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1. Introduction

Euler [1] introduced the concept of graph theory in 1736, which has applications in various fields,
including image capturing, data mining, clustering and computer science [2–5]. A graph is also used to
develop an interconnection between objects in a known set of objects. Every object can be illustrated by a
vertex, and interconnection between them can be illustrated by an edge. The notion of competition graphs
was developed by Cohen [6] in 1968, depending on a problem in ecology. The competition graphs have
many utilizations in solving daily life problems, including channel assignment, modeling of complex
economic, phytogenetic tree reconstruction, coding and energy systems.

Fuzzy set theory and intuitionistic fuzzy sets theory are useful models for dealing with uncertainty
and incomplete information. However, they may not be sufficient in modeling of indeterminate and
inconsistent information encountered in the real world. In order to cope with this issue, neutrosophic
set theory was proposed by Smarandache [7] as a generalization of fuzzy sets and intuitionistic fuzzy
sets. However, since neutrosophic sets are identified by three functions called truth-membership (t),
indeterminacy-membership (i) and falsity-membership ( f ), whose values are the real standard or
non-standard subset of unit interval ]0−, 1+[. There are some difficulties in modeling of some problems
in engineering and sciences. To overcome these difficulties, Smarandache in 1998 [8] and Wang et al. [9]
in 2010 defined the concept of single-valued neutrosophic sets and their operations as a generalization
of intuitionistic fuzzy sets. Yang et al. [10] introduced the concept of the single-valued neutrosophic
relation based on the single-valued neutrosophic set. They also developed kernels and closures of a
single-valued neutrosophic set. The concept of the single-valued intuitionistic neutrosophic set was
proposed by Bhowmik and Pal [11,12].
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The valuable contribution of fuzzy graph and generalized structures has been studied by several
researchers [13–22]. Smarandache [23] proposed the notion of the neutrosophic graph and separated them
into four main categories. Wu [24] discussed fuzzy digraphs. Fuzzy m-competition and p-competition
graphs were introduced by Samanta and Pal [25]. Samanta et al. [26] introduced m-step fuzzy competition
graphs. Dhavaseelan et al. [27] defined strong neutrosophic graphs. Akram and Shahzadi [28] introduced
the notion of a single-valued neutrosophic graph and studied some of its operations. They also discussed
the properties of single-valued neutrosophic graphs by level graphs. Akram and Shahzadi [29] introduced
the concept of neutrosophic soft graphs with applications. Broumi et al. [30] proposed single-valued
neutrosophic graphs and discussed some properties. Ye [31–33] has presented several novel concepts
of neutrosophic sets with applications. In this paper, we first introduce the concept of intuitionistic
neutrosophic competition graphs. We then discuss m-step intuitionistic neutrosophic competition graphs.
Further, we describe applications of intuitionistic neutrosophic competition graphs in ecosystem and
career competition. Finally, we present our developed methods by algorithms.

Our paper is divided into the following sections: In Section 2, we introduce certain competition
graphs using the intuitionistic neutrosophic environment. In Section 3, we present applications of
intuitionistic neutrosophic competition graphs in ecosystem and career competition. Finally, Section 4
provides conclusions and future research directions.

2. Intuitionistic Neutrosophic Competition Graphs

We have used standard definitions and terminologies in this paper. For other notations, terminologies
and applications not mentioned in the paper, the readers are referred to [34–44].

Definition 1. [38] Let X be a fixed set. A generalized intuitionistic fuzzy set I of X is an object having the
form I={(u, µI(u), νI(u))|u ∈ U}, where the functions µI(u) :→ [0, 1] and νI(u) :→ [0, 1] define the degree of
membership and degree of non-membership of an element u ∈ X, respectively, such that:

min{µI(u), νI(u)} ≤ 0.5, for all u ∈ X.

This condition is called the generalized intuitionistic condition.

Definition 2. [11] An intuitionistic neutrosophic set (IN-set) is defined as Ă = (w, tĂ(w), iĂ(w),
f Ă(w)), where:

tĂ(w) ∧ f Ă(w) ≤ 0.5,

tĂ(w) ∧ iĂ(w) ≤ 0.5,

iĂ(w) ∧ f Ă(w) ≤ 0.5,

for all, w ∈ X, such that:

0 ≤ tĂ(w) + iĂ(w) + f Ă(w) ≤ 2.

Definition 3. [12] An intuitionistic neutrosophic relation (IN-relation) is defined as an intuitionistic neutrosophic
subset of X×Y, which has of the form:

R = {((w, z), tR(w, z), iR(w, z), fR(w, z)) : w ∈ X, z ∈ Y},

where tR, iR and fR are intuitionistic neutrosophic subsets of X×Y satisfying the conditions:

1. one of these tR(w, z), iR(w, z) and fR(w, z) is greater than or equal to 0.5,
2. 0 ≤ tR(w, z) + iR(w, z) + fR(w, z) ≤ 2.
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Definition 4. An intuitionistic neutrosophic graph (IN-graph) G = (X, h, k) (in short G) on X (vertex set) is
a triplet such that:

1. tk(w, z) ≤ th(w) ∧ th(z), ik(w, z) ≤ ih(w) ∧ ih(z), fk(w, z) ≤ fh(w) ∨ fh(z),
2. tk(w, z) ∧ ik(w, z) ≤ 0.5, tk(w, z) ∧ fk(w, z) ≤ 0.5, ik(w, z) ∧ fk(w, z) ≤ 0.5,
3. 0 ≤ tk(w, z) + ik(w, z) + fk(w, z) ≤ 2, for all w, z ∈ X,

where,

th, ih and fh → [0, 1]

denote the truth-membership, indeterminacy-membership and falsity-membership of an element w ∈ X and:

tk, ik and fk → [0, 1]

denote the truth-membership, indeterminacy-membership and falsity-membership of an element (w, z) ∈ E
(edge set).

We now illustrate this with an example.

Example 1. Consider IN-graph G on non-empty set X, as shown in Figure 1.

�

�

� �
a(0.1, 0.4, 0.5)

b(0.6, 0.3, 0.2)

c(0.8, 0.3, 0.4) d(0.7, 0.4, 0.2)
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.1,
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, 0
.4)

(0.5, 0.2, 0.1)

(0.1, 0.2, 0.3) (0
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, 0
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, 0
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(0.5, 0.2, 0.1)

Figure 1. Intuitionistic neutrosophic graph (IN-graph).

Definition 5. Let
−→
G be an intuitionistic neutrosophic digraph (IN-digraph), then intuitionistic neutrosophic

out-neighborhoods (IN-out-neighborhoods) of a vertex w are an IN-set:

N+(w) = (X+
w , t+w , i+w , f+w ),

where,

X+
w = {z|k1

−−−→
(w, z) > 0, k2

−−−→
(w, z) > 0, k3

−−−→
(w, z) > 0},

such that t+w : X+
w → [0, 1] defined by t+w (z) = k1

−−−→
(w, z), i+w : X+

w → [0, 1] defined by i+w (z) = k2
−−−→
(w, z) and

f+z : X+
z → [0, 1] defined by f+w (z) = k3

−−−→
(w, z).

Definition 6. Let
−→
G be an IN-digraph, then the intuitionistic neutrosophic in-neighborhoods

(IN-in-neighborhoods) of a vertex w are an IN-set:

N−(w) = (X−w , t−w , i−w , f−w ),

where,

X−w = {z|k1
−−−→
(z, w) > 0, k2

−−−→
(z, w) > 0, k3

−−−→
(z, w) > 0},
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such that t−w : X−w → [0, 1] defined by t−w (z) = k1
−−−→
(z, w), i−w : X−w → [0, 1] defined by i−w (z) = k2

−−−→
(z, w) and

f−w : X−w → [0, 1] defined by f−w (z) = k3
−−−→
(z, w).

Example 2. Consider
−→
G = (X, h, k) to be an IN-digraph, such that, X = {a, b, c, d, e}, h = {(a, 0.5, 0.3, 0.1),

(b, 0.6, 0.4, 0.2), (c, 0.8, 0.3, 0.1), (d, 0.1, 0.9, 0.4), (e, 0.4, 0.3, 0.6)} and k = {(−→ab, 0.3, 0.3, 0.1), (−→ae , 0.3, 0.2,
0.4), (

−→
bc , 0.5, 0.2, 0.1), (

−→
ed , 0.1, 0.2, 0.5), (

−→
dc, 0.1, 0.2, 0.3), (

−→
bd, 0.1, 0.3, 0.3)}, as shown in Figure 2.

�

� �

�

�

a(0.5, 0.3, 0.1) b(0.6, 0.4, 0.2)

c(0.8, 0.3, 0.1)

d(0.1, 0.9, 0.4)e(0.4, 0.3, 0.6)

(0
.3
,0
.2
,0
.4
)

(0.3, 0.3, 0.1)

(0.5, 0.2, 0.1)

(0
.1
,0
.3
,0
.3
)

(0.1, 0.2, 0.5)
(0.1

, 0.
2, 0

.3)

Figure 2. IN-digraph.

Then, N+(a) = {(b, 0.3, 0.3, 0.1), (e, 0.3, 0.2, 0.4)}, N+(c) = ∅, N+(d) = {(c, 0.1, 0.2, 0.3)},
and N−(b) = {(a, 0.3, 0.3, 0.1)}, N−(c) = {(b, 0.5, 0.2, 0.1), (d, 0.1, 0.2, 0.3)}. Similarly, we can calculate
IN-out and in-neighborhoods of the remaining vertices.

Definition 7. The height of an IN-set Ă = (w, tĂ, iĂ, f Ă) is defined as:

H(Ă) = (sup
w∈X

tĂ(w), sup
w∈X

iĂ(w), inf
w∈X

f Ă(w)) = (H1(Ă), H2(Ă), H3(Ă)).

For example, the height of an IN-set Ă = {(a, 0.5, 0.7, 0.2), (b, 0.1, 0.2, 1), (c, 0.3, 0.5, 0.3)} in X = {a, b,
c} is H(Ă) = (0.5, 0.7, 0.2).

Definition 8. An intuitionistic neutrosophic competition graph (INC-graph) C(−→G ) of an IN-digraph
−→
G = (X, h,

k) is an undirected IN-graph G = (X, h, k), which has the same intuitionistic neutrosophic set of vertices as in
−→
G

and has an intuitionistic neutrosophic edge between two vertices w, z ∈ X in C(−→G ) if and only if N+(w)∩N+(z)
is a non-empty IN-set in

−→
G . The truth-membership, indeterminacy-membership and falsity-membership values of

edge (w, z) in C(−→G ) are:

tk(w, z) = (th(w) ∧ th(z))H(N+(w) ∩N+(z)),

ik(w, z) = (ih(w) ∧ ih(z))H(N+(w) ∩N+(z)),

fk(w, z) = ( fh(w) ∨ fh(z))H(N+(w) ∩N+(z)), respectively.

Example 3. Consider
−→
G = (X, h, k) to be an IN-digraph, such that, X = {a, b, c, d}, h = {(a, 0.1, 0.4, 0.5),

(b, 0.6, 0.3, 0.2), (c, 0.8, 0.3, 0.4), (d, 0.7, 0.4, 0.2)} and k = {(−→ab, 0.1, 0.2, 0.4), (−→ac , 0.1, 0.2, 0.3), (
−→
bc , 0.5,

0.2, 0.2), (
−→
bd, 0.5, 0.2, 0.1), (

−→
cd, 0.5, 0.2, 0.1)}, as shown in Figure 3.
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b(0.6, 0.3, 0.2)
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(0
.1
, 0
.2
, 0
.4
) (0.5, 0.2, 0.1)
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(0.5, 0.2, 0.1)

Figure 3. IN-digraph.

By direct calculations, we have Tables 1 and 2 representing IN-out and in-neighborhoods, respectively.

Table 1. IN-out-neighborhoods.

w N+(w)

a {(b, 0.1, 0.2, 0.4), (c, 0.1, 0.2, 0.3)}
b {(d, 0.5, 0.2, 0.1)}
c {(b, 0.5, 0.2, 0.2), (d, 0.5, 0.2, 0.1)}
d ∅

Table 2. IN-in-neighborhoods.

w N−(w)

a ∅
b {(a, 0.1, 0.2, 0.4), (c, 0.1, 0.2, 0.3)}
c {(a, 0.1, 0.2, 0.3)}
d {(b, 0.5, 0.2, 0.1), (c, 0.5, 0.2, 0.1)}

The INC-graph of Figure 3 is shown in Figure 4.

�

�

� �
a(0.1, 0.4, 0.5)

b(0.6, 0.3, 0.2)

c(0.8, 0.3, 0.4) d(0.7, 0.4, 0.2)

(0.3, 0.06, 0.16)

(0.01, 0.06, 0.2)

Figure 4. Intuitionistic neutrosophic competition graph (INC-graph).

Therefore, there is an edge between two vertices in INC-graph C(−→G ), whose truth-membership,
indeterminacy-membership and falsity-membership values are given by the above formula.
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Definition 9. For an IN-graph G = (X, h, k), where h = (h1, h2, h3) and k = (k1, k2, k3), then an edge (w, z),
w, z ∈ X is called independent strong if:

1
2
[h1(w) ∧ h1(z)] < k1(w, z),

1
2
[h2(w) ∧ h2(z)] > k2(w, z),

1
2
[h3(w) ∨ h3(z)] > k3(w, z).

Otherwise, it is called weak.

Theorem 1. Suppose
−→
G is an IN-digraph. If N+(w) ∩N+(z) contains only one element of

−→
G , then the edge

(w, z) of C(−→G ) is independent strong if and only if:

|[N+(w) ∩N+(z)]|t > 0.5,

|[N+(w) ∩N+(z)]|i < 0.5,

|[N+(w) ∩N+(z)]| f < 0.5.

Proof. Suppose,
−→
G is an IN-digraph. Suppose N+(w) ∩N+(z) = (a, p̆, q, r), where p̆, q and r are the

truth-membership, indeterminacy-membership and falsity-membership values of either the edge (w, a)
or the edge (z, a), respectively. Here,

|[N+(w) ∩N+(z)]|t = p̆ = H1(N+(w) ∩N+(z)),

|[N+(w) ∩N+(z)]|i = q = H2(N+(w) ∩N+(z)),

|[N+(w) ∩N+(z)]| f = r = H3(N+(w) ∩N+(z)).

Then,

k1(w, z) = p̆× [h1(w) ∧ h1(z)],

k2(w, z) = q× [h2(w) ∧ h2(z)],

k3(w, z) = r× [h3(w) ∨ h3(z)].

Therefore, the edge (w, z) in C(−→G ) is independent strong if and only if p̆ > 0.5, q < 0.5 and r < 0.5.
Hence, the edge (w, z) of C(−→G ) is independent strong if and only if:

|[N+(w) ∩N+(z)]|t > 0.5,

|[N+(w) ∩N+(z)]|i < 0.5,

|[N+(w) ∩N+(z)]| f < 0.5.

We illustrate the theorem with an example as shown in Figure 5.
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a(0.7, 0.5, 0.4) b(0.8, 0.4, 0.5)
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(0
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.3
,0
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(b)(a)

(0.42, 0.15, 0.12)

Figure 5. INC-graph. (a) IN-digraph; (b) corresponding INC-graph.

Theorem 2. If all the edges of an IN-digraph
−→
G are independent strong, then:

k1(w, z)
(h1(w) ∧ h1(z))2 > 0.5,

k2(w, z)
(h2(w) ∧ h2(z))2 < 0.5,

k3(w, z)
(h3(w) ∨ f3(z))2 < 0.5

for all edges (w, z) in C(−→G ).

Proof. Suppose all the edges of IN-digraph
−→
G are independent strong. Then:

1
2
[h1(w) ∧ h1(z)] < k1

−−−→
(w, z),

1
2
[h2(w) ∧ h2(z)] > k2

−−−→
(w, z),

1
2
[h3(w) ∨ h3(z)] > k3

−−−→
(w, z),

for all the edges (w, z) in
−→
G . Let the corresponding INC-graph be C(−→G ).

Case (1): When N+(w) ∩N+(z) = ∅ for all w, z ∈ X, then there does not exist any edge in C(−→G )

between w and z. Thus, we have nothing to prove in this case.
Case (2): When N+(w) ∩ N+(z) 6= ∅, let N+(w) ∩ N+(z) = {(a1, m1, n1, p̆1), (a2, m2, n2, p̆2),

. . . , (al , ml , nl , p̆l)}, where mi, ni and p̆i are the truth-membership, indeterminacy-membership and

falsity-membership values of either
−−−→
(w, ai) or

−−−→
(z, ai) for i = 1, 2, . . ., l, respectively. Therefore,

mi = [k1
−−−→
(w, ai) ∧ k1

−−−→
(z, ai)],

ni = [k2
−−−→
(w, ai) ∧ k2

−−−→
(z, ai)],

p̆i = [k3
−−−→
(w, ai) ∨ k3

−−−→
(z, ai)], f or i = 1, 2, . . . , l.

Suppose,

H1(N+(w) ∩N+(z)) = max{mi, i = 1, 2, . . . , l} = mmax,

H2(N+(w) ∩N+(z)) = max{ni, i = 1, 2, . . . , l} = nmax,

H3(N+(w) ∩N+(z)) = min{ p̆i, i = 1, 2, . . . , l} = p̆min.
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Obviously, mmax > k1
−−−→
(w, z) and nmax < k2

−−−→
(w, z) and p̆min < k3

−−−→
(w, z) for all edges

−−−→
(w, z)

show that:

mmax

h1(w) ∧ h1(z)
>

k1
−−−→
(w, z)

h1(w) ∧ h1(z)
> 0.5,

nmax

h2(w) ∧ h2(z)
<

k2
−−−→
(w, z)

h2(w) ∧ h2(z)
< 0.5,

p̆min

h3(w) ∨ h3(z)
<

k3
−−−→
(w, z)

h3(w) ∧ h3(z)
< 0.5,

therefore,

k1(w, z) = (h1(w) ∧ h1(z))H1(N+(w) ∩N+(z)),

k1(w, z) = [h1(w) ∧ h1(z)]×mmax,

k1(w, z)
(h1(w) ∧ h1(z))

= mmax,

k1(w, z)
(h1(w) ∧ h1(z))2 =

mmax

(h1(w) ∧ h1(z))
> 0.5,

k2(w, z) = (h2(w) ∧ h2(z))H2(N+(w) ∩N+(z)),

k2(w, z) = [h2(w) ∧ h2(z)]× nmax,

k2(w, z)
(h2(w) ∧ h2(z))

= nmax,

k2(w, z)
(h2(w) ∧ h2(z))2 =

nmax

(h2(w) ∧ h2(z))
< 0.5,

and:

k3(w, z) = (h3(w) ∨ h3(z))H3(N+(w) ∩N+(z)),

k3(w, z) = [h3(w) ∨ h3(z)]× p̆min,

k3(w, z)
(h3(w) ∨ h3(z))

= p̆min,

k3(w, z)
(h3(w) ∨ h3(z))2 =

p̆min

(h3(w) ∨ h3(z))
< 0.5.

Hence, k1(w,z)
(h1(w)∧h1(z))2 > 0.5, k2(w,z)

(h2(w)∧h2(z))2 < 0.5, and k3(w,z)
(h3(w)∨h3(z))2 < 0.5 for all edges (w, z) in

C(−→G ).

Theorem 3. Let C(−→G1) = (h1, k1) and C(−→G2) = (h2, k2) be two INC-graph of IN-digraphs
−→
G1 = (h1,

−→
l1 ) and−→

G2 = (h2,
−→
l2 ), respectively. Then, C(−→G1�

−→
G2) = GC(−→G1)∗�C(−→G2)∗

∪G� where, GC(−→G1)∗�C(−→G2)∗
is an IN-graph

on the crisp graph (X1 × X2, EC(−→G1)∗
�EC(−→G2)∗

), C(−→G1)
∗ and C(−→G2)

∗ are the crisp competition graphs of
−→
G1 and

−→
G2, respectively. D� is an IN-graph on (X1 × X2, E�) such that:
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1. E� = {(w1, w2)(z1, z2) : z1 ∈ N−(w1)
∗, z2 ∈ N+(w2)

∗}
EC(−→G1)∗�

EC(−→G2)∗
= {(w1, w2)(w1, z2) : w1 ∈ X1, w2z2 ∈ EC(−→G2)∗

} ∪ {(w1, w2)(z1, w2) : w2 ∈
X2, w1z1 ∈ EC(−→G1)∗

}.
2. th1�h2 = th1(w1) ∧ th2(w2), ih1�h2 = ih1(w1) ∧ ih2(w2), fh1�h2 = fh1(w1) ∨ fh2(w2).
3. tk((w1, w2)(w1, z2)) = [th1(w1) ∧ th2(w2) ∧ th2(z2)]×∨x2{th1(w1) ∧ t−→

l2
(w2x2) ∧ t−→

l2
(z2x2)},

(w1, w2)(w1, z2) ∈ EC(−→G1)∗
�EC(−→G2)∗

, x2 ∈ (N+(w2) ∩N+(z2))
∗.

4. ik((w1, w2)(w1, z2)) = [ih1(w1) ∧ ih2(w2) ∧ ih2(z2)]×∨x2{ih1(w1) ∧ i−→
l2
(w2x2) ∧ i−→

l2
(z2x2)},

(w1, w2)(w1, z2) ∈ EC(−→G1)∗
�EC(−→G2)∗

, x2 ∈ (N+(w2) ∩N+(z2))
∗.

5. fk((w1, w2)(w1, z2)) = [ fh1(w1) ∨ fh2(w2) ∨ fh2(z2)]×∨x2{ fh1(w1) ∨ f−→
l2
(w2x2) ∨ f−→

l2
(z2x2)},

(w1, w2)(w1, z2) ∈ EC(−→G1)∗
�EC(−→G2)∗

, x2 ∈ (N+(w2) ∩N+(z2))
∗.

6. tk((w1, w2)(z1, w2)) = [th1(w1) ∧ th1(z1) ∧ th2(w2)]×∨x1{th2(w2) ∧ t−→
l1
(w1x1) ∧ t−→

l1
(z1x1)},

(w1, w2)(z1, w2) ∈ EC(−→G1)∗
�EC(−→G2)∗

, x1 ∈ (N+(w1) ∩N+(z1))
∗.

7. ik((w1, w2)(z1, w2)) = [ih1(w1) ∧ ih1(z1) ∧ ih2(w2)]×∨x1{ih2(w2) ∧ i−→
l1
(w1x1) ∧ i−→

l1
(z1x1)},

(w1, w2)(z1, w2) ∈ EC(−→G1)∗
�EC(−→G2)∗

, x1 ∈ (N+(w1) ∩N+(z1))
∗.

8. fk((w1, w2)(z1, w2)) = [ fh1(w1) ∨ fh1(z1) ∨ fh2(w2)]×∨x1{ fh2(w2) ∨ f−→
l1
(w1x1) ∨ t−→

l1
(z1x1)},

(w1, w2)(z1, w2) ∈ EC(−→G1)∗
�EC(−→G2)∗

, x1 ∈ (N+(w1) ∩N+(z1))
∗.

9. tk((w1, w2)(z1, z2)) = [th1(w1) ∧ th1(z1) ∧ th2(w2) ∧ th2(z2)] × [th1(w1) ∧ t−→
l1
(z1w1) ∧ th2(z2) ∧

t−→
l2
(w2z2)],

(w1, z1)(w2, z2) ∈ E�.
10. ik((w1, w2)(z1, z2)) = [ih1(w1) ∧ ih1(z1) ∧ ih2(w2) ∧ ih2(z2)] × [ih1(w1) ∧ i−→

l1
(z1w1) ∧ ih2(z2) ∧

i−→
l2
(w2z2)],

(w1, z1)(w2, z2) ∈ E�.
11. fk((w1, w2)(z1, z2)) = [ fh1(w1) ∨ fh1(z1) ∨ fh2(w2) ∨ fh2(z2)] × [ fh1(w1) ∨ f−→

l1
(z1w1) ∨ fh2(z2) ∨

f−→
l2
(w2z2)],

(w1, z1)(w2, z2) ∈ E�.

Proof. Using similar arguments as in Theorem 2.1. [39], it can be proven.

Example 4. Consider
−→
G1 = (X1, h1, l1) and

−→
G2 = (X2, h2, l2) to be two IN-digraphs, respectively, as shown in

Figure 6. The intuitionistic neutrosophic out and in-neighborhoods of
−→
G1 and

−→
G2 are given in Tables 3 and 4.

The INC-graphs C(−→G1) and C(−→G2) are given in Figure 7.

Table 3. IN-out and in-neighborhoods of
−→
G1.

w ∈ X1 N+ (w) N− (w)

w1 {w2(0.2, 0.2, 0.3)} ∅
w2 ∅ {w1(0.2, 0.2, 0.3), w3(0.3, 0.1, 0.1)}
w3 {w2(0.3, 0.2, 0.1)} {w4(0.3, 0.1, 0.1)}
w4 {w3(0.3, 0.1, 0.1)} ∅

Table 4. IN-out and in-neighborhoods of
−→
G2.

w ∈ X2 N+ (w) N− (w)

z1 {z3(0.3, 0.2, 0.2)} ∅
z2 {z3(0.3, 0.1, 0.1)} ∅
z3 ∅ {z1(0.3, 0.2, 0.2), z2(0.3, 0.1, 0.1)}
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Figure 6. IN-digraphs.
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�

�

�

�

�

�

w1(0.3, 0.4, 0.5)

w2(0.4, 0.3, 0.1)

w3(0.5, 0.2, 0.1)

w4(0.4, 0.3, 0.1)

z1(0.4, 0.3, 0.2)

z2(0.4, 0.3, 0.5)

z3(0.7, 0.2, 0.3)

C(
→
G1)

(0
.1
2
, 0
.0
3
, 0
.1
)

(0
.0
6,
0.
04
, 0
.1
5)

C(
→
G2)

Figure 7. INC-graphs of
−→
G1 and

−→
G2.

We now construct the INC-graph GC(−→G1)∗�C(−→G2)∗
∪G� = (w, k), where w = (tw, iw, fw) and k = (tk, ik,

fk), from C(−→G1)
∗ and C(−→G2)

∗ using Theorem 2.14. We obtained two sets of edges by using Condition (1).
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EC(−→G1)∗
�EC(−→G2)∗

={(w1, z1)(w1, z2), (w2, z1)(w2, z2), (w3, z1)(w3, z2),

(w4, z1)(w4, z2), (w1, z1)(w3, z1),

(w1, z2)(w3, z2), (w1, z3)(w3, z3)},
E� ={(w2, z1)(w1, z3), (w2, z1)(w3, z3), (w2, z2)(w1, z3)

(w2, z2)(w3, z3), (w3, z1)(w4, z3), (w3, z2)(w4, z3)}.

The truth-membership, indeterminacy-membership and falsity-membership of edges can be calculated by using
Conditions (3) to (11) as,

k((w1, z1)(w1, z2)) = (th1(w1) ∧ th2(z1) ∧ th2(z2), ih1(w1) ∧ ih2(z1) ∧ ih2(z2), fh1(w1) ∨ fh2(z1) ∨ fh2(z2))

×(th1(w1) ∧ tl2(z1z3) ∧ tl2(z2z3), ih1(w1) ∧ il2(z1z3) ∧ il2(z2z3),

fh1(w1) ∨ fl2(z1z3) ∨ fl2(z2z3)

= (0.3, 0.3, 0.5)× (0.3, 0.1, 0.5)

= (0.09, 0.03, 0.25),

k((w2, z1)(w1, z3)) = (th1(w2) ∧ th2(z1) ∧ th1(w1) ∧ th2(z3), ih1(w2) ∧ ih2(z1) ∧ ih1(w1) ∧ ih2(z3),

fh1(w2) ∨ fh2(z1) ∨ fh1(w1) ∨ fh2(z3))

×(th1(w2) ∧ tl1(w1w2) ∧ tl2(z3) ∧ tl2(z1z3), ih1(w2) ∧ il1(w1w2) ∧ il2(z3) ∧ il2(z1z3),

fh1(w2) ∨ fl1(w1w2) ∨ fl2(z3) ∨ fl2(z1z3))

= (0.3, 0.2, 0.5)× (0.2, 0.2, 0.3)

= (0.06, 0.04, 0.15).

All the truth-membership, indeterminacy-membership and falsity-membership degrees of adjacent edges of
GC(−→G1)∗�C(−→G2)∗

and G� are given in Table 5.

Table 5. Adjacent edges of GC(−→G1)∗�C(−→G2)∗
∪ G�.

(w, ẃ) (z, ź) k (w, ẃ) (z, ź)

(w1, z1)(w1, z2) (0.09, 0.03, 0.25)
(w2, z1)(w2, z2) (0.12, 0.03, 0.1)
(w3, z1)(w3, z2) (0.12, 0.02, 0.1)
(w4, z1)(w4, z2) (0.12, 0.03, 0.1)
(w1, z1)(w3, z1) (0.06, 0.04, 0.15)
(w1, z3)(w3, z3) (0.06, 0.04, 0.15)
(w2, z1)(w1, z3) (0.06, 0.04, 0.15)
(w2, z1)(w3, z3) (0.12, 0.04, 0.09)
(w2, z2)(w1, z3) (0.06, 0.02, 0.15)
(w2, z2)(w3, z3) (0.12, 0.02, 0.15)
(w3, z1)(w4, z3) (0.12, 0.02, 0.09)
(w3, z2)(w4, z3) (0.12, 0.02, 0.15)
(w1, z2)(w3, z2) (0.06, 0.04, 0.25)

The INC-graph obtained by using this method is given in Figure 8 where solid lines indicate part of INC-graph
obtained from GC(−→G1)∗�C(−→G2)∗

, and the dotted lines indicate the part of G�.

The Cartesian product
−→
G1�

−→
G2 of IN-digraphs

−→
G1 and

−→
G2 is shown in Figure 9. The IN-out-neighborhoods

of
−→
G1�

−→
G2 are calculated in Table 6. The INC-graphs of

−→
G1�

−→
G2 are shown in Figure 10.
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Figure 8. GC(−→G1)∗�C(−→G2)∗
∪ G�.
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−→
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−→
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Table 6. IN-out-neighborhoods of
−→
G1�
−→
G2.

(w, z) N+(w, z)

(w1, z1) {((w2, z1), 0.2, 0.2, 0.3), ((w1, z3), 0.3, 0.2, 0.5)}
(w1, z2) {((w1, z3), 0.3, 0.1, 0.5), ((w2, z2), 0.2, 0.2, 0.5)}
(w1, z3) {((w2, z3),0.2, 0.2, 0.3)}
(w2, z1) {((w2, z3),0.3, 0.2, 0.2)}
(w2, z2) {((w2, z3),0.3, 0.1, 0.1)}
(w2, z3) ∅
(w3, z1) {((w3, z3), 0.3, 0.2, 0.2), ((w2, z1), 0.3, 0.2, 0.2)}
(w3, z2) {((w2, z2), 0.3, 0.2, 0.5), ((w3, z3), 0.3, 0.1, 0.1)}
(w3, z3) {((w2, z3),0.3, 0.2, 0.3)}
(w4, z1) {((w4, z3), 0.3, 0.2, 0.2), ((w3, z1), 0.3, 0.1, 0.2)}
(w4, z2) {((w4, z3), 0.3, 0.1, 0.1), ((w3, z2), 0.3, 0.1, 0.5)}
(w4, z2) {((w3, z3),0.3, 0.1, 0.3)}
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Figure 10. C(−→G1�
−→
G2).

It can be seen that C(−→G1�
−→
G2) ∼= GC(−→G1)∗�C(−→G2)∗

∪G� from Figures 8 and 10.

Definition 10. The intuitionistic neutrosophic open-neighborhood of a vertex w of an IN-graph G = (X, h, k) is
IN-set N(w) = (Xw, tw, iw, fw), where,

Xw = {z|k1(w, z) > 0, k2(w, z) > 0, k3(w, z) > 0},

and tw : Xw → [0, 1] defined by tw(z) = k1(w, z), iw : Xw → [0, 1] defined by iw(z) = k2(w, z) and
fz : Xw → [0, 1] defined by fw(z) = k3(w, z). For every vertex w ∈ X, the intuitionistic neutrosophic
singleton set, Aw = (w, h′1, h′2, h′3), such that: h′1 : {w} → [0, 1], h′2 : {w} → [0, 1], h′3 : {w} → [0, 1]
defined by h′1(w) = h1(w), h′2(w) = h2(w) and h′3(w) = h3(w), respectively. The intuitionistic neutrosophic
closed-neighborhood of a vertex w is N[w] = N(w) ∪ Aw.
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Definition 11. Suppose G = (X, h, k) is an IN-graph. The single-valued intuitionistic neutrosophic
open-neighborhood graph of G is an IN-graph N(G) = (X, h, k′), which has the same intuitionistic neutrosophic
set of vertices in G and has an intuitionistic neutrosophic edge between two vertices w, z ∈ X in N(G) if
and only if N(w) ∩N(z) is a non-empty IN-set in G. The truth-membership, indeterminacy-membership and
falsity-membership values of the edge (w, z) are given by:

k′1(w, z) = [h1(w) ∧ h1(z)]H1(N(w) ∩N(z)),
k′2(w, z) = [h2(w) ∧ h2(z)]H2(N(w) ∩N(z)),
k′3(w, z) = [h3(w) ∨ h3(z)]H3(N(w) ∩N(z)), respectively.

Definition 12. Suppose G = (X, h, k) is an IN-graph. The single-valued intuitionistic neutrosophic
closed-neighborhood graph of G is an IN-graph N(G) = (X, h, k′), which has the same intuitionistic neutrosophic
set of vertices in G and has an intuitionistic neutrosophic edge between two vertices w, z ∈ X in N[G] if
and only if N[w] ∩ N[z] is a non-empty IN-set in G. The truth-membership, indeterminacy-membership and
falsity-membership values of the edge (w, z) are given by:

k′1(w, z) = [h1(w) ∧ h1(z)]H1(N[w] ∩N[z]),
k′2(w, z) = [h2(w) ∧ h2(z)]H2(N[w] ∩N[z]),
k′3(w, z) = [h3(w) ∨ h3(z)]H3(N[w] ∩N[z]), respectively.

Example 5. Consider G = (X, h, k) to be an IN-graph, such that X = {a, b, c, d}, h = {(a, 0.5, 0.4, 0.3),
(b, 0.6, 0.3, 0.1), (c, 0.7, 0.3, 0.1), (d, 0.5, 0.6, 0.3)}, and k = {(ab, 0.3, 0.2, 0.2), (ad, 0.4, 0.3, 0.2), (bc, 0.5,
0.2, 0.1), (cd, 0.4, 0.2, 0.2)}, as shown in Figure 11. Then, corresponding intuitionistic neutrosophic open and
closed-neighborhood graphs are shown in Figure 12.

� �

� �

a(0.5, 0.4, 0.3) b(0.6, 0.3, 0.1)

c(0.7, 0.3, 0.1)d(0.5, 0.6, 0.3)

(0.3, 0.2, 0.2)

(0
.5
,0
.2
,0
.1
)

(0.4, 0.2, 0.2)

(0
.4
, 0
.3
, 0
.2
)

Figure 11. IN-digraph.
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a(0.5, 0.4, 0.3) b(0.6, 0.3, 0.1)

c(0.7, 0.3, 0.1)d(0.5, 0.6, 0.3)

(0.2, 0.06, 0.06)

(0.2, 0.06, 0.06)

� �

(0.15, 0.06, 0.06)

(0
.3
, 0
.0
6
, 0
.0
1
)

(0.2, 0.06, 0.06)

(0
.2
,0
.1
2
,0
.0
9
)

(0.2, 0.06, 0.06)

(0.2, 0.06, 0.06)

(a)

(b)

a(0.5, 0.4, 0.3) b(0.6, 0.3, 0.1)

c(0.7, 0.3, 0.1)d(0.5, 0.6, 0.3)

Figure 12. (a) N(G); (b) N[G].

Theorem 4. For each edge of an IN-graph G, there exists an edge in N[G].

Proof. Suppose (w, z) is an edge of an IN-graph G = (V, h, k). Suppose N[G] = (V, h, k′) is the
corresponding closed neighborhood of an IN-graph. Suppose w, z ∈ N[w] and w, z ∈ N[z]. Then, w,
z ∈ N[w] ∩N[z]. Hence,

H1(N[w] ∩N[z]) 6= 0,

H2(N[w] ∩N[z]) 6= 0,

H3(N[w] ∩N[z]) 6= 0.

Then,

k′1(w, z) = [h1(w) ∧ h1(z)]H1(N[w] ∩N[z]) 6= 0,

k′2(w, z) = [h2(w) ∧ h2(z)]H2(N[w] ∩N[z]) 6= 0,

k′3(w, z) = [h3(w) ∨ h3(z)]H3(N[w] ∩N[z]) 6= 0.

Thus, for each edge (w, z) in IN-graph G, there exists an edge (w, z) in N[G].

Definition 13. The support of an IN-set Ă = (w, tĂ, iĂ, f Ă) in X is the subset Â of X defined by:

Â = {w ∈ X : tĂ(w) 6= 0, iĂ(w) 6= 0, f Ă(w) 6= 1}

and |supp(Â)| is the number of elements in the set.

We now discuss p-competition intuitionistic neutrosophic graphs.
Suppose p is a positive integer. Then, p-competition IN-graph Cp(

−→
G ) of the IN-digraph−→

G = (X, h, k) is an undirected IN-graph G = (X, h, k), which has the same intuitionistic neutrosophic
set of vertices as in

−→
G and has an intuitionistic neutrosophic edge between two vertices w, z ∈ X in
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Cp(
−→
G ) if and only if |supp(N+(w) ∩N+(z))| ≥ p. The truth-membership value of edge (w, z) in Cp(

−→
G )

is t(w, z) = (i−p)+1
i [h1(w) ∧ h1(z)]H1(N+(w) ∩N+(z)); the indeterminacy-membership value of edge

(w, z) in Cp(
−→
G ) is i(w, z) = (i−p)+1

i [h2(w) ∧ h2(z)]H2(N+(w) ∩ N+(z)); and the falsity-membership

value of edge (w, z) in Cp(
−→
G ) is f (w, z) = (i−p)+1

i [h3(w) ∨ h3(z)]H3(N+(w) ∩ N+(z)) where
i = |supp(N+(w) ∩N+(z))|.

The three-competition IN-graph is illustrated by the following example.

Example 6. Consider
−→
G = (X, h, k) to be an IN-digraph, such that X = {w1, w2, w3, z1, z2, z3}, h = {(w1,

0.5, 0.1, 0.2), (w2, 0.1, 0.6, 0.3), (w3, 0.1, 0.2, 0.5), (z1, 0.7, 0.2, 0.1), (z2, 0.5, 0.2, 0.3), (z3, 0.3, 0.7, 0.2)}
and k = {(−−−−→(w1, z1), 0.4, 0.1, 0.1), (

−−−−→
(w1, z2), 0.5, 0.1, 0.3), (

−−−−→
(w1, z3), 0.2, 0.1, 0.1), (

−−−−→
(w2, z1), 0.1, 0.1, 0.2),

(
−−−−→
(w2, z2), 0.1, 0.1, 0.2), (

−−−−→
(w2, z3), 0.1, 0.5, 0.2), (

−−−−→
(w3, z1), 0.1, 0.1, 0.1) (

−−−−→
(w3, z2), 0.1, 0.1, 0.2)}, as shown in

Figure 13. Then, N+(w1) = {(z1, 0.4, 0.1, 0.1), (z2, 0.5, 0.1, 0.3), (z3, 0.2, 0.1, 0.1)}, N+(w2) = {(z1,
0.1, 0.1, 0.2), (z2, 0.1, 0.1, 0.2), (z3, 0.1, 0.5, 0.2)} and N+(w3) = {(z1, 0.1, 0.1, 0.1), (z2, 0.1, 0.1, 0.2)}.
Therefore, N+(w1)∩N+(w2) = {(z1, 0.1, 0.1, 0.2), (z2, 0.1, 0.1, 0.3), (z3, 0.1, 0.1, 0.2)}, N+(w1)∩N+(w3) =

{(z1, 0.1, 0.1, 0.1), (z2, 0.1, 0.1, 0.3)} and N+(w2) ∩N+(w3) = {(z1, 0.1, 0.1, 0.2), (z2, 0.1, 0.1, 0.2)}.
Now, i = |supp(N+(w1) ∩ N+(w2))| = 3. For p = 3, t(w1, w2) = 0.003, i(w1, w2) = 0.003 and

f (w1, w2) = 0.02. As shown in Figure 14.
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Figure 13. IN-digraph.
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Figure 14. Three-competition IN-graph.
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We now define another extension of INC-graph known as the m-step INC-graph.−→
P m

z,w: a directed intuitionistic neutrosophic path of length m from z to w.
N+

m(z): single-valued intuitionistic neutrosophic m-step out-neighborhood of vertex z.
N−m(z): single-valued intuitionistic neutrosophic m-step in-neighborhood of vertex z.

Cm
−→
(G): m-step INC-graph of the IN-digraph

−→
G .

Definition 14. Suppose
−→
G = (X, h, k) is an IN-digraph. The m-step IN-digraph of

−→
G is denoted by−→

G m = (X, h, k) where the intuitionistic neutrosophic set of vertices of
−→
G is the same as the intuitionistic

neutrosophic set of vertices of
−→
G m and has an edge between z and w in

−→
G m if and only if there exists an

intuitionistic neutrosophic directed path
−→
P m

z,w in
−→
G .

Definition 15. The intuitionistic neutrosophic m-step out-neighborhood of vertex z of an IN-digraph−→
G = (X, h, k) is IN-set:

N+
m(z) = (X+

z , t+z , i+z , f+z ), where

X+
z = {w| there exists a directed intuitionistic neutrosophic path of length m from z to w,

−→
P m

z,w}, t+z : X+
z → [0, 1],

i+z : X+
z → [0, 1] and f+z : X+

z → [0, 1] are defined by t+z = min{t−−−−−→(w1, w2), (w1, w2) is an edge of
−→
P m

z,w}, i+z = min{i−−−−−→(w1, w2), (w1, w2) is an edge of
−→
P m

z,w} and f+z = max{ f
−−−−−→
(w1, w2), (w1, w2) is an edge of

−→
P m

z,w}, respectively.

Definition 16. The intuitionistic neutrosophic m-step in-neighborhood of vertex z of an IN-digraph
−→
G = (X, h, k)

is IN-set:

N−m(z) = (X−z , t−z , i−z , f−z ), where

X−z = {w| there exists a directed intuitionistic neutrosophic path of length m from w to z,
−→
P m

w,z}, t−z : X−z → [0, 1],

i−z : X−z → [0, 1] and f−z : X−z → [0, 1] are defined by t−z = min{t−−−−−→(w1, w2), (w1, w2) is an edge of
−→
P m

w,z}, i−z = min{i−−−−−→(w1, w2), (w1, w2) is an edge of
−→
P m

w,z} and f−z = max{ f
−−−−−→
(w1, w2), (w1, w2) is an edge of

−→
P m

w,z}, respectively.

Definition 17. Suppose
−→
G = (X, h, k) is an IN-digraph. The m-step INC-graph of IN-digraph

−→
G is denoted

by Cm(
−→
G ) = (X, h, k), which has the same intuitionistic neutrosophic set of vertices as in

−→
G and has an

edge between two vertices w, z ∈ X in Cm(
−→
G ) if and only if (N+

m(w) ∩ N+
m(z)) is a non-empty IN-set in−→

G . The truth-membership value of edge (w, z) in Cm(
−→
G ) is t(w, z) = [h1(w) ∧ h1(z)]H1(N+

m(w) ∩N+
m(z));

the indeterminacy-membership value of edge (w, z) in Cm(
−→
G ) is i(w, z) = [h2(w)∧ h2(z)]H2(N+

m(w)∩N+
m(z));

and the falsity-membership value of edge (w, z) in Cm(
−→
G ) is f (w, z) = [h3(w) ∨ h3(z)]H3(N+

m(w) ∩N+
m(z)).

The two-step INC-graph is illustrated by the following example.

Example 7. Consider
−→
G = (X, h, k) is an IN-digraph, such that, X = {w1, w2, z1, z2, z3}, h = {(w1,

0.3, 0.4, 0.6), (w2, 0.2, 0.5, 0.3), (z1, 0.4, 0.2, 0.3), (z2, 0.7, 0.2, 0.1), (z3, 0.5, 0.1, 0.2), (z4, 0.6, 0.3, 0.2)},
and k = {(−−−−→(w1, z1), 0.2, 0.1, 0.2), (

−−−−→
(w2, z4), 0.1, 0.2, 0.3), (

−−−−→
(z1, z3), 0.3, 0.1, 0.2), (

−−−−→
(z1, z2), 0.3, 0.1, 0.2),

(
−−−−→
(z4, z2), 0.2, 0.1, 0.1), and (

−−−−→
(z4, z3), 0.4, 0.1, 0.4)}, as shown in Figure 15.

Then, N+
2 (w1) = {(z2, 0.2, 0.1, 0.2), (z3, 0.2, 0.1, 0.2)} and N+

2 (w2) = {(z2, 0.1, 0.1, 0.3), (z3, 0.1,
0.1, 0.4)}. Therefore, N+

2 (w1) ∩N+
2 (w2) = {(z2, 0.1, 0.1, 0.3), (z3, 0.1, 0.1, 0.4)}. Thus, t(w1, w2) = 0.02,

i(w1, w2) = 0.04 and f (w1, w2) = 0.18. This is shown in Figure 16.
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Figure 15. IN-digraph.

� �

� �

�

�

w1(0.3, 0.4, 0.6) w2(0.2, 0.5, 0.3)

z1(0.4, 0.2, 0.3)

z2(0.7, 0.2, 0.1)

z3(0.5, 0.1, 0.2)

z4(0.6, 0.3, 0.2)

(0.02, 0.04, 0.18)

Figure 16. Two-step INC-graph.

Definition 18. The intuitionistic neutrosophic m-step out-neighborhood of vertex z of an IN-digraph−→
G = (X, h, k) is IN-set:

Nm(z) = (Xz, tz, iz, fz), where

Xz = {w| there exists a directed intuitionistic neutrosophic path of length m from z to w, Pm
z,w}, tz : Xz → [0, 1],

iz : Xz → [0, 1] and fz : Xz → [0, 1] are defined by tz = min{t(w1, w2), (w1, w2) is an edge of Pm
z,w}, iz =

min{i(w1, w2), (w1, w2) is an edge of Pm
z,w} and fz = max{ f (w1, w2), (w1, w2) is an edge of Pm

z,w}, respectively.
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Definition 19. Suppose G = (X, h, k) is an IN-graph. Then, the m-step intuitionistic neutrosophic
neighborhood graph (IN-neighborhood-graph) Nm(G) is defined by Nm(G) = (X, h, κ), where h = (h1, h2,
h3), κ = (κ1, κ2, κ3), κ1 : X× X → [0, 1], κ2 : X× X → [0, 1] and κ3 : X× X → [0, 1] are such that:

κ1(w, z) = h1(w) ∧ h1(z)H1(Nm(w) ∩Nm(z)),

κ2(w, z) = h2(w) ∧ h2(z)H2(Nm(w) ∩Nm(z)),

κ3(w, z) = h3(w) ∨ h3(z)H3(Nm(w) ∩Nm(z)), respectively.

Theorem 5. If all the edges of IN-digraph
−→
G = (X, h, k) are independent strong, then all the edges of Cm(

−→
G )

are independent strong.

Proof. Suppose
−→
G = (X, h, k) is an IN-digraph and Cm(

−→
G ) = (X, h, k) is the corresponding

m-step INC-graph. Since all the edges of
−→
G are independent strong, then H1(N+

m(w) ∩N+
m(z)) > 0.5,

H2(N+
m(w) ∩N+

m(z)) < 0.5 and H3(N+
m(w) ∩N+

m(z)) < 0.5. Then, t(w, z) = (h1(w) ∧ h1(z))H1(N+
m(w) ∩

N+
m(z)), or t(w, z) > 0.5(h1(w) ∧ h1(z)), or t(w,z)

(h1(w)∧h1(z))
> 0.5, i(w, z) = (h2(w) ∧ h2(z))H2(N+

m(w) ∩
N+

m(z)), or i(w, z) < 0.5(h2(w) ∧ h2(z)), or i(w,z)
(h2(w)∧h2(z))

< 0.5 and f (w, z) = (h3(w) ∨ h3(z))H3(N+
m(w) ∩

N+
m(z)), or f (w, z) < 0.5(h3(w) ∨ h3(z)), or f (w,z)

(h3(w)∨h3(z))
< 0.5.

Hence, the edge (w, z) is independent strong in Cm(
−→
G ). Since, (w, z) is taken to be the arbitrary

edge of Cm(
−→
G ), thus all the edges of Cm(

−→
G ) are independent strong.

3. Applications

Competition graphs are very important to represent the competition between objects. However,
still, these representations are unsuccessful to deal with all the competitions of world; for that purpose,
INC-graphs are introduced. Now, we discuss the applications of INC-graphs to study the competition
along with algorithms. The INC-graphs have many utilizations in different areas.

3.1. Ecosystem

Consider a small ecosystem: human eats trout; bald eagle eats trout and salamander; trout
eats phytoplankton, mayfly and dragonfly; salamander eats dragonfly and mayfly; snake eats
salamander and frog; frog eats dragonfly and mayfly; mayfly eats phytoplankton; dragonfly eats
phytoplankton. These nine species human, bald eagle, salamander, snake, frog, dragonfly, trout, mayfly
and phytoplankton are taken as vertices. Let the degree of existence in the ecosystem of human
be 60%, the degree of indeterminacy of existence be 30% and the degree of false-existence be 10%,
i.e., the truth-membership, indeterminacy-membership and falsity-membership values of the vertex
human are (0.6, 0.3, 0.1). Similarly, we assume the truth-membership, indeterminacy-membership and
falsity-membership values of other vertices as (0.7, 0.3, 0.2), (0.4, 0.3, 0.5), (0.3, 0.5, 0.1), (0.3, 0.4, 0.5),
(0.3, 0.5, 0.2), (0.7, 0.3, 0.2), (0.6, 0.4, 0.2) and (0.3, 0.5, 0.2). Suppose that human likes to eat trout 20%,
indeterminate to eat 10% and dislike to eat, say 10%. The likeness, indeterminacy and dislikeness of
preys for predators are shown in Table 7.

It is clear that if trout is removed from the food cycle, then human must be lifeless, and in such a
situation bald eagle, phytoplankton, dragonfly and mayfly grow in an undisciplined manner. Thus, we
can evaluate the food cycle with the help of INC-graphs.
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Table 7. Likeness, indeterminacy and dislikeness of preys and predators.

Name of Predator Name of Prey Like to Eat Indeterminate to Eat Dislike to Eat

Human Trout 20 10 10
Bald eagle Trout 20 20 20
Bald eagle Salamander 30 20 30

Snake Salamander 20 20 10
Snake Frog 30 20 40

Salamander Dragon f ly 20 20 20
Salamander May f ly 20 20 40

Frog Dragon f ly 30 30 30
Trout Dragon f ly 20 40 10
Trout May f ly 30 10 10
Trout Phytoplankton 20 10 10

Dragon f ly Phytoplankton 10 10 10
May f ly Phytoplankton 30 30 20

Frog May f ly 10 10 10

For this food web Figure 17, we have the following Table 8 of IN-out-neighborhoods.

Phytoplankton

Human

Bald eagle

Salamander

Snake

Frog

Mayfly

Dragonfly

Trout

(0.6, 0.3, 0.1)

(0.7, 0.3, 0.2)

(0.4, 0.3, 0.5)

(0.3, 0.5, 0.1)

(0.3, 0.4, 0.5)

(0.7, 0.3, 0.2)

(0.3, 0.5, 0.2)

(0.6, 0.4, 0.2)

(0.3, 0.5, 0.2)

(0
.2
, 0
.1
, 0
.1
)

(0.2, 0.2, 0.2)

(0.3, 0.2, 0.3)

(0.2, 0.2, 0.1)

(0
.3
, 0
.2
, 0
.4
)

(0.2, 0.4, 0.1)

(0
.2
, 0
.2
, 0
.2
) (0.2, 0.2, 0.4)

(0.3, 0.3, 0.2)
(0.3, 0.1, 0.1)

(0
.1
, 0
.1
, 0
.1
)

(0
.2
,0
.1
,0
.1
)

(0
.1
, 0
.1
, 0
.1
)

(0.3, 0.3, 0.3)

Figure 17. IN-food web.

Table 8. IN-out-neighborhoods.

w ∈ X N+ (w)

Human {(Trout, 0.2, 0.1, 0.1)}
Bald eagle {(Trout, 0.2, 0.2, 0.2), (Salamander, 0.3, 0.2, 0.3)}

Salamander {(Dragon f ly, 0.2, 0.2, 0.2), (May f ly, 0.2, 0.2, 0.4)}
Snake {(Salamander, 0.2, 0.2, 0.1), (Frog, 0.3, 0.2, 0.4)}
Frog {(Dragon f ly, 0.3, 0.3, 0.3), (May f ly, 0.1, 0.1, 0.1)}

May f ly {(Phytoplankton, 0.3, 0.3, 0.2)}
Phytoplankton ∅

Dragon f ly {(Phytoplankton, 0.1, 0.1, 0.1)}
Trout {(Phytoplankton, 0.2, 0.1, 0.1), (May f ly, 0.3, 0.1, 0.1), (Dragon f ly, 0.2, 0.4, 0.1)}
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Therefore, N+(Human ∩ Bald eagle) = {(Trout, 0.2, 0.1, 0.2)}, N+(Bald eagle ∩ Snake) =

{(Salamander, 0.2, 0.2, 0.3)}, N+(Salamander ∩ Frog) = {(Dragon f ly, 0.2, 0.2, 0.3), (May f ly, 0.1,
0.1, 0.4)}, N+(Salamander ∩ Trout) = {(Dragon f ly, 0.2, 0.2, 0.2), (May f ly, 0.2, 0.1, 0.4)}, N+(Trout ∩
Frog) = {(Dragon f ly, 0.2, 0.3, 0.3), (May f ly, 0.1, 0.1, 0.1)}, N+(May f ly∩Trout) = {(Phytoplankton, 0.2,
0.1, 0.2)}, N+(May f ly ∩ Dragon f ly) = {(Phytoplankton, 0.1, 0.1, 0.2)} and N+(Dragon f ly ∩ Trout) =
{(Phytoplankton, 0.1, 0.1, 0.1)}.

Now, there is an edge between human and bald eagle; snake and bald eagle; salamander and trout;
salamander and frog; trout and frog; trout and dragonfly; trout and mayfly; dragonfly and mayfly in the
INC-graph, which highlights the competition between them; and for the other pair of species, there is no
edge, which indicates that there is no competition in the INC-graph Figure 18. For example, there is an
edge between human and bald eagle indicating a 12% degree of likeness to prey on the same species, a
3% degree of indeterminacy and a 4% degree of non-likeness between them.

Phytoplankton

Human

Bald eagle

Salamander

Snake

Frog

Mayfly

Dragonfly

Trout

(0.6, 0.3, 0.1)

(0.7, 0.3, 0.2)

(0.4, 0.3, 0.5)

(0.3, 0.5, 0.1)

(0.3, 0.4, 0.5)

(0.7, 0.3, 0.2)

(0.3, 0.5, 0.2)

(0.6, 0.4, 0.2)

(0.3, 0.5, 0.2)

(0.12, 0.03, 0.04)

(0.06, 0.06, 0.06)

(0.06, 0.06, 0.15)

(0.03, 0.04, 0.02)

(0.06, 0.06, 0.1)

(0.06, 0.12, 0.05)

(0.06, 0.05, 0.04)

(0.03, 0.04, 0.04)

Figure 18. Corresponding INC-graph

We present our method, which is used in our ecosystem application in Algorithm 1.

Algorithm 1: Ecosystem.

Step 1. Input the truth-membership, indeterminacy-membership and falsity-membership values
for set of n species.

Step 2. If for any two distinct vertices wi and wj, t(wiwj) > 0, i(wiwj) > 0, f (wiwj) > 0, then

(wj, t(wiwj), i(wiwj), f (wiwj)) ∈ N+(wi).

Step 3. Repeat Step 2 for all vertices wi and wj to calculate IN-out-neighborhoods N+(wi).
Step 4. Calculate N+(wi) ∩N+(wj) for each pair of distinct vertices wi and wj.
Step 5. Calculate H[N+(wi) ∩N+(wj)].
Step 6. If N+(wi) ∩N+(wj) 6= ∅, then draw an edge wiwj.
Step 7. Repeat Step 6 for all pairs of distinct vertices.
Step 8. Assign membership values to each edge wiwj using the conditions:

t(wiwj) = (wi ∧ wj)H1[N+(wi) ∩N+(wj)]

i(wiwj) = (wi ∧ wj)H2[N+(wi) ∩N+(wj)]

f (wiwj) = (wi ∨ wj)H3[N+(wi) ∩N+(wj)].
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3.2. Career Competition

Consider the IN-digraph Figure 19 representing the competition between applicants for a career.
Let {Rosaleen, Nazneen, Abner, Amara, Casper} be the set of applicants for the particular careers
{Medicine, Pharmacy, Anatomy, Surgery}. The truth-membership value of each applicant represents the
degree of loyalty quality; the indeterminacy-value represents the indeterminate state of loyalty; and the
false-membership value represents the disloyalty of each applicant towards their careers. Let the degree of
truth-membership of Nazneen of her loyalty towards her career be 30%: degree of indeterminacy is 50%,
and degree of disloyalty is 10%, i.e., the truth-membership, indeterminacy and falsity-membership values
of the vertex Nazneen are (0.3, 0.5, 0.1). The truth-membership value of each directed edge between
an applicant and a career represents the eligibility for that career; the indeterminacy-value represents
the indeterminate state of that career; and the false-membership value represents non-eligibility for that
particular career.

Surgery
(0.3, 0.4, 0.5)

Pharmacy

Medicine

Anatomy

(0.2, 0.5, 0.3)

(0.3, 0.6, 0.2)

(0.7, 0.3, 0.2)

Nazneen
(0.3, 0.5, 0.1)

Amara
(0.6, 0.5, 0.2)

Rosaleen
(0.3, 0.5, 0.2)

Casper
(0.1, 0.6, 0.3)

Abner
(0.3, 0.5, 0.6)

(0
.2
, 0
.2
, 0
.2
) (0.1, 0.4, 0.2)

(0.2, 0.3, 0.4)

(0.2, 0.4, 0.5)

(0.3, 0.4, 0.5)

(0.2, 0.4, 0.5)

(0.1, 0.2, 0.3)

(0.
1, 0

.5,
0.2

)

(0.5, 0.3, 0.1)

(0.2, 0.5, 0.3)

Figure 19. IN-digraph.

Thus, in Table 9, N+(Nazneen) ∩ N+(Rosaleen) = {(Surgery, 0.2, 0.2, 0.4)}, N+(Nazneen) ∩
N+(Amara) = {(Pharmacy, 0.1, 0.4, 0.3)}, N+(Nazneen) ∩ N+(Abner) = {(Pharmacy, 0.1, 0.4, 0.5)},
N+(Nazneen) ∩N+(Casper) = ∅, N+(Rosaleen) ∩N+(Amara) = ∅, N+(Rosaleen) ∩N+(Casper) = ∅,
N+(Rosaleen)∩N+(Abner) = ∅, N+(Amara)∩N+(Casper) = {(Medicine, 0.1, 0.2, 0.3)}, N+(Amara)∩
N+(Abner) = {(Medicine, 0.3, 0.3, 0.5), (Pharmacy, 0.2, 0.4, 0.5)} and N+(Casper) ∩ N+(Abner) =

{(Medicine, 0.1, 0.2, 0.5), (Anatomy, 0.1, 0.4, 0.5)}.

Table 9. IN-out-neighborhoods.

w ∈ X N+ (w)

Nazneen {(Surgery, 0.2, 0.2, 0.2), (Pharmacy, 0.1, 0.4, 0.2)}
Rosaleen {(Surgery, 0.2, 0.3, 0.4)}
Amara {(Medicine, 0.5, 0.3, 0.1), (Pharmacy, 0.2, 0.5, 0.3)}
Casper {(Medicine, 0.1, 0.2, 0.3), (Anatomy, 0.1, 0.5, 0.2)}
Abner {(Medicine, 0.3, 0.4, 0.5), (Anatomy, 0.2, 0.4, 0.5), (Pharmacy, 0.2, 0.4, 0.5)}
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The INC-graph is shown in Figure 20. The solids lines indicate the strength of competition between
two applicants, and dashed lines indicate the applicant competing for the particular career. For example,
Nazneen and Rosaleen both are competing for the career, surgery, and the strength of competition
between them is (0.06, 0.1, 0.08). In Table 10, W(z, c) represents the competition of applicant z for career
c with respect to loyalty quality, indeterminacy and disloyalty to compete with the others. The strength
to compete with the other applicants with respect to a particular career is calculated in Table 10.

From Table 10, Nazneen and Rosaleen have equal strength to compete with the other for the career,
surgery. Abner and Casper have equal strength of competition for the career, anatomy. Amara competes
with the others for the career, pharmacy and medicine.
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Figure 20. Corresponding INC-graph.

Table 10. Strength of competition of the applicant for a particular career.

(Applicant, Career) In Competition W(Applicant, Career) S(Applicant, Career)

(Nazneen, Surgery) Rosaleen (0.06, 0.1, 0.08) 0.88
(Rosaleen, Surgery) Nazneen (0.06, 0.1, 0.08) 0.88

(Abner, Anatomy) Casper (0.01, 0.20, 0.30) 0.51
(Casper, Anatomy) Abner (0.01, 0.20, 0.30) 0.51

(Nazneen, Pharmacy) Abner, Amara (0.03, 0.20, 0.18) 0.65
(Abner, Pharmacy) Amara, Nazneen (0.06, 0.20, 0.30) 0.56
(Amara, Pharmacy) Nazneen, Abner (0.06, 0.20, 0.18) 0.68

(Amara, Medicine) Abner, Casper (0.05, 0.15, 0.195) 0.705
(Casper, Medicine) Abner, Amara (0.01, 0.15, 0.195) 0.665
(Abner, Medicine) Casper, Amara (0.05, 0.20, 0.30) 0.55

We present our method, which is used in our career competition application in Algorithm 2.
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Algorithm 2: Career Competition

Step 1. Input the truth-membership, indeterminacy-membership and falsity-membership
values for set of n applicants.

Step 2. If for any two distinct vertices zi and zj, t(zizj) > 0, i(zizj) > 0, f (zizj) > 0, then

(zj, t(zizj), i(zizj), f (zizj)) ∈ N+(zi).

Step 3. Repeat Step 2 for all vertices zi and zj to calculate IN-out-neighborhoods N+(zi).
Step 4. Calculate N+(zi) ∩N+(zj) for each pair of distinct vertices zi and zj.
Step 5. Calculate H[N+(zi) ∩N+(zj)].
Step 6. If N+(zi) ∩N+(zj) 6= ∅, then draw an edge zizj.
Step 7. Repeat Step 6 for all pairs of distinct vertices.
Step 8. Assign membership values to each edge zizj using the conditions:

t(zizj) = (zi ∧ zj)H1[N+(zi) ∩N+(zj)]

i(zizj) = (zi ∧ zj)H2[N+(zi) ∩N+(zj)]

f (zizj) = (zi ∨ zj)H3[N+(zi) ∩N+(zj)].

Step 9. If z, r1, r2, r3, . . ., rn are the applicants competing for career c, then the strength of
competition W(z, c) = (t(z, c), i(z, c), f (z, c)) of each applicant z for the career c is:

W(z, c) = (t(zr1)+t(zr2)+...+t(zrn),i(zr1)+i(zr2)+...+i(zrn), f (zr1)+ f (zr2)+...+ f (zrn))
n .

Step 10. Calculate S(z, c), the strength of competition of each applicant z for career c.

S(z, c) = t(z, c)− (i(z, c) + f (z, c)) + 1.

4. Conclusions

Graphs serve as mathematical models to analyze many concrete real-world problems successfully.
Certain problems in physics, chemistry, communication science, computer technology, sociology
and linguistics can be formulated as problems in graph theory. Intuitionistic neutrosophic set theory
is a mathematical tool to deal with incomplete and vague information. Intuitionistic neutrosophic set
theory deals with the problem of how to understand and manipulate imperfect knowledge. In this
research paper, we have described the concept of intuitionistic neutrosophic competition graphs. We have
also presented applications of intuitionistic neutrosophic competition graphs in ecosystem and career
competition. We aim to extend our research work of fuzzification to (1) fuzzy soft competition graphs,
(2) fuzzy rough soft competition graphs, (3) bipolar fuzzy soft competition graphs and (4) the application
of fuzzy soft competition graphs in decision support systems.
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