustering algorithms prove to be successful tools for image segmentation. In this
paper, we present a framework for image segmentation that is devoted to support the expert in
identifying different brain regions for further analysis. The framework includes different clustering
methods to perform segmentation of MR images. Furthermore, it enables easy comparison of different
segmentation results by providing a quantitative evaluation using an entropy-based measure as well
as other measures commonly used to evaluate segmentation results. To show the potential of the
framework, the implemented clustering methods are compared on simulated T1-weighted MR brain
images from the Internet Brain Segmentation Repository (IBSR database) provided with ground
truth segmentation.
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1. Introduction

Medical image analysis plays a crucial role in modern diagnosis. Thus, computer-based image
analysis is becoming an important field, with an increasing reliance on it by the biomedical community.
Diagnostic imaging is an invaluable tool in medicine today. Magnetic Resonance Imaging (MRI),
Computed Tomography (CT), digital mammography and other imaging modalities provide effective
means for non-invasive analysis of the anatomy of a subject. Then, computer algorithms designed for
the delineation of anatomical structures and other regions of interest are key components in assisting
or even automating specific medical tasks.

Image segmentation is an essential and crucial process for facilitating the delineation,
characterization, and visualization of a Region Of Interest (ROI) in any medical image, because
its output affects all subsequent processes of image analysis.

Medical images are difficult to segment, mainly due to the complexity of the anatomical features
involved. The ROI may not be separable from its surroundings due to gray level inconsistency and
the absence of strong edges along its border. The images typically contain noise, which may alter
the intensity of a pixel such that its classification becomes uncertain. A single tissue class may show
non-uniformity of intensity over the extent of the image. Uncertainty also occurs due to the observer
variability at the expert level. Segmentation algorithms should be able to cope with these challenges.
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Segmentation methods vary widely depending on the specific application, the imaging modality and
other factors. Currently, there is no unique segmentation method that yields acceptable results for
every medical image.

Among medical imaging modalities, MRI is one of the safest methods for producing data with high
spatial resolution, and it is also a low-risk, non-invasive modality in comparison to other diagnostic
imaging techniques [1]. For this reason, the majority of research in medical image segmentation
pertains to its use for MR images, and there are many methods available for MR image segmentation.

In particular, the segmentation of MR brain images has obtained significant focus in the field of
biomedical image processing. It plays an important role in both clinical practice and neuroscience
research, with applications in the field of bio-medical analysis, such as identification of tumors,
classification of tissues and blood cells, multi-modal registration [2], etc. Furthermore, the ability to
segment and quantify brain tissues and anatomical structures has received increasing importance
in the study of brain development [3,4], and its pathologies such as neurodegeneration [5,6],
and dementia [7,8], as well as in the assessment of neurological [9,10] and psychiatric disorders [11,12].

A brain image mainly consists of three regions: Gray Matter (GM), White Matter (WM) and
Cerebrospinal Fluid (CSF) [13]. Segmentation of a brain image aims to identify these three regions
by exploiting the gray level distribution of pixels. Due to the complex structure of brain tissues in
the brain images, manual segmentation is a difficult and time-consuming process. Therefore, there is
a strong need to have efficient computer-based systems that can identify accurately the boundaries of
brain tissues along with low interaction with the human expert.

Various automatic techniques have been proposed for segmentation of MR brain images.
Their basic idea is to detect discontinuity among pixels of different regions or similarity among pixels
of the same region. One category includes algorithms for detecting isolated points, lines or edges,
like thresholding [14], edge-based detection [15] and region growing [16]. Thresholding techniques
are effective when the histograms of the ROIs and background are clearly identifiable. However, for
brain images, these techniques give inaccurate segmentation results since the distribution of pixels in
the brain image is very complex. Edge-based methods rely heavily on detection of boundaries in the
image. However, when applied to brain images, they often result in the wrong detection of boundaries
due to the complex gray level distribution of GM, WM and CSF pixels.

Another category of segmentation methods includes algorithms of region growing, region
splitting and merging. Region growing techniques use the homogeneity and connectivity criteria for
segmentation; hence, a region growing algorithm merges pixels based on certain criteria. Region-based
segmentation algorithms typically rely on the homogeneity of the image intensities in the regions of
interest, which often fail to provide accurate segmentation results due to the intensity inhomogeneity.
In [17], a region-based method for image segmentation, which is able to deal with intensity
inhomogeneities in the segmentation, is proposed.

Other common segmentation methods are active contour models, also called snakes, used for
delineating an object outline from a possibly noisy 2D image. In [18], an edge-based active contour
model using the inflation/deflation force is proposed. The method allows active contour nodes to
be moved to find object boundaries in a digital image. Experiments on MRI medical images show
that the method is of major practical significance if the analyzed images contain weak boundaries
and/or strong noise at the same time. In [19], an active contour model is proposed to segment images
with intensity inhomogeneities. This method uses Gaussian kernel filtering to regularize the level set
function after each iteration. Experiments show that the method achieves similar results to the local
binary fitting energy method, but in a computationally more efficient way.

Among pixel-based approaches, clustering methods are the most widely used for image
segmentation [20]. Clustering is the process of grouping a set of points (feature vectors) into subsets
(called clusters) so that points in the same cluster are similar in some sense [21]. Several types of
clustering methods have been discussed in the literature like expectation–maximization [1], K-means
and fuzzy clustering techniques [22,23], which allow image pixels to belong to more than one class.
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Among fuzzy clustering techniques, Fuzzy C-Means (FCM) is the most widely-used technique [24].
It aims at minimizing an objective function according to some criteria. It permits one data point to
belong to more than one cluster defined by a membership matrix.

In the last decade, clustering-based approaches received great interest in the domain of medical
imaging. A huge number of papers has been proposed in the literature concerning the application
of clustering methods to the segmentation of medical images such as MR breast images [25,26],
microscopic blood cell images [27,28] and X-ray images [29,30]. In particular, many works demonstrate
the effectiveness of clustering for segmentation of MR brain images in order to detect GM, WM and
GSF regions [31–34].

Despite the huge number of clustering techniques proposed for medical image segmentation,
a general framework for assessing the validity of the different segmentation methods is missing. Indeed,
there are many works in the remote sensing field for segmentation quality assessment, including tools
for tuning segmentation parameter values [35,36]. Proposed frameworks in the field of medical images
enable only visual quality inspection of the segmentation results [37]. Only very few studies propose
frameworks for quantitative evaluation of MR image segmentation [38], but no available software
tool is developed. Hence, there is a need for open-source validation tools to assess the reliability of
segmentation results obtained by different clustering methods applied to MR images.

To this aim, in this work, we present a framework to aid the clinicians in the identification of
the best segmentation results for their specific task. The framework includes different clustering
methods and some evaluation metrics to assess the quality of the results. Specifically, for each method,
the framework enables easy definition of specific running parameters and enables comparison of
the segmentation results. The framework includes specific pixel-based approaches for MR image
segmentation that are based on clustering and enables comparison of segmentation results obtained by
different clustering methods. Comparison is made not only qualitatively, through visual inspection
of segmented images, but also quantitatively by means of the evaluation method proposed in [39].
This method is based on information theory, and it uses entropy as the basis for measuring the
uniformity of pixel luminance within a segmentation region. The evaluation method provides a
relative quality score that can be used within the framework to compare different segmentations of the
same image.

2. The Image Segmentation Framework

Classically, image segmentation is defined as the partitioning of an image into non-overlapping
regions, which are homogeneous with respect to some characteristic such as intensity or texture [40–42].
In general, image segmentation has a two-fold goal:

(a) Partitioning: divide into regions/sequences with coherent internal properties;
(b) Grouping: identify sets of coherent tokens in the image.

The goal of segmentation is also to simplify and/or change the representation of an image from
a low-level (rough data) into a medium-level representation (image segmented into regions) that is
more understandable and suitable for further analysis. An image is a collection of measurements in
two-dimensional (2D) or three-dimensional (3D) space. In medical images, these measurements or
image intensities can be radiation absorption in X-ray imaging, acoustic pressure in ultrasound or RF
signal amplitude in MRI.

Given an image I, the segmentation problem is to determine the regions Rj ⊂ I whose union is
the entire image I, namely:

I =
K⋃

j=1

Rj

where Ri ∩ Rj = ∅ for i 6= j, and each Rj is connected.
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When the constraint that regions be connected is not considered, then the process of determining
the regions Rj is called pixel classification, and the regions Rj are called classes. Pixel classification
rather than classical segmentation is often a desirable goal in medical images, particularly when
disconnected regions belonging to the same tissue class need to be identified. Determination of
the total number of classes K in pixel classification is a difficult problem [43] especially when prior
knowledge about the anatomy depicted in the image is missing.

The framework presented in this work is intended to aid the clinician in the application of
different clustering methods for image segmentation. It includes four state-of-art clustering algorithms,
namely the K-means, the fuzzy C-means, the spatial fuzzy C-means and the kernelized FCM algorithm.
The framework allows the user to set the parameters of each method and to compare the obtained
segmentation results using some evaluation metrics.

The core of the tool is based on the ImageJ environment (imagej.nih.gov/ij/), which is an open
source software for image processing extended with new functionalities. The main steps accomplished
are the following:

• choosing the image
• choosing the color space
• choosing the segmentation method
• setting the running parameters of the specific method
• visualizing the segmented image
• computing the evaluation metrics

More in detail, the main components of the tool are the following:

1. User work section: This component gives the user the possibility to access the primary functions
of the tool, which are the clustering method section and the evaluation section.

2. Method section: For each implemented method, the user can configure its parameters such as
color space conversion, number of cluster, maximum number of iterations, stopping condition
and visualization mode.

3. Evaluation section: The segmentation results can be evaluated both qualitatively and
quantitatively. Qualitative evaluation is made by visualization of the segmented image compared
to the ground truth image. Quantitative evaluation is made by computing the metrics described
in Section 4.

The tool offers different visualization modes for displaying the segmented image, namely the
regions can be labeled in different ways:

• by the cluster centroid color: Each point of a cluster is labeled with the color of its centroid (in the
case of color conversion, the color space is converted back to RGB);

• by a gray level: Each pixel is labeled with the number of the cluster it belongs to, and the range is
stretched in 0–255;

• by a random RGB color: A random RGB value is generated for each cluster;
• by a binary stack: The clustering is represented as a stack of binary images. Each binary image

represents a cluster; each pixel shows a hard cluster membership. Thus, it is possible to extract
cluster regions from the original image by performing an AND operation between a slide of the
stack and the original image.

• by using a fuzzy stack: A stack of gray level images is used to show the membership values of
each pixel to each cluster. Each pixel represents the soft cluster membership value of that pixel in
the original image according to the currently selected cluster.

Moreover, the tool enables selection of general parameters such as number of clusters, maximum
number of iterations, stopping criterion and tolerance value used to stop the algorithm, initialization

imagej.nih.gov/ij/


Information 2017, 8, 138 5 of 21

criterion for the centers and the membership matrix and randomized seed used to initialize a random
number sequence.

In the following sections, the implemented clustering methods and the adopted evaluation metrics
are briefly described.

3. Clustering Methods

3.1. K-means

The K-means algorithm [44] is the major example of partitional crisp clustering that assumes each
data point to belong exactly to one cluster. It aims to partition N points into K partitions (clusters)
in which each point belongs to the cluster having the nearest mean. Even though K-means was first
proposed over 50 years ago, it is still by far the most used clustering algorithm for its simplicity of
implementation and its effectiveness. When applied to image segmentation, the K-means algorithm
clusters image pixels (features could be the color or the luminance of a pixel) by iteratively computing
a mean intensity for each cluster and segmenting the image by associating each pixel to the cluster
with the closest mean [21].

Let {x1, x2, · · · , xN} be the set of pixels and {c1, c2, · · · , cK} be the set of cluster means (centers).
A partition of the image I into K clusters can be represented by mutually disjoint sets C1, · · · , CK such
that C1 ∪ · · · ∪ CK = I. To represent the partition of I into K clusters, a binary membership matrix
U = [uik] is used, where uik = 1 if xi ∈ Ck, uik = 0 otherwise, for i = 1, ...N and k = 1, ...K.

The objective of the K-means algorithm is to minimize the distance among pixels inside the same
cluster and to maximize the distance between clusters. This is obtained by minimizing the following
objective function:

J =
N

∑
i=1

K

∑
k=1

uikd(xi, ck)
2 (1)

where d(·, ·) is the Euclidean distance.
The main steps of the K-means algorithm for image segmentation are:

1. Fix the number of clusters K, and initialize the cluster centers ck (k = 1...K), either randomly or
based on some heuristic;

2. Assign each pixel to the cluster that minimizes the distance between the pixel and the
cluster center;

3. Re-compute the cluster centers by averaging all of the pixels in the cluster, namely:

ck =
1
|Ck| ∑

xi∈Ck

xi for k = 1...K (2)

4. Repeat Steps 2 and 3 until convergence is attained (i.e., the assignment of pixels to clusters does
not change)

One main issue of the K-means algorithm is that the clustering result depends strongly on the
initialization of the cluster centers and on the number of clusters. Besides, K-means is a local optimum
search technique that usually converges to a local minimum, and it does not take pixel distribution
in consideration.

3.2. Fuzzy C-Means

Unlike crisp clustering methods, which force pixels to belong exclusively to one cluster, fuzzy
clustering methods allow pixels to belong to multiple clusters with varying degrees of membership,
thus enabling vague or fuzzy borders between different clusters. There has been considerable interest
in the past few years in the use of fuzzy segmentation methods, which retain more information from
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the original image than crisp segmentation methods [45–47]. The main example of the fuzzy clustering
algorithm is the fuzzy version of the K-means called Fuzzy C-Means (FCM) [24].

FCM is a partition clustering method based on the minimization of the following
objective function:

J =
N

∑
i=1

K

∑
k=1

(uik)
m d (xi, ck)

2, 1 < m < ∞, (3)

where d(xi, ck) is the distance between the point xi and the cluster center ck, m is the fuzziness parameter,
K is the number of clusters, N is the number of data points xi and uik ∈ [0, 1] is the membership degree
of xi belonging to the cluster k, calculated as follows:

uik =
1

K

∑
l=1

(
d(xi, ck)

d(xi, cl)

) 2
m−1

. (4)

for i = 1...N, k = 1...K. Using the fuzzy membership matrix U = [uik], a new position of the k-th
centroid is calculated as:

ck =
∑N

i=1 (uik)
mxi

∑N
i=1 (uik)m

(5)

with the constraint ∑k uik = 1. The fuzziness parameter 1 ≤ m ≤ ∞ is a scalar weighting exponent that
controls the fuzziness degree of the clustering process. The larger is its value, the fuzzier is the partition.
If this parameter has value 1.0, the FCM approaches the crisp K-means algorithm, the membership
values being only zero or one. When m approaches infinity, the mass center of the dataset is the only
solution of FCM. The most common choice for m is 2.0, which has been proven to be suitable also for
MR brain image segmentation [48].

Minimization of (3) is obtained by iteratively computing membership values according to
Equation (4) and cluster centers as in Equation (5). The main steps of the FCM algorithm are
the following:

1. Fix the number of clusters K and initialize the cluster centers ck (k = 1...K), either randomly or
based on some heuristic;

2. Compute membership values uik using Equation (4)
3. Re-compute the cluster centers ck using Equation (5)
4. Repeat Steps 2 and 3 until convergence is attained (i.e., the assignment of pixels to clusters does

not change)

The parameters required to run the FCM algorithm are the number of clusters K and the fuzziness
parameter m. Our framework enables the selection of these parameters.

The FCM algorithm has been used widely for the segmentation of MR images [49–51]. The FCM
method, however, does not address the spatial intensity inhomogeneity artifact induced by the
radio-frequency coil in MR images [52,53]. To deal with the inhomogeneity problem, many algorithms
have been proposed by adding correction steps before segmenting the image [54,55] or by modeling the
image as the product of the original image and a smooth varying multiplier field [1,45]. More recently,
spatial information has been embedded into the original FCM algorithm to better segment the
images [56,57]. The framework presented in this paper includes one example of spatial FCM that is
briefly described in the following section.

3.3. Spatial FCM

From Equation (3), it can be observed that FCM does not incorporate any spatial dependencies
between pixels. This may degrade the overall segmentation result, because neighboring regions
may be highly correlated, and thus, they should belong to the same cluster. When applied to image
segmentation, clustering should take into account the spatial information of pixels. To this aim, several
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spatial variants of the FCM have been proposed. Among these, we consider the Spatial FCM (SFCM)
proposed in [58] and applied in [59] to biomedical image segmentation. The SFCM uses a spatial
function defined as:

hij = ∑
k∈NB(xi)

uik (6)

where NB(xi) represents a neighbor of the pixel xi in the spatial domain. Just like the membership
function, the spatial function hij represents the membership degree of pixel xi belonging to the j-th
cluster. The spatial function of a pixel for a cluster is large if the majority of its neighbors belongs to
the same clusters. The spatial function modifies the membership function of a pixel according to the
membership statistics of its neighbors as follows:

uij =
up

ijh
q
ij

∑K
k=1 up

ikhq
ik

(7)

where p and q are parameters to control the relative importance of both functions. The iterative scheme
of the SFCM is the same as in FCM, but Step 2 includes three sub-steps. The first one is the same as in
standard FCM, i.e., to calculate the membership values using Equation (4). In the second sub-step,
the membership information of each pixel is mapped to the spatial domain, and the spatial function is
computed from that using Equation (6). Then, the new membership values are computed according
to (7). The SFCM iteration proceeds by updating cluster centers according to (5) as in FCM.

Specific parameters that can be set for this algorithm are:

• m ≥ 1: fuzziness parameter used to control the fuzziness; if m is near one, the results are similar
to those obtained by K-means

• p and q: parameters used to control the relative importance of membership and spatial functions
• Radius r: the spatial function is evaluated on a (2r + 1)× (2r + 1) window centered on the pixel

Figure 1 shows the interface of our framework that enables the user to define such parameters.

Figure 1. Graphical interface for the selection of Spatial FCM (SFCM) parameters.
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3.4. Kernelized FCM

In recent years a number of powerful kernel-based learning methods have been proposed [60] that
work to construct a nonlinear version of a linear algorithm using the so-called “kernel trick” or kernel
substitution. This consists of using a (implicit) nonlinear map, from the data space to the mapped
feature space Φ : X → F(x → Φ(x)) so that an input data space X with low dimension is mapped into
a potentially much higher dimensional feature space F in order to turn the original nonlinear problem
in the input space into potentially a linear one in a rather high dimensional feature space. A kernel in
the feature space can be represented as a kernel function K defined as:

K(x, y) = 〈Φ(x), Φ(y)〉

where 〈·, ·〉 denotes the inner product operation. There are different commonly-used kernel functions
in the literature, such as the Gaussian Radial Basis Function (GRBF) kernel, polynomial kernel and
sigmoid kernel [60].

The kernel method has also been applied to clustering. In particular, in [61], a Kernelized version
of fuzzy C-means (KFCM) is proposed and applied to the segmentation of MR images. It is realized
by replacing the original Euclidean distance in the FCM algorithm with a kernel-induced distance.
The KFCM minimizes the following objective function:

JK =
N

∑
i=1

K

∑
k=1

(uik)
m d (Φ(xi), Φ(ck))

2 (8)

d (Φ(xi), Φ(ck))
2 = ||Φ(xi)−Φ(ck)||2 =

(Φ(xi)−Φ(ck))
T(Φ(xi)−Φ(ck)) =

Φ(xi)
TΦ(xi)−Φ(ck)

TΦ(xi)−Φ(xi)
TΦ(ck) + Φ(ck)

TΦ(ck) =

K(xi, xi) + K(ck, ck)− 2K(xi, ck)

(9)

Using the GRBF kernel, we have K(x, x) = 1; hence, we obtain the following simplified expression:

d (Φ(xi), Φ(ck))
2 = 2(1− K(xi, ck))

and the objective function (8) can be rewritten as:

JK = 2
N

∑
i=1

K

∑
k=1

(uik)
m (1− K(xi, ck))

Similarly to the standard FCM algorithm, the objective function JK can be iteratively minimized
by using the following update formulas:

uik =
(1− K(xi, ck))

−1
(m−1)

∑K
l=1(1− K(xi, cl))

−1
(m−1)

(10)

and:

ck =
∑N

i=1 (uik)
mK(xi, ck)xi

∑N
i=1 (uik)m

(11)

The KFCM algorithm follows the same iterative scheme as FCM.

4. Evaluation Metrics

The validation process is an important step to define the reliability and reproducibility
of a given brain MRI segmentation method. Often, the results of segmentation methods are
evaluated only visually and qualitatively. Such an approach is either subjective or tied to particular
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applications. Conversely, it is desirable to judge the performance of a segmentation method objectively;
hence, qualitative evaluation cannot be used as a means to compare the performance of different
segmentation techniques.

Typically for quantitative validation purposes, the segmented brain images are compared to
the corresponding ground truth, and an evaluation metric is calculated. For instance, the number
of pixels that have been correctly segmented is divided by the total number pixels in the brain.
Common measures used for quantitative evaluation of segmentation methods are accuracy, sensitivity
and specificity. The accuracy of the segmentation method is computed as the rate of correctly classified
pixels over all pixels. Given a tissue T (GM, WM, CSF), it is defined as:

Accuracy =
TP + TN

TP + TN + FN + FP
(12)

where

• TP (True Positive) is the number of pixels that belong to tissue T in the ground truth image and
are correctly classified as tissue T in the segmented image;

• FN (False Negative) is the number pixels that are classified as tissue T in the ground truth image,
but classified as different tissues in the segmented image;

• TN (True Negatives) is the number of pixels that are classified as different tissues both in the
segmented and ground truth images;

• FP (False Positives) is the number of pixels incorrectly classified as tissue T in the segmented
image compared to the ground truth image.

Sensitivity refers to the ability of a clustering method to accurately identify the tissue regions in
the segmented image. It is defined as:

Sensitivity =
TP

TP + FN
(13)

The specificity reflects the ability of the clustering method to accurately identify the non-tissue
regions. It is defined as:

Speci f icity =
TN

TN + FP
(14)

Other measures usually considered to evaluate segmentation are the Dice Similarity Coefficient
(DSC) and the Jaccard Similarity (JS) value. DSC is a statistical validation metric that was proposed
in [62] to evaluate the accuracy of segmentation methods. The DSC measure describes the overlap
between the segmented and ground truth images using the following formula:

DSC =
2× TP

2× TP + FP + FN
(15)

The JS metric is defined as:

JS =
S ∩ G
S ∪ G

(16)

where G is the ground-truth image and S is the segmented image. High values of JS indicate that the
segmented regions match the ground truth regions well. The above metrics do not always express
completely the quality of a segmentation method. A good segmentation evaluation should maximize
the uniformity of pixels within each segmented region and minimize the uniformity across the regions.
Consequently, a natural characteristic to incorporate into a segmentation evaluation metric is a measure
of the disorder within a region. Along with this idea, in [39], the concept of entropy is used to measure
the disorder within regions of a segmented image. Given a segmented image I =

⋃N
j=1 Rj, where Rj

is a region of the image, we indicate by v a specific feature used to describe the pixels in region Rj
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and define V(v)
j as the set of all possible values associated with feature v in region Rj and Lj(m) as the

number of pixels that have a value of m for feature v. The entropy for region Rj is defined as:

Hv(Rj) = − ∑
m∈V(v)

j

Lj(m)

Sj
log

Lj(m)

Sj
(17)

where Sj = |Rj| denotes the area of region Rj.
Here, we consider v to be the luminance of pixels and simplify Hv(Rj) to H(Rj). Hence, from

an information coding theory point of view, the quantity
Lj(m)

Sj
represents the probability that a pixel

in region Rj has a luminance value of m. Thus, Hv(Rj) is the number of bits per pixel needed to
encode the luminance for region Rj, given that the region Rj is known. Finally, we define the expected
region entropy of image I as the expected entropy across all regions where each region has weight
(or probability) proportional to its area. That is, the expected region entropy of segmented image I is:

Hr(I) =
N

∑
j=1

( Sj

SI

)
H(Rj) (18)

where SI is the area (as measured by the number of pixels) of the entire image. When each region has
very uniform luminance, then Hr(I) will be small. Besides, when all pixels in a region have the same
value, then the entropy for the region will be zero. Since an over-segmented image will have a very
small value of Hr(I), this value should be combined with another term that penalizes segmentations
having a large number of regions. In order to fully encode the information in a segmented image,
we should not only encode the luminance value of a pixel within a region (i.e., the region entropy),
but also a representation for the segmentation itself, i.e., we should specify the region for each pixel.
In [39] the authors introduce the layout entropy as a measure to encode the region for each pixel,
defined as:

Hl(I) = −
N

∑
j=1

Sj

SI
log

Sj

SI
(19)

Using a coding theory framework, one can view pj =
Sj
SI

as the probability that a pixel in the
image belongs to region j under a probabilistic assumption that each pixel is independently selected to
be in region j with probability pj. Hence, Hl(I) represents the number of bits for specifying a region
for each pixel.

While the expected region entropy Hr(I) provides an estimate of the average disorder within
regions in a segmented image and it generally decreases with the number of regions, the layout
entropy increases with the number of regions. Hence, the two factors Hr(I) and Hl(I) can be used
to counteract the effects of over-segmenting or under-segmenting when evaluating the effectiveness
of a given segmentation. By additively combining both the layout entropy and the expected region
entropy, in [39], the entropy-based evaluation function E is introduced to measure the effectiveness of
a segmentation method. It is defined as:

E = Hr(I) + Hl(I) (20)

When the image is maximally segmented (with one pixel per region) E is not minimized, since in
such a case, the layout entropy becomes very large. Furthermore, when the image is under-segmented
(with very few regions) E is not minimized since the expected region entropy will be high. As desired,
the measure E balances these two factors.
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5. Application and Results

In this section, we present some comparative results of MR image segmentation using the
clustering methods implemented in the proposed framework. A preliminary version of the tool
is available at [63]. The framework is developed in Java as a plugin for ImageJ (http://imagej.nih.gov),
a public-domain Java image processing program inspired by NIH image for Macintosh. The functions
provided by ImageJ built-in commands can be extended by user-written code in the form of macros
and plugins. Figure 2 shows an excerpt of code of our framework that summarizes in a macro the
procedure for clustering and computation of the evaluation metrics.

Figure 2. An example of macro in the developed framework.

We used T1-weighted MR brain images from the Internet Brain Segmentation Repository
(IBSR), which was made available by the Center for Morphometric Analysis, Massachusetts General
Hospital [64]. The IBSR dataset contains a three-dimensional T1-weighted MRI brain data-set obtained
from 20 normal subjects and the associated manual segmentation into three classes corresponding to
different tissues, namely: GM, WM and CSF. We used the manual segmentation as the ground truth to
evaluate our results. The ground truth given in IBSR is the result of manual segmentation performed
by trained experts. According to the IBSR documentation, the experts used a semi-automated intensity
contour mapping algorithm [65] and also signal intensity histograms. Once the external border was
determined by intensity contour mapping, gray-white matter borders were demarcated using signal
intensity histograms. Using this technique, borders are defined as the midpoint between the peaks of
the bimodal histogram for a given structure and its adjacent tissue. Other neuroanatomical structures
were segmented similarly.

For each subject, we extracted three slices, hence we considered a total of 60 images for
segmentation. We used 80% of images to assess the parameters of each clustering method and
the remaining 20% for the final test using the best parameter setting found for each method.
Figure 3 shows two examples of test images used in the experiments and their corresponding ground
truth segmentation.

The gray values of the pixels in the brain image were taken as the basis for clustering.
Each clustering algorithm was executed for different parameter settings. In Table 1, we show
the parameter values considered for each algorithm. The number of clusters K was varied from
4 to 10. For the fuzziness parameter m, we considered the values 1.0; 1.5; 2.0. For the SFCM
algorithm, we considered all combinations of the values p = 1.0; 2.0, q = 1.0; 2.0 and r = 2.0; 3.0; 4.0.
For the application of the KFCM algorithm, a window size (Ws) equal to 1, 3 and 5 was considered.
Furthermore, we considered different filtering options (opt) i.e., average, median and weighted.

http://imagej.nih.gov
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(a) (b)

(c) (d)

Figure 3. (a) Original image of Subject 202-3, Slice 20 and (b) its ground truth; (c) original image of
Subject 205-3, Slice 20 and (d) its ground truth.

Table 1. Parameters of the clustering algorithms. KFCM, Kernelized FCM.

K-means FCM SFCM KFCM

K 4, 6, 8, 10 4, 6, 8, 10 4, 6, 8, 10 4, 6, 8, 10
m - 1.0, 1.5, 2.0 1.0, 1.5, 2.0 1.0, 1.5, 2.0
p - - 1.0, 2.0 -
q - - 1.0, 2.0 -
r - - 2.0, 3.0, 4.0 -

Ws - - - 1, 3, 5
opt - - - average, median, weighted

In order to assess and compare the segmentation results obtained by the considered clustering
methods, we used the entropy-based evaluation measure E described in Section 4. The measure was
evaluated for each clustering algorithm, by varying the number of clusters and the other parameters.
Figure 4 plots the values of E averaged on all 48 images for all the considered algorithms with different
combinations of parameters. It can be seen that in each case, the optimal number of clusters is K = 4.
This is compatible with the task of segmenting the brain image into three tissue regions (GM, WM,
CSF) plus the background region. In Table 2, we summarize the average values of the E-measure with
the standard deviation obtained on the test images. To better compare the methods, we applied a z-test
to test the hypothesis that a method outperforms other methods. We found that the null hypothesis
can be rejected for SFCM with the smallest p-value (confidence level); hence, we can conclude that
SFCM outperforms the other methods.
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Table 2. Average segmentation results obtained by different clustering algorithms on the test images.

K-means FCM SFCM KFCM

E-measure 0.5374 ± 0.0763 0.5381 ± 0.0750 0.5363 ± 0.0742 0.5348 ± 0.0761

Figure 5 plots the best values of E in the case of segmentation of the two images shown in Figure 3
using the optimal parameter setting. For all algorithms, the optimal configuration includes K = 4
and m = 2.0. For SFCM, the optimal values for the remaining parameters are p = 1.0, q = 2.0 and
r = 3.0. Finally, the KFCM provides better results with window size Ws = 1.0 and opt = median. It is
interesting to note that the same optimal configuration has been found for most of the images.

Besides the E measure, we considered the other evaluation measures described in Section 4 to
assess and compare the results. In Table 3, we compare the performance of the considered algorithms
in terms of these measures, by averaging over all the classes. For each algorithm, the optimal
parameter setting is considered. We found that SFCM provides better results even in terms of these
evaluation metrics.

Figures 6 and 7 show the segmented MR brain image using K-means, FCM, spatial FCM and
kernelized FCM, respectively. By observing the values of the performance measures, as well as the
segmented images, we can conclude that SFCM can segment the brain images better than the other
methods. Moreover, it is interesting to note that, despite the segmented images looking quite similar
to the original images, the value of the entropy-based measure computed on the original images is
about E = 1.27, hence much higher than the values obtained on the segmented images.

Figure 4. Cont.
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Figure 4. Average trend of the entropy-based measure. The dotted line refers to the average value
computed on the ground truth segmented images.

Figure 5. Cont.
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Figure 5. Entropy-based evaluation measure for the clustering algorithms on Image 202-3 and on
Image 205-3 using the optimal parameter setting.

(a) (b)

(c) (d)

Figure 6. Best segmentation of Image 202-3 using K-means (a) FCM (b) SFCM (c) and KFCM (d).
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(a) (b)

(c) (d)

Figure 7. Best segmentation of Image 205-3 using K-means (a) FCM (b) SFCM (c) and KFCM (d).

Table 3. Comparative results. JS, Jaccard Similarity; DSC, Dice Similarity Coefficient.

Subject Method JS DSC Sensitivity Specificity Accuracy

K-means 0.8997 0.9472 96.12% 98.77% 97.77%
202-3 FCM 0.9015 0.9482 96.07% 98.80% 97.82%

SFCM 0.9022 0.9486 96.03% 98.88% 97.84%
KFCM 0.8938 0.9486 95.47% 98.93% 97.77%

K-means 0.9017 0.9483 96.94% 98.71% 97.91%
205-3 FCM 0.9028 0.9489 97.09% 98.72% 97.93%

SFCM 0.9043 0.9497 97.11% 98.75% 97.97%
KFCM 0.8830 0.9408 95.89% 98.69% 97.62%

Finally, we tested the sensitivity of the algorithms in the presence of noise. To this aim,
all test images were corrupted by 10% salt and pepper noise, and then, a simple median filter
was applied to minimize the noise before applying clustering. The median filter is a non-linear
filter that preserves edges while removing impulsive noise (outliers). It consists of replacing each
center pixel of an m×m neighborhood window with the median of the neighborhood window
pixels. In this work, a 3× 3 window size is used. Figure 8 shows two test images corrupted by
noise. The segmentation results obtained on these two noisy images are shown qualitatively in
Figures 9 and 10. Quantitative results are shown in Table 4 where a comparison with segmentation
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results on the original images is also given. Even in presence of noise, the SFCM algorithm succeeds in
achieving better clustering results.

Table 4. Average segmentation results obtained by different clustering algorithms on the test images.

Segmented Image K-means FCM SFCM KFCM

202-3 original 0.5842 0.5850 0.5832 0.5889
202-3 with noise 0.5859 0.5873 0.5856 0.5845

205-3 original 0.5793 0.5781 0.5758 0.5761
205-3 with noise 0.5763 0.5787 0.5761 0.5782

A final step in medical image segmentation is labeling. Labeling is the process of assigning a
meaningful designation to each region obtained by clustering and can be performed separately from
segmentation. It maps the numerical index j of region Rj to an anatomical designation. In our medical
application, the labels (GM, WM, CSF) can be assigned upon inspection by a physician or technician.
Hence, the clustered images should be further analyzed for a final classification of all regions.

(a) (b)

(c) (d)

Figure 8. The 202-3 (a) and 205-3 (b) images with added noise and the pre-processed images using the
median filter (c,d).
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(a) (b) (c) (d)

Figure 9. Segmentation of the noised Image 202-3 using K-means (a) FCM (b) SFCM (c) and KFCM (d).

(a) (b) (c) (d)

Figure 10. Segmentation of the noised Image 205-3 using K-means (a) FCM (b) SFCM (c) and KFCM (d).

6. Conclusions

The segmentation of brain MR images is an important, but challenging step in medical
image analysis in both clinical and research areas. Various techniques, such as threshold-based,
clustering-based or hybrid methods, have been developed and optimized to perform brain image
segmentation. However, not all techniques produce a high accuracy rate. In this paper, we have
proposed a framework for image segmentation that includes several clustering algorithms. Using the
framework, we showed that clustering algorithms are effective methods for brain image segmentation.
In particular, clustering embedded with spatial information succeeds in segmenting the MR images
very well. The developed framework offers both qualitative and quantitative evaluation of the
segmentation results; hence, it represents a valid support to the analysis of brain images. Further work
is addressed to extend the framework so as to include the possibility to combine various clustering
methods in order to achieve more robust segmentation results.
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