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Abstract: With the increasing utilization of medical imaging in clinical practice and the growing
dimensions of data volumes generated by various medical imaging modalities, the distribution,
storage, and management of digital medical image data sets requires data compression. Over
the past few decades, several image compression standards have been proposed by international
standardization organizations. This paper discusses the current status of these image compression
standards in medical imaging applications together with some of the legal and regulatory issues
surrounding the use of compression in medical settings.
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1. Introduction

Medical imaging has become an indispensable tool in clinical practice. Studies have shown links
between the use of medical imaging exams and declines in mortality, reduced need for exploratory
surgery, fewer hospital admissions, shorter hospital stays, and longer life expectancy [1]. As a result,
the utilization of medical imaging has risen sharply during the early part of the last decade. In 2003,
the percentage of medical visits in the US by patients aged ≥ 65 years that resulted in medical imaging
was estimated to be 12.8% [2]. While earlier medical imaging exams were recorded on radiological
film, most exams are now acquired digitally. In addition to increased utilization, there have also
been major advances in medical imaging technology that have resulted in significant increases in the
quantity of digital medical imaging data during the last few decades. For example, in early 1990s,
a typical Computed Tomography (CT) exam of the thorax would have consisted of 25 slices with 10 mm
thickness, yielding a data size of roughly 12 megabytes (MBs). Today, a similar exam on a modern CT
scanner can yield sub-millimeter slice thickness with increased in-plane resolution resulting in 600 MB
to a gigabyte (GB) of data. In a modern hospital, Picture Archiving and Communication Systems
(PACS) handle the short- and long-term storage, retrieval, management, distribution, processing,
and presentation of these large datasets. Data compression plays an important role in these systems.
Since the earliest days of PACS, compression of medical images has been anticipated and novel
compression techniques have been proposed before standardized compression approaches were
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available [3]. However, proprietary compression techniques greatly increase the cost and effort
required to migrate data between different systems, and interoperability and compatibility of these
systems necessitate the use of standards for digital communications [4]. In this paper, we provide
a review of the current status of image compression standards used for medical imaging data in
these systems (It is also worthwhile to point out that the role of data compression in the medical
setting is not limited to images. Modern medical practice utilizes many physiological signals (e.g.,
electrocardiogram (ECG), electroencephalogram (EEG), and Electromyogram (EMG)) which must
be stored and transmitted in clinical practice. Data compression has an important role to play for
management of such physiological signals as well. However, in this paper, we limit our discussion
to medical images). It is important to note that there have been earlier reviews of medical image
compression techniques [5–14]. In this paper, we focus on the image compression standards including
the more recent standards that have not been considered in these earlier reviews. We also compare the
compression performances of these standards on publicly available datasets.

The rest of this paper is organized as follows: In Section 2, we discuss characteristics of common
medical imaging data sets. In Section 3, we provide a brief introduction to current image compression
standards. Section 4 introduces the standards used for medical image communications. Section 5 briefly
reviews the current legal and regulatory environment in medical image communications. We present
experimental results obtained using the image compression standards on typical medical image
datasets in Section 6. Finally, Section 7 provides a summary and a brief discussion on future trends.

2. Characteristics of Medical Imaging Data Sets

The purpose of this section is to briefly describe the unique attributes of the major medical
imaging modalities. Medical imaging refers to techniques used to view the human body with the
goal of diagnosing, monitoring, and/or treating medical conditions. Different imaging modalities are
based on different physical principles and provide different information about structure, morphology,
and function of the human body. Medical imaging is an active field with new imaging modalities
introduced frequently and existing modalities refined and expanded constantly. Given this depth
and diversity of the medical imaging field, it is not realistic to provide a complete description of all
medical imaging techniques in this section. Therefore, we limit our discussion to the most common
medical imaging methods in clinical practice and their general characteristics as they relate to data
compression (For an extended review of the characteristics of medical datasets, the interested reader
is referred to [15]). Table 1 provides the typical image dimensions and uncompressed file sizes for
common medical imaging modalities.

Table 1. Typical image dimensions and uncompressed file sizes for common medical imaging modalities.

Modality Anatomy Image Dimensions (x, y, z, t) Bit Depth Uncompressed File Size

Radiography Chest (2000, 2500, -, -) 10–16 bits 10 MB

CT
Abdomen (512, 512, 500, -) 12–16 bits 250 MB

Brain (512, 512, 300, -) 12-16 bits 150 MB
Heart (512, 512, 100, 20) 12-16 bits 1 GB

Breast Tomosynthesis Breast (2457, 1890, 50, -) 10–16 bits 0.4 GB

MRI
Abdomen (512, 512, 100, -) 12–16 bits 50 MB

Brain (512, 512, 200, -) 12–16 bits 100 MB
Heart (256, 256, 20, 25) 12–16 bits 250 MB

Ultrasound Heart (512, 512, -, 50)/s 24 bits (color) 38 MB/s

PET Brain (256, 256, 50, -) 16 bits 6 MB
Heart (128, 128, 40, 16) 16 bits 1 MB

Digital Pathology Cells (30,000, 30,000, -, -) 24 bits (color) 2.5 GB
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2.1. Digital Radiography and Computed Tomography

In X-ray radiography, the subject is penetrated by a collimated beam of X-rays and the properties
of the X-ray (intensity, energy spectrum, direction of propagation, etc.) are modified as it travels
through the human body. An array of X-ray detectors placed behind the subject is then used to
record the modified properties of the X-ray beam and form the X-ray image. The dimensions of the
image depend on the dimensions of the detector elements (0.1 mm to 0.2 mm) and the field of view
(18× 20 cm to 35× 40 cm based on the anatomy of interest). A sample X-ray image of the pelvis is
shown in Figure 1a.

In X-ray radiography, a single projection plane of an anatomical region is imaged onto the
detector plane. In contrast, CT imaging produces a 3D image of the anatomy of interest by acquiring
several projections at different angles and reconstructing the 3D volume using tomography [16].
Today’s multi-detector row CT scanners can acquire up to 320 simultaneous slices in each rotation
of the X-ray tube. A thin-slice CT dataset can contain over 500 slices and dynamic imaging (such as
cardiac angiography or perfusion imaging) can be performed on the latest generation of CT scanners
although the routine clinical utilization of these studies is limited due to concerns about radiation dose.
Another recent X-ray imaging technique developed to enhance characterization of breast lesions is
Digital Breast Tomosynthesis (3D Mammography) [17,18]. In this technique, thin sections of the breast
tissue are reconstructed through acquisition of multiple projections over a limited arc angle. These use
of thin slices covering the entire breast allows better visualization and characterization of masses that
may otherwise be superimposed with out-of-plane structures.

A sample CT image of an axial slice of the abdomen is shown in Figure 1b. The contrast resolution
in CT is largely determined by the number of photons per voxel and, therefore, there is a trade-off
between X-ray dose and contrast resolution, as well as spatial resolution. Noise in CT images originates
from a number of sources including photon noise at the detector, electronic noise of the detector system,
and the image reconstruction algorithm used.

(a) (b)

Figure 1. (a) An X-ray image of the pelvis; (b) A CT image of the abdomen.

2.2. Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) [19] is based on the principles of nuclear magnetic resonance.
In MRI, the contrast of the image is dependent on several tissue-dependent parameters as well as the
choice of acquisition parameters selected during the imaging procedure. By varying these parameters,
MRI can yield images with drastically different contrast. This is illustrated in Figure 2 where an axial
slice of the brain was imaged using different imaging parameters. This ability to obtain different image
contrasts by selecting different imaging parameters is what gives MRI its tremendous flexibility and
has contributed to its significant clinical utility. MRI can differentiate between different soft tissue
types such as white matter and grey matter in the brain and tumors and cysts in the liver. Furthermore,
since MRI does not use the damaging ionizing radiation of X-rays, it is often favored in preference to



Information 2017, 8, 131 4 of 26

CT in dynamic imaging applications where the radiation dose required to obtain the dynamic data set
with CT would be prohibitive.

During a typical clinical MRI examination, multiple images of the same anatomy are obtained
with different imaging parameters. The number of different contrasts acquired during a particular
exam depends on the clinical application and is typically in the five to ten range. Thus, although the
MRI images are usually obtained at lower spatial resolution compared to CT datasets, the number of
different contrasts acquired during a typical exam results in substantial increase of data size.

The noise in MRI is mainly due to the thermal noise of the receiver coil and the sample, and can
be modeled using Rician distributions [20].

Figure 2. Three axial MRI images of the same location of the brain obtained using different
imaging parameters.

2.3. Ultrasound

Ultrasound imaging is based on the principles of acoustics [21]. A sound wave is transmitted from
a transducer which is placed directly on the skin or inside a body opening. The sound wave is partially
absorbed and partially reflected as it travels through the tissue. The time of arrival of the echo and the
intensity of the reflected wave are used to reconstruct an image of the tissue under examination.

In ultrasound, the spatial resolution is described in terms of axial resolution (i.e., the ability to
resolve two reflectors located one after the other along the axis of the ultrasound wave) and lateral
resolution (i.e., the ability to resolve two reflectors located side by side perpendicular to the axis of
the ultrasound wave). Higher ultrasound beam frequencies lead to better axial and lateral resolution.
However, since higher frequencies also lead to higher attenuation, there is often a trade-off between
tissue depth and spatial resolution.

As a result of its relatively low-cost and safety due to the absence of ionizing radiation, ultrasound
imaging is widely used in many clinical applications including obstetrics, cardiology, and cancer
imaging in the abdomen and pelvis. Depending on the application, ultrasound data are acquired
and viewed in many different modes: In A-mode (amplitude mode), the amplitudes of the echoes
are plotted as a function of depth along a fixed direction. In B-mode (brightness mode), an array of
transducers are used to create a 2D image where each pixel intensity denotes the amplitude of the
echoes at a particular direction and depth. In M-mode (motion mode), a rapid succession of pulses is
used to generate time-varying (typically B-mode) images. Ultrasound imaging is a rapidly advancing
field. In addition to conventional ultrasound imaging techniques, many new expansions have been
introduced over the last few decades. In 3D ultrasound, 2D planar ultrasound images are digitally
stitched together to create a 3D image. Doppler ultrasound employs the Doppler effect to measure
whether the tissue is moving towards or away from the transducer as well as its relative velocity.

The dominant noise in conventional B-mode ultrasound images is speckle noise which is
signal-dependent and multiplicative in nature [22].
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2.4. Nuclear Imaging

In nuclear imaging, small amounts of radioactive materials (radiopharmaceuticals) attached to
compounds used by cells are given to the subject through an injection or orally. The radioactive
substances are traced through imaging to determine where and when they concentrate in the body.
Two common nuclear imaging modalities are Single Photon Emission Computed Tomography (SPECT)
and Positron Emission Tomography (PET) [23]. In SPECT, gamma-rays emitted from a radioisotope are
measured using a gamma-ray camera, while PET uses molecules tagged with a positron emitting isotope.

Clinical PET and SPECT scanners are often combined with other imaging modalities that can
provide anatomical information so that functional and anatomical information can be acquired in one
examination. PET-CT and PET-MRI systems are widely used in clinical settings.

The spatial resolution in SPECT is often limited (to about 1 cm). Therefore, the amount of data
produced in SPECT imaging is modest compared to some of the other common medical imaging
modalities. Similarly, the spatial resolution in PET is typically between 3 to 5 mm and, thus, PET data
sets are relatively small as well. Noise in SPECT and PET systems are due to several factors including
the Poisson distributed noise during emission, electronic noise in the scanner’s detection system, and
the noise alterations due to the post-processing corrections and the image reconstruction process [24].

2.5. Digital Pathology

In digital pathology, thin slices of biological tissue are scanned using optical microscopy to
produce the so-called whole-slide images [25]. Tissue samples are dyed using one or more stains to
highlight the biological structures relevant to the diagnostic task, and then placed on a glass slide.
Typically, a combination of hematoxylin and eosin (H&E) stains is employed to give nuclei and
cytoplasm blue/purple and red/pink hues, respectively. A pathology image depicting H&E stained
tissue is shown in Figure 3.

Figure 3. A digital pathology whole slide image. The 20,000 × 14,000 whole slide image is shown on
the left at low magnification and a cropped region is shown on the right at high magnification.

In the slide scanner, the sample is illuminated with a beam of visible white light, which is absorbed
and scattered differently depending on the stain type and concentration present at each spatial location.
Imaging optics are used to transmit an image of the patch of tissue under the microscope objective to
a digital image sensor. The objective is moved back and forth across the glass slide to generate image
patches that are then combined to produce the whole-slide image. For most tissue types and diagnostic
tasks, optical magnifications of 20× are considered sufficient to identify the relevant biological features.
Notwithstanding, higher magnifications of up to 100×may be required for some sample types, e.g.,
in cytopathology and hemathology.
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As a result of the high spatial resolution employed in digital pathology, whole-slide images
exhibit very large dimensions, commonly exceeding 900 million pixels. Moreover, since color is an
essential feature for differentiating the different biological structures, each pixel consists of three
color components. Thus, the size of a single uncompressed whole-slide image is usually over 2.5 GB.
Since digital pathology requires digital storage, transmission, and, importantly, visualization of these
large images, efficient organization of the compressed data for display of the image at different
zoom levels and at different spatial regions is vital. Therefore, compressed-data reorganization
capabilities (e.g., tiling in BigTIFF [26], tiled Digital Imaging and Communications in Medicine
(DICOM) [27], or interactive multi-resolution transmission with JPIP [28]) are paramount to enable
a smooth visualization experience.

3. Image Compression Standards

The advent and growth of digital imaging during the latter part of the last century have
resulted in growing demand to transmit and store images digitally. Recognizing the need
for compatibility and interoperability between different image communications and storage
products, international standardization agencies, such as International Standards Organization (ISO),
International Telecommunications Union (ITU), and International Electro-technical Commission (IEC),
have initiated several standardization efforts for image compression over the past few decades. These
standards have played a major role in fostering the growth of digital imaging. In this section, we
provide a brief overview of these image compression standards.

3.1. JPEG

JPEG stands for “Joint Photographic Experts Group” and refers to the working group WG1 of the
ISO/IEC Joint Technical Committee 1, Study Committee 29 (ISO/IEC JTC1/SC29/WG1). Over the past
few decades, the WG1 committee has created several international standards for image compression.
Standardization efforts start by formation of a technical committee (such as the WG1) and solicitation of
proposals from interested parties including industry and academia. The technical committee prepares
a working draft which is shared by all ISO national members. Once consensus is reached on the
working draft, a final draft is created. The final draft becomes an international standard after it is
approved by national member votes.

The WG1 committee started its work in the mid-1980’s. The first international standard produced
by the committee is called JPEG, referring to the name of the committee that created it. The JPEG
standard was released in 1991 [29,30] and has become one of the most widely recognized and
utilized standards.

The JPEG standard consists of six parts: Part 1 describes the requirements and guidelines for
JPEG compression systems [29]. Part 2 contains compliance testing [31]. Part 3 provides extensions
to the compression system [32], and Part 4 discusses profiling and registration of profiles [33]. Part 5
specifies the JPEG File Interchange Format (JFIF) [34]. Finally, Part 6 contains application tools for
printing systems [35].

Although the JPEG standard has several lossy encoding modes and a lossless encoding mode,
many implementations support only a basic lossy coding algorithm with a minimal set of features.
This algorithm is usually referred to as the “baseline JPEG” algorithm. The baseline JPEG encoder,
shown in Figure 4, first partitions the image into non-overlapping 8× 8 blocks. Each block is then
transformed using the two-dimensional Discrete Cosine Transform (DCT). In the DCT domain, the
coefficient that corresponds to zero frequency is referred to as the DC coefficient of the block and
all remaining coefficients are called AC coefficients. Each DCT coefficient is then quantized using
a uniform scalar quantizer. The quantization step size varies with frequency and the array denoting
the step size used for each frequency is known as the “Q-table”. The entries of the Q-table are stored in
the bit-stream. The redundancy between DC coefficients of adjacent blocks is exploited using a simple
differential pulse-code modulation (DPCM) encoding scheme followed by variable-length encoding



Information 2017, 8, 131 7 of 26

and Huffman coding. The AC coefficients are zig-zag scanned. Since many AC coefficients become
zero after quantization, they can be encoded efficiently using run-length coding followed by variable
length coding.

Figure 4. Baseline JPEG encoder.

The baseline algorithm discussed above is an instance of the JPEG sequential mode. Besides the
baseline, the JPEG standard defines several options that can be utilized. For example, baseline JPEG
restricts the input image bit depth to 8. Since most medical imaging modalities use bit depths between
10 and 16, this restriction would normally render JPEG unsuitable for compression of medical images.
Fortunately, the JPEG standard provides options to support up to 12-bit imagery, which is suitable
for certain types of medical images (e.g., ultrasound, CT, digital pathology) but not others (e.g., some
MRI). Furthermore, in addition to the sequential mode, three additional modes of operation are
defined. These are the progressive, the hierarchical, and the lossless modes. The latter employs
DPCM followed by Huffman entropy coding and supports bit depths up to 16 bits. Despite its limited
compression performance, this JPEG mode is the most widely used lossless compression scheme in
medical applications today.

A software implementation of the JPEG standard was released by the Independent JPEG Group
in 1991 [36] and has been continuously maintained since.

3.2. JPEG2000

In the late 1990s, the WG1 committee started an standardization process with the goal of improving
upon the very successful JPEG compression standard. The desired features included enhanced bit-rate
performance (specially at low bit-rates), support for samples of up to 16 bits deep, progressive transmission
and lossless and lossy compression from a single architecture. Random access, error robustness and
allowing for low-memory implementations were also required. As a result of this effort, JPEG2000 became
a ISO/IEC Standard and ITU-T Recommendation in December 2000 [37]. Part 1 of this standard describes
the core coding system, including the JPEG2000 codestream syntax and a basic file format called JP2.
Part 2, published in November 2001, defines additional extensions to the core system. Several other parts
were defined as well, including Part 9, which describes JPIP, a protocol for the interactive transmission of
images [28], and Part 10 which describes JP3D for volumetric imaging [38].
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The main stages of the JPEG2000 compression pipeline [39] are depicted in Figure 5. The spectral
redundancy between the image components (e.g., color channels, spectral bands or time frames) can
be removed in the multi-component transform (MCT) stage, transforming each pixel independently.
In Part 1 of the standard, component decorrelation can be performed using a reversible or an irreversible
color transform, which decorrelate RGB images to luminance and chrominance components. In Part 2,
any number of components can be decorrelated using arbitrary MCTs, in some cases producing
improvements in compression performance [40–43] (It is important to distinguish the Parts 2 and 10 of
the JPEG2000 standard: Part 2 provides an MCT stage which can be used with volumetric data sets
whereas Part 10 defines a 3D extension of the standard for volumetric imaging applications. As will be
discussed in Section 4, the Part 2 has its own DICOM transfer syntax [44]; However, Part 10 has not
been added to DICOM). In the second stage, the spatial decorrelation of each component is removed
independently via a 2D discrete wavelet transform (DWT). In the first decomposition level of the DWT,
the N×M image is divided into the LL, HL, LH, and HH subbands, each of size N/2×M/2. The three
latter subbands contain high-frequency details, while the LL subband is a downscaled version of the
original image. This decomposition is usually repeated five times using the LL subband of one iteration
as the input for the next one. In addition to dealing with spatial correlation, the DWT provides an
efficient multi-scale representation of the image. In the lossy coding regime, the DWT coefficients
undergo a uniform dead-zone quantization, where values v such that |v| < ε are assigned to the
same quantization interval as 0. In the lossless compression mode, the transformed coefficients are
integers and are not quantized. In either mode, the resulting coefficients are divided into blocks of size
64× 64 by default. Each block is coded independently using an adaptive arithmetic coder called MQ.
In the last stage, the compressed blocks are organized so that the final bit-stream can be progressively
transmitted providing resolution, spatial, quality or component scalability. Region-of-interest coding,
e.g., assigning higher priority to some spatial regions in the coding process, is also supported by
JPEG2000 [45].

Several implementations of the JPEG2000 standard are available [46], including free-software
such as OpenJPEG [47], JasPer [48] and JJ2000 [49], as well as proprietary implementations such as
Kakadu [50].

Figure 5. JPEG2000 compression pipeline.

3.3. JPEG-LS

The JPEG-LS standard defines lossless and near-lossless compression methods for compressing
bi-level, gray-scale, and color images [51]. JPEG-LS is based on the HP LOCO [52,53] codec, and its
low complexity has played an important role in its selection for the Mars Spirit Rover project [54].
The standard is published in two parts: Part 1 of the standard defines the baseline algorithm [51] and
Part 2 introduces extensions [55]. Baseline JPEG-LS scans the image pixels in raster-scan order and
encodes each pixel using either the run mode or regular mode. The mode decision is made using
a template of four neighboring pixels as illustrated in Figure 6. In the figure, X denotes the current pixel
and A, B, C, and, D denote the neighboring pixels. Using these neighboring pixels, three difference
values are formed:

∆1 = D− B; ∆2 = B− C; ∆3 = C− A (1)

The mode decision is made as follows:

mode =

{
run mode if ∆1 ≤ δ and ∆2 ≤ δ and ∆3 ≤ δ

regular mode else
(2)
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During run mode, pixel values are coded using run-length coding. The run mode is terminated
when a pixel is encountered that does not satisfy the above constraints, or when the end of a row is
reached. For lossless coding, the value of δ is set to zero. For near-lossless coding, δ is set as a small
integer indicating the maximum allowable deviation of pixel values from the original values.

Figure 6. The prediction template used in JPEG-LS.

In regular mode, a prediction of the current pixel value is formed using the following equation:

X̂ =


min(A, B) if C < max(A, B)

max(A, B) if C < min(A, B)

A + B− C else

(3)

The prediction error X − X̂ is then coded using context modeling designed to exploit the
high-order structural dependencies between pixel values.. Contexts are formed by quantizing the
differences ∆1, ∆2, and ∆3 into 9 values each. Assuming that the prediction error distribution
is symmetric about the origin, the number of contexts is further reduced to 9 × 9 × 9/2 = 364.
Conventional context modeling methods would use these contexts as conditioning states and
adaptively estimate conditional probability models for the prediction errors for each context state
during coding. Employing such methods with a large number of contexts would lead to context
dilution. However, the JPEG-LS standard avoids this problem by estimating the conditional mean for
each context. These estimates are then used in a procedure called bias cancellation to further refine the
predictions. The bias-canceled prediction errors are encoded using Golomb codes [56].

JPEG-LS offers significant advantages in terms of its simple and easy to implement procedures,
low memory footprint, and low computational complexity. Despite the simplicity of the coding
procedures, the compression performance achieved by JPEG-LS is very competitive with methods that
rely on more computationally demanding coding techniques such as arithmetic coding. Since JPEG-LS
offers state-of-the-art lossless compression performance, it is particularly well suited for certain medical
applications that demand lossless compression.

There are several public software implementations of JPEG-LS including CharLS [57], libjpeg [58],
LOCO-I/JPEG-LS implementation by HP [59], an implementation by Dr. David Clunie [60], and an
implementation by University of British Columbia [61].

3.4. JPEG-XR

The JPEG-XR standard was developed with the primary goal of compressing continuous-tone
still images such as photographic images [62]. The standard originated from the HD Photo technology
developed by the Microsoft Corporation in 2007 [63] and was published in five parts: Part 1 of the
standard [62] defines the system architecture and Part 2 [64] provides the image coding specifications.
Parts 3 through 5 provide the Motion JPEG XR specification [65], conformance testing [66], and the
reference software [67], respectively.
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JPEG-XR was designed to provide high compression efficiency while also enabling low-complexity
encoding and decoding implementations. Similar to JPEG, JPEG-XR is also a “block-transform” based
image compression method. However, unlike JPEG which uses the DCT, JPEG-XR uses a hierarchical
two-stage lapped biorthogonal transform (LBT) implemented using lifting steps. The LBT reduces the
block-boundary artifacts which are commonly seen in JPEG-compressed images at high compression
ratios. The resulting transform bands are compressed independently, allowing a multi-resolution
hierarchy of up to 3 levels. The quantization stage of JPEG-XR offers flexible quantization step size
selection. The quantization step size can be varied spatially, across frequency bands, and across
color channels. The quantization step is followed by the inter-block coefficient prediction stage
which aims to remove the dependencies between the quantized transform coefficients across blocks.
JPEG-XR partitions the high-frequency data into two for layered coding: The so-called significant
information is entropy coded and the remainder, which is considered to be incompressible, is signaled
using fixed-length codes. JPEG-XR uses adaptive Variable Length Coding (VLC) tables which allows
the best table to be chosen for entropy coding based on the statistics of local coefficients.

JPEG-XR has two key features that are important for medical image compression applications:
First, JPEG-XR supports bit depths of up to 32 bits for the input image. Second, JPEG-XR supports
both lossy and lossless compression using the same signal flow path.

3.5. H.265

The H.265 video coding standard, also known as the High Efficiency Video Coding (HEVC)
standard, is proposed by the Joint Collaborative Team on Video Coding (JCT-VC), which is jointly
established by the ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture
Expert Group (MPEG) [68]. HEVC/H.265 has been shown to attain significant improvements in
coding efficiency for camera-captured material compared to earlier video coding standards, in the
range of 50% bit-rate reduction for equal perceptual quality [68].

HEVC/H.265 follows the same general coding approach as its immediate predecessor standard,
H.264/AVC [69]. Namely, each frame in a video sequence is first split into non-overlapping
block-shaped regions. Each block is then predicted by using spatial data prediction within the same
picture or by using data from previously coded frames through motion compensation and estimation.
The former is referred to as intra-prediction, while the latter is referred to as inter-prediction. In both
types of prediction, the main goal is to reduce the amount of data needed to represent each block at
the best quality possible. HEVC/H.265 uses a quadtree-based coding structure with blocks ranging
from 4 × 4 to 64 × 64 pixels. The residual signal, which is the difference between the original block
and its prediction, is transformed using the two-dimensional DCT or Discrete Sine Transform (DST).
The resulting transform coefficients are then scaled, quantized, entropy coded, and transmitted together
with the prediction information. Context adaptive binary arithmetic coding (CABAC) is used for
entropy coding in HEVC/H.265. This is similar to the CABAC in H.264/AVC, but with improvements
to its throughput speed, compression performance, and context memory requirements. HEVC/H.265
includes a lossless coding mode that allows mathematically lossless reconstruction of a signal [70–81].
This is achieved by bypassing the transform, quantization, and other processing (sample adaptive
offset and deblocking filters) that affects the decoded picture, and feeding the residual signal from inter
or intra prediction directly into the entropy coder. Therefore, no additional coding tools are employed
for lossless coding. Figure 7 depicts a simplified block diagram of an encoder capable of generating
a compressed bit-stream compliant with the HEVC/H.265 standard [68].

The most important elements in the HEVC/H.265 intra-prediction process include [68]:

• 35 prediction modes, with 33 angular modes, one DC and one planar mode;
• adaptive smoothing of the reference samples; and
• filtering of the prediction block boundary samples.
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The most important elements in the HEVC/H.265 inter-prediction process include [68]:

• improved motion compensation with quarter-sample precision for motion vectors (MVs),
and 7-tap or 8-tap filters for interpolation of fractional sample positions;

• multiple reference pictures that allows transmitting one or two MVs for each block, resulting in
unipredictive or bipredictive coding, respectively;

• advanced motion vector prediction, which includes derivation of several most probable candidate
MVs based on data from adjacent blocks and the reference frame; and

• sample adaptive offset (SAO), which is a nonlinear amplitude mapping used after the deblocking
filter with the objective to better reconstruct the original signal amplitudes.

HEVC/H.265 introduces data structures called slices. Slices can be decoded independently from
other slices of the same frame. A slice can either be an entire frame or a region within a frame.
Slices facilitate resynchronization in the event of data losses. Extensions and enhancements to the
HEVC/H.265 standard are developed with the aim to support multi-view and 3D video coding,
scalable coding, and coding of high bit-depth images and videos represented using different color
formats. These enhancements are called Range Extensions (RExt) [82].

Transform & 
Quantization

Intra-prediction 
Estimation

Intra-
prediction

Motion 
Compensation

Motion 
Estimation

De-quantization & 
Inverse Transform 

Filter Control 
Analysis

De-blocking and 
SAO Filtering

CABAC

Input Video

Decoded Frame Buffer

Quantized Transform Coefficients

Motion Data

Filter Control Data

Intra-prediction Data

-

Output bit-stream

Figure 7. Simplified block diagram of an encoder capable of generating a compressed bit-stream
compliant with the HEVC/H.265 standard.

Finally, it should be noted that although HEVC was designed primarily for video coding
applications, the intra-coding tools defined in the standard can be used to compress still images
as well. Combined with its lossless mode and support for images with high bit-depths, HEVC is
a viable alternative for medical image compression applications.

4. Standards in Medical Image Communications

In the early 1980s, the digital medical imaging industry was rapidly growing and the need for
the development of standards for digital communication of medical images was evident. In 1983,
two organizations—the American College of Radiology (ACR) which is a professional society of
radiologists, radiation oncologists, and clinical medical physicists in the United States, and the National
Electrical Manufacturers Association (NEMA) which is a trade association representing manufacturers
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of electronic equipment—came together to form the Digital Imaging and Communications Standards
Committee. The committee published the first version of its standard (ACR-NEMA 300-1985) in
1985 [83] with revision in 1988 [84]. The standardization effort continued to evolve as participation
from outside of the United States as well as from medical specialties beyond radiology grew and the
medical imaging industry transitioned to networked operations. In 1993, the name of the committee
was changed to Digital Imaging and Communications in Medicine (DICOM) and a substantially
revised standard, also known as DICOM, was released [85].

DICOM specifies accepted medical image exchange formats and is the dominant standard for
medical image communications. Since its introduction in 1993, it has been widely deployed in
the healthcare industry and is credited for enabling the rapid transition of radiology practice from
a film-based workflow to a fully digital workflow. DICOM defines a protocol for image exchange
both over a network or through the use of physical media (CD ROM, DVD, etc.). The standard is
designed to allow the specificities of each imaging modality while creating a common ground between
data elements.

DICOM is an evolving standard. The DICOM Standards Committee regularly develops
supplements and corrections to the standard. Updates to the standard are required to maintain
effective compatibility with previous editions although some features may be retired during the
maintenance process. The use of retired features is discouraged for new applications. The current
version of the standard [86] defines several transfer syntaxes for encapsulation of encoded pixel
data which includes compressed data formats [87] (ACR-NEMA also proposed its own standard
mechanism for components to assemble into a compression pipeline [88]. However, it was not adopted
by implementers and has long since been abandoned).Run Length Encoding (RLE), JPEG [29,30],
JPEG-LS [51], JPEG-2000 [37,39], JPIP [28], MPEG2 [89], and MPEG-4 AVC/H.264 [90] are included
as compressed data formats in the standard. It is also important to note that work on new transfer
syntaxes to embed HEVC/H.265 in DICOM has been recently started. Currently, the DICOM work
item proposal to add HEVC/H.265 is published [91] and the draft of the relevant supplement (Sup 195)
is out for public comment [92]. The work has been split into two phases, the first is (in Sup 195) to
add support for the “ordinary” HEVC used in consumer devices (e.g., mobile phones to capture video
for medical applications), and the second is to consider intra-frame lossless scalable compression.
JPEG-XR was proposed for addition to DICOM [93], but when Microsoft lost interest in pursuing it, the
work item has not been pursued. Nevertheless, we include JPEG-XR in our review for completeness.

5. Legal and Regulatory Environment

While technical developments and standardization efforts have yielded effective compressed
data and exchange formats, practical adoption of these techniques in routine clinical practice is often
contingent upon the legal and regulatory environment. The use of data compression in medical
imaging is regulated by government organizations and there are guidelines provided by professional
societies [94,95]. In the US, commercial distribution of medical devices is regulated by the Food and
Drug Administration (FDA). The FDA regulates PACS with capabilities defined to include medical
image transfer, display, processing, and storage. In 1993, the FDA issued a guidance statement
for “suitability of lossy compression for different medical applications such as primary diagnosis,
referral and archiving” [96]. In these guidelines, the FDA did not require the manufacturers to
restrict indications for use of PACS devices which incorporate lossy compression but stated that the
manufacturers may voluntarily restrict recommended use. These guidelines also stated that “video and
hard copy images which have been subjected to lossy compression shall be provided with a printed
message stating that lossy compression has been applied, and the approximate compression ratio”.

The issue of lossy vs. lossless compression has long been a topic of discussion by government
organizations, professional societies, and legal experts. It was argued that degradation of image quality
due to lossy compression may result in injury to a patient and the manufacturer of the product may be
liable for the physical harm [97]. It was also argued that the lack of legal standards for radiological
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image compression makes it hard for courts to judge a malpractice case which involves a medical
device with a lossy compression algorithm [98]. Two independent legal reviews conducted in 2006
to assess the legal risk of adopting lossy compression concluded that the use of lossy compression
had not been considered in a court of law in the Commonwealth or the United States [99]. There has
also been legislation passed effecting the use of compression in certain applications. For example, the
Mammography Quality Standards Act (MQSA) [100] was enacted by the US Congress to establish
national standards for both film-based and digital mammography. FDA was given the task to develop
and implement MQSA regulations. The guidance provided by the FDA sets specific requirements for
compression of mammography images [101]. It requires that full-field digital mammography data
must be stored in its original (uncompressed) format or in losslessly-compressed format for long-term
archival. The use of lossy compression for long-term archival is not allowed.

More recently, several professional organizations have issued guidelines and standards for the
use of compression in medical imaging applications. In 2007, the American College of Radiology
(ACR) released a technical standard (which was revised in 2014 [95]). In this standard, ACR does not
make any statements on “the type or amount of compression that is appropriate to any particular
modality, disease, or clinical application to achieve the diagnostically acceptable goal”. However, the
ACR standard states that “only algorithms defined by the DICOM standard such as JPEG, JPEG-LS,
JPEG-2000 or MPEG should be used, since images encoded with proprietary and nonstandard
compression schemes reduce interoperability” [95].

In 2008, The Royal College of Radiologists (RCR) in the United Kingdom issued guidelines for
adoption of lossy compression for the purpose of clinical interpretation [102]. This position statement
by the RCR supports the use of compression as part of the Connecting for Health national PACS solution
and recommends compression ratios for the purposes of primary diagnosis for different modalities as
shown in Table 2. These recommendations of the RCR were based on a review of earlier studies some
of which considered effects of varying levels of lossy compression on diagnostic accuracy as well as
others which relied on the concept of Just Noticeable Difference (JND), i.e., readers’ ability to discern
difference between a compressed image and the original [102]. The RCR also recommended further
studies to establish the effects of compression on thin-slice CT data and radiotherapy CT planning.

Table 2. Lossy compression ratio recommendations by the Royal College of Radiologists [102].

Modality Compression Ratio

Mammography 20:1
Chest Radiography 10:1

Skeletal Radiography 10:1
Ultrasound 10:1

Digital Angiography 10:1
CT (all areas) 5:1

Magnetic Resonance 5:1
Radiotherapy CT No lossy compression

In 2011, the Canadian Association of Radiologists (CAR) published a standard to validate the use
of lossy compression under certain circumstances and for specified examination types [103]. The CAR
standard is based on earlier Pan-Canadian studies sponsored by CAR [104] and provides maximum
compression ratios for JPEG and JPEG2000 for the specific modalities and anatomical areas as shown
in Table 3. The compression ratios in the table are recommended in order not to cause observable
distortions in the corresponding modalities. These recommendations were based on data collected
during a large scale study by 100 readers. The study used both an objective assessment method based
on diagnostic accuracy and a subjective method based on the concept of Just Noticeable Difference [104].
The CAR standard recommends the use of JPEG2000 over JPEG due to its advantages with respect to
progressive transmission and bit depth support and requires the display systems to indicate that lossy
compression has been used as well as the type of compression and compression ratio. Importantly, the
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CAR standard explicitly states that it does not cover compression of images which will be used within
Computer Aided Diagnosis (CAD) or image post-processing applications such as 3D reformatting,
multi-planar reconstruction, or maximum intensity projection.

Table 3. Maximum lossy compression ratios in the Canadian Association of Radiologists
standard [103]. Acronyms used in the table: Computed Radiography (CR), Digital Radiography
(DR), Computed Tomography (CT), Ultrasound (US), Magnetic Resonance (MR), Nuclear Medicine
(NM), JPEG2000 (J2K), Musculoskeletal (MSK). CT ∗ denotes CT imaging with a slice thickness of 5 mm
or greater and CT † denotes CT imaging with a slice thickness of less than 5 mm.

Modality

Anatomical CR/DR CT ∗ CT † US MR NM

Region JPEG J2K JPEG J2K JPEG J2K JPEG J2K JPEG J2K JPEG J2K

Angio - - 15:1 15:1 - - - - 24:1 24:1 11:1 11:1
Body 30:1 30:1 15:1 10:1 12:1 12:1 12:1 12:1 24:1 24:1 11:1 11:1
Breast 25:1 25:1 - - - - 12:1 12:1 24:1 24:1 11:1 11:1
Chest 30:1 30:1 15:1 15:1 12:1 12:1 - - 24:1 24:1 11:1 11:1
MSK 30:1 20:1 15:1 15:1 12:1 12:1 12:1 12:1 24:1 24:1 11:1 11:1

Neuro - - 12:1 8:1 12:1 12:1 - - 24:1 24:1 11:1 11:1
Pediatrics 30:1 30:1 15:1 15:1 - - 12:1 12:1 24:1 24:1 11:1 11:1

There have also been studies by professional societies in Europe. In 2009, the German Röntgen
Society (DRG) provided recommendations for lossy compression of digital radiological images [105].
These recommendations were developed during a consensus conference attended by more than
80 experts. The conference attendees examined hundreds of earlier studies from the previous two
decades and aimed to develop recommended compression ratios with no expected reduction of
diagnostic image quality. The recommended compression ratios are shown in Table 4.

In 2011, the European Society for Radiology (ESR) published a position paper that summarized
the results of an international expert discussion initiated by the ESR on open issues using image
compression in radiology [94]. The ESR position paper provided guidelines on many issues but did
not provide compression ratios like the earlier standards and guidelines prepared by the professional
societies. Instead, the ESR recommended that “radiologists should follow the recommendations of
CAR, DRG or RCR” to ensure Diagnostically Acceptable Image Compression (DAIC) [94].

Table 4. Lossy compression ratio recommendations by the German Röntgen Society [105].

Modality Compression Ratio

CR/DR (mammography) 15:1
CR/DR (all areas except mammography) 10:1

CT (all areas except brain) 8:1
CT (brain) 5:1

Magnetic Resonance 7:1
X-ray Angiography 6:1
Radio Fluoroscopy 6:1

6. Compression Performance of Image Compression Standards on Medical Data Sets

Compression performances of different image compression standards have been extensively
studied on medical images in many studies in the existing literature [73,77–80,106–113].
Notwithstanding, to the best of our knowledge, compression performance results in the literature
are not simultaneously available for all image modalities described in Section 2 for lossless and lossy
compression using the standards described in Section 3 with comparable parameters. In particular,
results for more recent standards such as JPEG-XR and HEVC have not been extensively studied.
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It is the main goal of this section to provide the reader with objective compression performance
metrics, which can be used to acquire a sense of the variability in medical image content (even
when the modality and anatomy are restricted) and the relative performance of each compression
standard for some of the most common medical image modalities. Experiments were conducted
using 10 CT colonography image volumes, 10 CT Lung image volumes, 10 MR Mammography
image volumes and 10 MR Brain image volumes from the Cancer Image Archive [114], and 10 H&E
stained digital pathology images provided by the Clinical Image Analysis Laboratory of The Ohio
State University [115]. For reproducibility, we have made the datasets used in these experiments
publicly available: The image volumes are available through [116] and the digital pathology images
are available through [117]. A brief description of the data sets is provided in Table 5.

It is important to point out that this evaluation has limitations. First, the relatively small number
of image modalities and image samples in each image modality did not capture the whole diversity of
medical images. In fact, even parameters used during data acquisition (such as Repetition Time (TR)
or Echo Time (TE) in MRI) might have a significant impact on compressibility of the resulting images,
although it is out of the scope of this paper to analyze the effect of these parameters on compression
performance. Furthermore, a comprehensive evaluation may require observer studies with radiologists
or pathologists to study the impact of compression on diagnostic performance (refer to Section 6.2 for
further discussion) together with a careful evaluation of the computational requirements of particular
software implementations on particular hardware platforms. Therefore, results in this section should
only be interpreted as general trends, and not as a substitution of a detailed study on any given image
modality or compression algorithm.

Table 5. Description of data sets.

Database Modality Image Dimensions (x, y, z) Bit Depth

TCIA-COLONOGRAPY CT Colonography (512, 512, 426–566) 12
LIDC-IDRI CT Lung (512, 512, 133–280) 12

TCGA-BRCA MR Mammography (256, 256, 148–160) 12
TCGA-GBM MR T2 Flair Axial (384, 512, 25–29) 12

- H&E Stained Digital Pathology (6000, 6000, -) 24 bits (color)

In the experiments we compared JPEG-LS, JPEG2000, JPEG-XR and HEVC for lossless
compression, and JPEG, JPEG2000, JPEG-XR and HEVC for lossy compression, using default
parameters except as noted. For JPEG and JPEG-LS, the libjpeg software was used [58]. Results for
JPEG-XR were obtained using version 1.41 of the JPEG XR Reference Codec [118]. Version 7.8 of
the Kakadu software was used for the JPEG2000 results [50]. For HEVC, the reference software
HM-16.4 was used [119] with the default configuration files for the AI and RA modes provided by the
reference implementation.

To provide fair comparison of the different coders, each slice was compressed independently as
a monochrome image except for HEVC RA, while HEVC RA exploited the redundancy among image
slices. For pathology images, redundancy among the three color components was exploited with
default parameters except for HEVC, which did not support color decorrelation transforms within
the standard. For HEVC, images were compressed as a single 4:4:4 RGB frame, and hence only the AI
mode is tested.

While the results of the experiments are summarized in the following subsections, all of the
detailed data obtained in these experiments are provided as Supplementary Material to enable
reproducible research.
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6.1. Lossless Compression

Comparison of the lossless performances of the image compression standards on the data
sets described in Table 5 is shown in Table 6. These results indicate that JPEG-LS provided the
best compression ratios on CT Colonography and MR Mammography data sets. The compression
performance of JPEG-LS was among the top three on the remaining data sets. We also note that the
JPEG2000 yielded the highest average compression ratios on MR T2 Flair Axial and Digital Pathology
data sets, and HEVC RA attained the highest average compression ratio on CT Lung data set. It can
also be observed that the availability of inter-frame and intra-frame prediction in HEVC RA resulted
in higher average compression ratios compared to the intra-only prediction used in HEVC AI. For all
data sets except MR Mammography, JPEG-XR achieved higher average compression ratios compared
to HEVC.

Table 6. Comparison of the lossless compression performances of different methods on different
data sets. Average compression ratios as well as the standard deviation of the compression ratios are
displayed. The largest average compression ratio for each modality is displayed in bold font.

Modality Compression Standard Compression Ratio

CT Colonography

JPEG-LS 1.89 ± 0.1089
Lossless JPEG-XR 1.79 ± 0.0869
Lossless JPEG2000 1.86 ± 0.1042

HEVC AI 1.64 ± 0.0897
HEVC RA 1.87 ± 0.1315

CT Lung

JPEG-LS 2.08 ± 0.3195
Lossless JPEG-XR 1.94 ± 0.2571
Lossless JPEG2000 2.02 ± 0.3160

HEVC AI 1.84 ± 0.2739
HEVC RA 2.10 ± 0.3217

MR Mammography

JPEG-LS 2.06 ± 0.2520
Lossless JPEG-XR 1.72 ± 0.1401
Lossless JPEG2000 2.01 ± 0.2406

HEVC AI 1.77 ± 0.2357
HEVC RA 2.03 ± 0.2504

MR T2 Flair Axial

JPEG-LS 2.75 ± 0.2267
Lossless JPEG-XR 2.85 ± 0.2206
Lossless JPEG2000 2.91 ± 0.2463

HEVC AI 2.26 ± 0.1818
HEVC RA 2.51 ± 0.1955

Digital Pathology

JPEG-LS 1.72 ± 0.0786
Lossless JPEG-XR 1.72 ± 0.0497
Lossless JPEG2000 1.76 ± 0.0674

HEVC AI 1.49 ± 0.0905

6.2. Lossy Compression

For this comparison, it would be appropriate to define image quality as the performance
of an observer for a specific task of practical importance [120]. Note that the observer can be
a human observer or an algorithm [121]. For human observers, measuring such performance through
psychophysical studies for the large variety of tasks and data present in medical imaging applications
is time-consuming and expensive. Although model observers for task-based image quality assessment
have been proposed [122,123], incorporation of these model observers into compression pipelines are
usually designed for individual medical imaging modalities and has not been studied extensively
except in a few isolated cases [124,125]. Therefore, objective performance metrics have often been used
in image compression literature, although it is understood that these metrics, while relatively simple
to compute, are only loosely correlated with diagnostic performance. Instead, for this study, we used



Information 2017, 8, 131 17 of 26

three algorithmic distortion metrics to provide objective comparison of the images compressed by each
tested compressor. In particular, we used Peak-Signal-to-Noise-Ratio (PSNR), structural similarity
(SSIM) index [126], and HDR-VDP-2 metric [127]. Both SSIM and HDR-VDP-2 have been designed
based on the properties of the Human Visual System (HVS). HDR-VDP-2 has been shown to correlate
well with probability of image difference detection [127]. This metric has also been calibrated for high
dynamic range images, making it suitable for medical images with bit depths larger than 8 bits.

Figures 8–12 show the lossy compression performances of different image compression standards
on each image data set. These plots illustrate the mean performances over the entire data set for each
modality. Detailed resulted data for each image are available as Supplementary Materials. PSNR was
obtained using the mean squared error calculated across the entire image, while SSIM and HDR-VDP-2
were calculated using the luminance component of each image.

Figure 8. The mean PSNR, SSIM, and HDR-VDP-2 metrics vs. Compression Ratio for
CT-COLONOGRAPHY data.

Results show that, for 3D image volumes, both HEVC AI and HEVC RA consistently produced
the best compression performance, followed by JPEG2000. In general, HEVC RA produced superior
results to HEVC AI due to the exploitation of inter-slice redundancies. For digital pathology images,
JPEG2000 outperformed HEVC, which can be explained by the fact that HEVC (in particular its
rate-allocation algorithm) was designed to compress video sequences with multiple frames, and that
digital pathology images were interpreted as a single color frame. In general, JPEG-XR and JPEG2000
produced similar compression results for 3D volume images. This is consistent with the fact that both
algorithms employed very efficient hierarchical transforms. It can also be observed that JPEG2000
performed moderately better than JPEG-XR for digital pathology. These results suggest that the DWT
used in JPEG2000 provided higher efficiency than the LBT in JPEG-XR standard for images.
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Figure 9. The mean PSNR, SSIM, and HDR-VDP-2 metrics vs. Compression Ratio for LIDC-IDRI data.

Figure 10. The mean PSNR, SSIM, and HDR-VDP-2 metrics vs. Compression Ratio for
TCGA-BRCA data.

In most cases, JPEG performance fell behind the other compression methods for 3D image
volumes. This happened because JPEG was the earliest and simplest among these standards for
gray-level images. For pathology images, the PSNR performances of the 4 methods referred to in the
simulations were very close to each other. The JPEG2000 attained better performance than JPEG-XR
and JPEG-XR exhibited better performance than JPEG for high compression ratios in terms of PSNR,
which was similar to the 3D image volume cases. However, in terms of SSIM and HDR-VDP-2, both
JPEG2000 and JPEG performed better than JPEG-XR and HEVC. This can be explained by the fact that
JPEG2000 and JPEG gave higher priority than JPEG-XR and HEVC to the luminance channel employed
in SSIM and HDR-VDP-2 calculation.
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Figure 11. The mean PSNR, SSIM, and HDR-VDP-2 metrics vs. Compression Ratio for
TCGA-GBM data.

Figure 12. The mean PSNR, SSIM, and HDR-VDP-2 metrics vs. Compression Ratio for Digital
Pathology Data.

7. Conclusions and Future Directions

Modern medical practice relies heavily on imaging techniques that produce an ever-increasing
volume of digital medical imaging data. Data compression plays an important role in efficient storage,
distribution, and management of these data sets. The international image compression standards
developed by ISO/ITU/IEC address the need for compatibility and interoperability between image
communication systems. Many of these standards have been included in the DICOM standard as
compressed data formats for exchange of medical images. While compression efficiency is an important
consideration for inclusion in DICOM, compatibility and interoperability weighs heavily when new
compression techniques are considered for inclusion. DICOM informally applies a 30% improvement
threshold over existing schemes (in the absence of any special features) in a new proposed scheme,
rather than approving a multitude of “me too” schemes with similar performance.

While there is recognition that lossless compression methods are of limited use due to their
modest compression performances, there is no consensus on lossy compression methods in the medical
imaging community. A wide range of studies and literature reviews which support the safe use of lossy
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compression in medical imaging have led several professional organizations to develop guidelines for
the use of lossy compression in clinical practice. However, these guidelines are not always consistent
among each other. For example, the DRG, RCR, and CAR guidelines recommend compression ratios
up to 15:1 , 20:1, and 25:1, respectively, for digital mammography datasets. On the other hand, the use
of lossy compression of mammography data is disallowed by the MQSA in the US.

It is important to note the significant variability in medical image sets, even when the modality
and anatomy is restricted [128]. The above-mentioned guidelines aim to provide a single (maximum)
compression ratio that will ensure the preservation of diagnostic information in all compressed datasets.
However, the use of a fixed compression ratio results in significant variation in quality among different
data sets. Conservative selection of this compression ratio leads to ineffective compression of many
images in order to avoid undesirable artifacts in a few hard-to-compress images. Alternatively, recent
studies have proposed the use of perceptual quality metrics to drive standard image compression
algorithms [129–131]. These methods aim to optimize image compression based on the properties and
capabilities of the HVS. The goal is to compress the image data such that each and every image has
the desired visual quality regardless of image content. Adoption of such metrics in medical practice
may lead to improved compression performance while ensuring constant visual quality across images.
As a result, the compression bit rates may vary in a wide range.

Finally, optimization of compression for use within post-processing applications remains an
understudied problem. Many medical imaging workflows currently include post-processing steps
such as 3D reformatting, multi-planar reconstruction (MPR), maximum intensity projection (MIP), and
computer aided detection (CAD). [132] attempts to quantify the level of loss that may be acceptable
before CAD performance suffers. Optimization of image compression systems to work within such
workflows will become even more critical as the field of medical imaging advances towards quantitative
and objectively assessed characteristics derived from imaging data. In particular, the advent of Big
Data in medical imaging provides many challenges and opportunities for image compression research.

Supplementary Materials: The supplementary materials are available online at www.mdpi.com/2078-2489/8/
4/131/s1.
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